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Abstract

Background: A central problem in systems biology research is the identification and extension of biological modules–
groups of genes or proteins participating in a common cellular process or physical complex. As a result, there is a persistent
need for practical, principled methods to infer the modular organization of genes from genome-scale data.

Results: We introduce a novel approach for the identification of modules based on the persistence of isolated gene groups
within an evolving graph process. First, the underlying genomic data is summarized in the form of ranked gene–gene
relationships, thereby accommodating studies that quantify the relevant biological relationship directly or indirectly. Then,
the observed gene–gene relationship ranks are viewed as the outcome of a random graph process and candidate modules
are given by the identifiable subgraphs that arise during this process. An isolation index is computed for each module,
which quantifies the statistical significance of its survival time.

Conclusions: The Miso (module isolation) method predicts gene modules from genomic data and the associated isolation
index provides a module-specific measure of confidence. Improving on existing alternative, such as graph clustering and the
global pruning of dendrograms, this index offers two intuitively appealing features: (1) the score is module-specific; and (2)
different choices of threshold correlate logically with the resulting performance, i.e. a stringent cutoff yields high quality
predictions, but low sensitivity. Through the analysis of yeast phenotype data, the Miso method is shown to outperform
existing alternatives, in terms of the specificity and sensitivity of its predictions.
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Introduction

Much of systems biology research aims to identify biologically

meaningful relationships between genes or their products, such as

protein-protein interactions or co-membership in a biological

pathway. This undertaking can be viewed as moving from the

‘‘parts lists’’ produced by genome sequencing projects to the

assembly instructions for a complex system.

The combination of entities and their relationships is often

described as a network, which can represent diverse biological

systems such as cellular or signal transduction pathways [1,2]. A

common assumption made in the analysis of networks is the

existence of biologically defined subnetworks commonly referred

to as modules. Examples of such a module are a protein complex

or a gene expression regulon.

Quantitative data from diverse genome-scale experiments can

be exploited for the identification of new modules and the

expansion of known modules. Correlation of expression levels or,

more relevant to this study, loss of function phenotypes across

multiple conditions provides an indirect measure of gene–gene

relationship. Other assays such as yeast two-hybrid or genetic

interaction screens using double knockouts provide direct

measures of these relationships. Early approaches to such studies

were limited by a binary representation of the observations, but

increasingly more powerful analysis is enabled by quantitative

readouts [3–5].

While the quantitative data can be highly reproducible and

informative, identifying the relevant functional relationships can

still be a challenge. In noisy data there is great risk of predicting a

spurious relationship between any pair of genes. An analytical

approach based on modules, however, moves the focus from

individual to connected sets of relationships. To invoke a concept

from social network analysis, there is greater evidence for a

relationship reinforced by common associations than for an

individual, seemingly strong pairing. This principle is the basis for

many algorithmic approaches for network identification [6–8].

The two main paradigms for module finding utilize different

representations of the relationships: (i) a graph is obtained by

applying a global threshold to the relationship data; or (ii) a

hierarchy such as a dendrogram (or tree) is produced by a
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clustering algorithm. In graph-based approaches, nodes represent

genes and edges represent relationships. A ‘threshold graph’ is

obtained from continuous relational data by classifying all pairs

with similarity above the chosen threshold as related, and all other

pairs as not related. The graph is subsequently processed, for

instance based on the density of intra-group relationships, to

produce candidate modules. In tree-based approaches, genes

appear as leaves connected by branches, where branch height

corresponds to some measure of relationship strength. Gene

groups are obtained by pruning the tree, often by invoking a global

height threshold.

In both approaches, the specification of a global threshold is

fundamentally limiting. Modules in genomic data can be

dissimilar: they can vary greatly in size, in internal cohesion

(how ‘related’ two genes within a module are) and external

isolation (how ‘unrelated’ the genes in the module are to genes in

other modules). No single threshold graph or pruning of a tree

reveals all of the modules in a heterogeneous biological system.

Both methods are limited in their ability to perform well for the

simultaneous analysis of all modules and are extremely sensitive to

the selection of the threshold parameter.

We develop a novel approach for the detection of modules in

relational genomic data. Our approach is fundamentally based on

the ranking of the relationships between genes. Viewed in terms of the

graph paradigm introduced above, we work with the entire

sequence of threshold graphs that result from sliding the global

threshold from stringent to permissive. Modules in this sequence of

graphs are identified as groups that appear and persist as cohesive

subgraphs. This approach for the detection of module isolation,

which we refer to as the Miso method, permits the identification of

modules with differing internal cohesion and determines the

statistical significance of each candidate module. Extending a

theoretical method introduced by Ling [9], the Miso method can

also be used to score clusters in any single linkage dendrogram. In

application to two collections of yeast mutant data [10,11], we show

that our method successfully identifies known modules. Further-

more, our method predicted a new module which was subsequently

experimentally confirmed as a novel protein complex [11]. A

comparative study establishes that the Miso method performs very

well relative to several alternative methods based on the post-

processing of threshold graphs or dendrograms. Additionally, this

comparison underscores the practical advantage offered by the

tuning parameter of the Miso method. Its natural interpretation as a

measure of stringency provides external guidance when selecting a

value appropriate for a specific application and, more generally,

implies a predictable relationship between its value and classical

measures of performance. We developed a Cytoscape [12] plug-in

and R [13] code to make the methods available to the community.

Results

Dissimilar biological modules in relational data
We assume that genomics data arrives in the form of ranked

pairwise relationship scores (e.g. derived from Euclidean distance or

correlation). While such data can be generated by many approaches

and take many forms, for the purpose of this report we analyze only

yeast mutant phenotype data, including a study aimed at the global

identification of endosomal transport factors [11] (full description to

follow below). In Figure 1 we present information on four well-

characterized modules, chiefly protein complexes implicated in

Figure 1. No global threshold exists for the simultaneous recovery of all network modules. Smoothed histograms of the observed
relationships in which both genes lie within (solid lines) and exactly one gene lies within (dashed lines) four well-characterized modules addressed by
the yeast vesicle transport data [11]. Euclidean distance is presented on the original scale and a rank scale in the left and right panels, respectively The
plots depict the heterogeneity in the internal cohesion and external isolation of biological modules. Within the left and right panels, all plots have a
common Y-axis. i.e. identical limits and tick marks.
doi:10.1371/journal.pone.0003358.g001

Miso: Module Isolation
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vesicle transport in yeast. We compare the strength of relationships

in which both genes belong to a module to those in which exactly

one gene belongs to the module. We present both ranked

relationships and the associated underlying continuous association

measures. For all these modules the intra-module relations generally

are stronger than the extra-module relations. However, the

threshold that provides the best modular distinction varies

noticeably between modules. Summarizing, there is no global

threshold that is ideal for the recovery of all network modules.

The graph process captures evolving relationships across
a spectrum of thresholds

A graph process is a useful representation of pairwise relationships.

In contrast to a single graph, a graph process is an ordered set of

graphs generated by incrementing a parameter. Conceptually within

the process this parameter can be thought of as time. The process is

initiated with a graph that has all genes but no edges. The next graph

is obtained by placing an edge between the pair of genes with the

strongest relationship score, i.e. rank 1. Subsequent edges are added

in the order of gene-gene relationship scores, i.e. ranks 2, 3, …, as

illustrated in Figure 2. This results in a sequence of graphs that starts

with an empty graph and ends with a complete graph. When a

global threshold (i.e. one value of the parameter) is applied to

relational data, the entire analysis is based merely on a single graph.

Candidate modules are subgraphs of significant
persistence

It is our thesis that modules will appear and persist within this

graph process for a period of time as identifiable subgraphs.

The most straight-forward, identifiable subgraphs are the ‘singly

connected’ components that arise during the graph process. These

subgraphs have the defining property that every gene pair is linked

by a sequence of edges within the subgraph and no edge connects

to this subgraph from the outside. Figure 3 presents an example of

a graph process produced by the ranked yeast vesicle transport

data. The emergence (Figure 3a) and disappearance (Figure 3b) of

subgraphs corresponding to modules (here, complexes and/or

pathways associated with the vesicle transport system) can be

observed. The set of all singly connected components appearing in

the graph process can be enumerated and form a set of candidate

modules.

Figure of merit for candidate modules based on survival
time

To facilitate interpretation, the candidate modules must be

assessed with a quantitative measure of significance. Such a score

ranks candidates for expensive validation studies and provides an

objective measure of confidence. Our measure of significance for a

candidate module is based upon the length of time it survives

within the graph process as an identifiable subgraph. We say a

subgraph is born when the associated set of nodes first becomes

singly connected and dies upon the placement of the first edge

connecting a node in the subgraph to a node outside the subgraph.

The survival time is the difference between death and birth.

Figure 2 illustrates birth, death, and survival of candidate modules

in a simple example.

Following Ling [9], we assess the statistical significance of an

observed survival time by comparing it to the distribution of

survival times in a randomly evolving graph process. At the birth

Figure 2. Illustration of a graph process and the birth and death of identifiable subgraphs. A graph process proceeds by sequentially
adding edges in rank order. When two subgraphs, defined here as singly connected components, are joined, two candidate modules ‘die’ and a new
candidate module is born. Survival time is defined as the number of edges added in the graph process between birth and death. We show steps 4,5,6
and 11 here in panels A, B, C and D, respectively. In B a ‘between’ edge joins subgraphs (2,3,5) and (4) into a new subgraph. In C, a ‘within’ edge is
placed which does not affect subgraph membership. In D, the subgraph born in B dies resulting in a survival time of 1126 = 5. Panel E provides the
corresponding single linkage dendrogram. Note that the height of cluster merge events corresponds exactly to death and birth events of subgraphs.
doi:10.1371/journal.pone.0003358.g002
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of a specific candidate module, each remaining edge can be

classified based on the two associated nodes; the edge is ‘within’

(both nodes in the candidate), ‘between’ (exactly one node in the

candidate), or ‘outside’ (neither node in the candidate). The death

of the candidate module occurs upon the placement of the first

‘between’ edge. The distribution of this waiting time under

random evolution is easily obtained and, therefore, we can

compute a p-value for the observed survival time. Intuitively, this

method assumes that ‘within’ edges typically arrive before

‘between’ edges and that biological modules will often appear as

identifiable subgraphs that enjoy unusually long survival times. We

refer to this p-value as an isolation index.

Augmenting the list of candidate modules: removing
high leverage edges

Noise in the data can lead to the premature placement of edges

between genes belonging to distinct biological modules, which

violates the assumption that ‘within’ edges arrive before ‘between’

edges. Such noise could arise from the limitations of the

experimental assay or from true biological heterogeneity (e.g. a

gene belongs to multiple modules). In our procedure, where

candidate modules are singly connected subgraphs, such errors in

edge order can affect survival times and even the composition of

the list of candidate modules. Our method could fail to detect a

true biological module if its survival time is truncated or if, when it

first emerges, it is already embedded within some larger group of

genes. These two problems arise when a mistimed edge arrives

after or before, respectively, the birth of the module.

To make our Miso procedure robust to this sort of error, we

extend it by considering the impact of high-leverage edges, i.e. the

‘between’ edges whose placement cause the death of a candidate

module. To mitigate the effect of these high leverage edges that hit

a module after birth, we compute the waiting time and associated

p-value for the arrival of the k-th ‘between’ edge, for k = 1,2, …, K,

and define the extended k-isolation index as the minimum of these

K p-values. To reduce the impact of edges that hit a module before

birth, we consider parallel graph processes in which each

individual high-leverage edge is postponed until the end. We

extract candidate modules and associated p-values from these

processes using the procedures described above. We form the list

of candidate modules obtained from all one- and two-edge

removed processes.

To introduce the nomenclature that follows - the number of

allowed mistimed edges before and after birth are given in

parentheses. For example, Miso(0,1) refers to the modules that are

not hit before birth, and for which isolation is assessed until the

first edge hits after birth; Miso(2,6) refers to the isolated modules

that were hit at most twice before birth and tracked until at most

six hits have occurred after birth.

Relationship to single linkage clustering
Our approach, in which candidate modules are singly

connected components, is related to single linkage hierarchical

clustering. The candidate modules identified by Miso(0,1) are

exactly the clusters arising in the dendrogram. Therefore one

broadly useful application of our method is the selection of

significantly isolated clusters from single linkage clustering (see

Figure 2A in [11]). While dendrograms are a useful representation

of single linkage clustering, clusters that are significantly k-isolated

with k.1 may not be detectable by visual inspection. Candidate

modules detected via the removal of one or more high leverage

edges may not even appear as clusters in the dendrogram.

Analysis of vesicle transport and DNA damage response
in yeast

For the model organism S.cerevisiae the research community has

created a collection of modified strains in which each member of a

panel has a distinct gene disabled [14,15]. Using an appropriate

assay, the phenotype of each strain in the panel is measured under

a set of conditions. It is anticipated that for two genes within a

module their respective mutants will display similar properties. We

apply our methods to yeast mutant phenotype studies of two

important systems - vesicle transport [11] and DNA damage

response [10]. The modules within the vesicle transport system are

well annotated, making this set suitable for the evaluation of our

analytical method. Although the modules are less deeply

annotated, we present an analysis of the DNA damage data as

an independent validation.

We first applied our methods to a data set exploring vesicle

transport. In eukaryotic cells, the directed movement of substances

in membrane-bound sacs (vesicles) within the cell is called vesicle

transport. Vesicle traffic is regulated by protein modules that select

cargo for incorporation into a forming vesicle and direct vesicle

docking and fusion with the appropriate target membrane. The

modules tend to be conserved between species, thus knowledge

generated in studies of yeast can reveal the biochemical

mechanisms by which defects in protein and lipid trafficking

contribute to human disease.

Quantitative phenotypes were obtained under 14 conditions for

279 genes that displayed a strong phenotype in an initial,

independent genome-wide screen. The 279 genes include 137

genes known to belong to 25 modules. In the analysis reported in

Figure 3. The observed graph process for yeast vesicle
transport data at step 2000 (a) and 5000 (b). Node color
corresponds to module membership; unannotated genes appear in
grey. Specific identifiable subgraphs in panel a) have been incorporated
into larger subgraphs in panel b).
doi:10.1371/journal.pone.0003358.g003
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[11], we used the Miso(0,1) method with great success and the key

results are displayed on top of a dendrogram. For example, the

two largest candidate modules correspond almost exactly to two

previously known modules–namely, the protein pump V-ATPase

and the ESCRT subcomplexes (Table 1). Another high-scoring

candidate module (‘‘55-68’’) was subsequently validated in

prospective experiments that confirmed a predicted protein-

protein interaction. Here, in addition to the most conservative

implementation [Miso(0,1), Table 1], we also apply our method in

a more aggressive form [Miso(2,6), Table 2] to the vesicle

transport data. We find that 78% [Miso(0,1)] and 63% [Miso(2,6)]

of the predicted within-module relationships are, in fact, ‘true’, i.e.

are implied by the prior knowledge, and that 48% [Miso(0,1)] and

53% [Miso(2,6)] of true relationships are successfully predicted.

The Miso methods perform as well or, arguably, better than

published alternatives at recovering and expanding modules in the

yeast vesicle transport system (detailed further below).

We then applied our methods to the DNA damage response

phenotype data described in [10]. DNA damage response

pathways are relevant for cancer in humans, both for prevention

and treatment. In [10] the authors analyze the phenotypic

response of 140 deletion mutant strains in 36 conditions related

to exposure to DNA damaging agents. From the average linkage

dendrogram, interpreted in light of expert knowledge, the authors

selectively identified the following six functional groups containing

23 genes:

N C1: NER (RAD2, RAD4, RAD10, RAD14, and RAD1)

N C2: error-prone TLS (REV1 and REV3);

N C3: PRR (RAD6, RAD18, and RAD5);

N C4: homologous recombination (RAD57, RAD51, and

RAD54);

N C5: cell-cycle checkpoint control (RAD9, RAD24, RAD17,

DDC1, and MEC3)

N C6: (SHU2, SHU1, CSM2, MPH1, and PSY3).

We recover these hand-picked modules in an objective fashion

using our methods (Tables 3 and 4). The conservative Miso(0,1)

output contains modules C1 and C2 perfectly, with partial

recovery of C3 (2 of 3 predicted; no additional predictions), C4 (2

of 3; 2 additional genes included) and C5 (2 of 5; no additional).

Two additional modules of 3 genes each were predicted. Analysis

with Miso (2,6) recovers C1, C5 and C6 perfectly. Compared to

the Miso(0,1) results, C3 is unchanged and both C2 and C4 have

one additional gene. In addition, the Miso(2,6) method predicts

only one other candidate module, with the noteworthy property

that 4 out of the 5 genes are known to be involved in DNA repair.

Comparison of methods
To assess the relative performance of the Miso method, we

applied it along with alternative methods to the vesicle transport

data (Figure 4). The DNA damage response data is less suitable for

Table 1. Results for the Miso(0,1) method for the vesicle transport data.

Candidate module Size Birth Death p-value Composition

V-ATPase 18 4314 7922 6.82E-228 V-ATPase (18)

ESCRT 13 4348 4506 1.52E-05 ESCRT(13)

Retromer (I) 10 3224 3530 9.76E-09 Retromer(4),PI3K(2),ClassD VPS(1), ClassA/D VPS (1)

COG/YPT6 9 1252 1468 1.46E-04 COG(4),YPT6(4),ARF(1)

SWR-C 6 1073 1524 5.56E-07 SWR-C(6)

INO80 4 1413 2326 3.95E-10 INO80(2)

55-68 3 463 2072 1.51E-13 55-68(2),ClassD VPS(1) validated

ClassB 3 6451 7599 3.23E-11 ClassB VPS (3)

PI3KC 2 12208 21651 1.10E-84 PI3K(2)

ClassD 2 2644 6344 4.16E-23 ClassD VPS (2)

GARP 2 1029 2923 1.92E-10 GARP(2)

Retromer(II) 2 130 1844 2.70E-07 Retromer(2)

The table shows the composition of significantly isolated candidate modules (Bonferroni corrected p-value less than 0.05), and is a subset of the results in [11]. The
‘‘birth’’ column gives the step in the graph process when the module is first connected, the ‘‘death’’ column gives the first time an edge from outside hits the module,
the p-value is computed with Miso(0,1). Most candidate modules can clearly be associated with a protein complex. The candidate 55-68 contains a relationship
validated in [11]. Omitted are a candidate module of size 3 and 7 of size 2 with unknown annotations.
doi:10.1371/journal.pone.0003358.t001

Table 2. Candidate modules derived from the vesicle
transport data using the Miso(2,6) method with a Bonferroni-
corrected p-value cutoff of 0.05.

Candidate
module Size Remarks

V-ATPase 21 V-ATPase(18),ClassC VPS

ESCRT 13 ESCRT(13)

Retromer 12 Retromer(6),PI3KC(2)

SWR-C 11 SWR-C (8)

YPT/COG 9 YPT(4),COG(4),ARF(1)

55-68 4 55-68(2),ClassD VPS

EE 3 EE(2)

Glycosyl 3 Glycosyl(2)

PI3KC 3 PI3KC(2),ClassC VPS(1)

ClassD 3 ClassD VPS(3)

ClassB 3 ClassB VPS(3)

DNA 3 SWR-C(1), RSC(2)

GARP 2 GARP(2)

doi:10.1371/journal.pone.0003358.t002
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comparative analysis due to the sparse annotations; the results are

given for completeness in Figure S1, but will not be discussed in

detail here. We selected representatives from the two broad

categories described above: graph-based and dendrogram-based

methods. We used MCL [8] as the representative graph clustering

procedure because it performed well in a benchmark test [16]. For

the identification of modules within a dendrogram, we consider

both global cuts, including the one suggested by the gap statistic

[17], and local cuts. Objective local cuts, although not commonly

used in genomics, are included because they are the most similar

conceptually to the Miso method. Based on the work of Milligan

and Cooper [18], we employ the local cut criterion introduced by

Duda and Hart [19].

All of these procedures must be supplied with a tuning

parameter to return a list of candidate modules. The tuning

parameters of the methods we study are conceptually very

different. For the Miso method, the tuning parameter is a p-value

cutoff and therefore is a measure of stringency (i.e. the closer the

parameter is to zero the higher the positive predictive value). For

none of the other methods is there such a simple relationship

between the tuning parameters and the performance of the

method. MCL requires the specification of a similarity threshold

which, in effect, corresponds to the selection of a single threshold

graph. MCL proceeds to identify candidate modules as dense

subgraphs within the selected graph. In the context of a

dendrogram, a global cut across a tree partitions the genes into

clusters which are the candidate modules. This global cut can be

viewed either as the selection of a similarity threshold, as in MCL,

or more relevant in actual practice, as specifying the number of

clusters. Local cuts applied to a dendrogram are implemented in a

bottom-up manner to determine when to merge clusters based on

their lack of separation.

Based on existing annotation of modules associated with vesicle

transport, any relationship (edge) between two members of the

same module is considered ‘‘true’’, all other relationships ‘‘false’’.

Two metrics are computed to quantify performance. We use the

positive predictive value (PPV), which gives the rate of true positive

predictions among all predictions, and the sensitivity, which gives

the proportion of true relationships predicted. Biological knowl-

edge is incomplete, therefore a portion of the ‘‘false’’ predictions

will be true–i.e. the reported PPV measures are conservative.

Groups of greater than 50 genes were not considered as valid

candidate modules, since the true biological modules of interest

are of much smaller size.

The results for our comparative study, given in Figure 4, show

that the Miso methods are the best with respect to PPV and match

the performance of the other methods with regards to sensitivity.

In Figure 4a), the Miso methods perform as expected with

Miso(0,1) making a smaller number of higher quality predictions

relative to Miso(2,6). The local cut methods perform uniformly

worse with respect to PPV and exhibit maximum sensitivities that

are comparable to those of the Miso methods (Figure 4b). The

most striking finding for the global cut methods is the volatile

relationship between the tuning parameters and performance,

especially for PPV (Figure 4c). This volatility demonstrates the

importance of the tuning parameter as well as the difficulty of

choosing its optimal value, particularly in the absence of known

annotations.

Discussion

Based on the analysis of graph processes, we have introduced a

novel method for the identification of biological modules in ranked

relational data. Building on a theoretical foundation from Ling [9],

the Miso methods accommodate the heterogeneity and noise that

is inherent to genomic data and detect modules that vary widely in

size, external isolation and internal cohesion. An objective

measure of confidence–a p-value–is assigned to each candidate

module, prioritizing candidates for further study. Because the

isolation index is a measure of stringency, it is particularly

attractive for applications in which there is little or no prior

biological knowledge to guide the selection of tuning parameters.

In the ongoing effort to identify modules from genomic data, the

most dominant methodological approaches are based on one of

two representations of the data: graphs and hierarchical clusterings

(dendrograms). Regardless of the analytical paradigm, a key

Table 3. Candidate modules derived from the DNA damage data using the Miso(0,1) method with a Bonferroni-corrected p-value
cutoff of 0.05.

Candidate module Size Birth Death p-value Remarks

RAD4, RAD2, RAD10, RAD14, RAD1 5 2233 6760 3.68E-145 5/5 from C1

RAD18, RAD5 2 995 5525 1.40E-52 2/3 from C3

MMS4P, YBR099C, MUS81 3 364 2838 3.73E-41 Not on list

REV1,REV3 2 13 2862 6.06E-31 2/2 from C2

RAD9, RAD24 2 252 795 1.34E-06 2/5 from C5

LTE1,BCK1,CLA4 3 219 490 4.03E-05 Not on list

RAD57,RAD55, RAD51, HPR5 4 162 353 7.64E-05 2/3 from C4

doi:10.1371/journal.pone.0003358.t003

Table 4. Candidate modules derived from the DNA damage
data using the Miso(2,6) method with a Bonferroni-corrected
p-value cutoff of 0.05.

Candidate module Size Remarks

RAD4,RAD2,RAD10,RAD14,RAD1 5 5/5 from C1

RAD5,RAD18 2 2/3 from C3

REV1,REV3,RAD23 3 2/2 from C2

RAD59,MMS4P,YBR099C,PPH3,MUS81,SAE2 6 4/5 DNA Repair

SHU2,SHU1,CSM2,MPH1,PSY3 5 5/5 from C6

RAD9,RAD24,MEC3,RAD17,DDC1 5 5/5 from C5

RAD51,RAD57,RAD55,RTT101,HPR5 5 2/3 from C4

doi:10.1371/journal.pone.0003358.t004

Miso: Module Isolation
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challenge is to overcome the combined effect of biological

heterogeneity and experimental variability. The distinctive,

individual properties of real biological modules generally imply

that there is no universal ‘signature’ that would enable module

detection based on thresholding relationship strength or, by

extension, some related summary measure. This reveals, therefore,

a fundamental limitation of methods based on threshold graphs or

the global pruning of dendrograms. In the presence of diverse

modules, the Miso methods are better able to perform well for

many modules simultaneously, since each candidate module is

evaluated in a distinct timeframe within an evolving graph process.

It is increasingly common to address the variability in genomic

relational data by using probabilistic approaches to graphs

[7,16,20]. When analyzing a single observed graph, noise can be

acknowledged by recognizing the potential error associated with

each observed edge (or lack thereof). The graph process paradigm

for module finding, originally introduced in [9] and adapted and

extended for genomic data analysis here, offers a natural extension

of the probabilistic analysis of graphs. Two specific choices in the

construction of the Miso method bear further comment: the

designation of singly connected subgraphs as the topological

structures of interest and the use of a randomly evolving graph

process as the null model. While these choices can be viewed as

(over-)simplistic, we note that these specifications yield a module-

specific significance score that is easily computed in closed form. In

contrast, a different definition of an identifiable subgraph and/or a

more complicated reference distribution would require extensive

simulations to approximate the null distribution of candidate

module survival times. We feel that the Miso method, in its

simplicity, represents an attractive compromise between concep-

tual elegance and practicality.

Although it has not yet been applied to the problem of gene

module identification, another relevant paradigm is that of the

‘clustering tree’ of a density [21–23]. This approach treats

observations as a sample from a (nonparametric) density,

presumably having two or more modes, and equates the true

underlying clusters or modules with the ‘domains of attraction’ of

these modes. The interesting connection between the Miso and

clustering tree methods lies in the use of a graph process or

sequence. The clustering tree of a density can be obtained, or at

least approximated, from the connected components arising in a

sequence of graphs generated by thresholding the (estimated) data-

generating density [22]. It will be interesting to include clustering

tree methods in future performance studies of Miso and its

extensions.

Data from genomic research tends to be very noisy. Our

extensions of the original isolation index offer improved sensitivity

by allowing for a few mistimed edges in the graph process.

Figure 4. Relative performance of module detection methods applied to yeast vesicle transport data. Displayed are the PPV (top row)
and sensitivity (bottom row). The horizontal axes correspond to the tuning parameters specific to each class of methods; see Materials and methods.
For the Miso methods in column a), the tuning parameter is the threshold applied to module-specific p-values. For the local cuts in column b) the
tuning parameter is the rejection value for the Duda-Hart test statistic. For the global methods in column c), the tuning parameter corresponds to a
step in the graph process. The puzzling behavior of the single linkage PPV curve in column c) results from a late joining gene pair corresponding to a
true biological relationship. Column d) summarizes the range of PPV and sensitivity values.
doi:10.1371/journal.pone.0003358.g004
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However, even the extended Miso method is sensitive to noise of

the magnitude often observed in genomic data. While the quality

of the predictions will remain high, the sensitivity will be

diminished in datasets with less separation (due to lack of adequate

assays or technical variability). We expect that with continuing

development of assays lack of separation will become less of an

issue, whereas the heterogeneity of complexes is inherent in the

biological systems.

The study of an evolving graph process offers a promising new

direction for the discovery of biological modules. Building on the

groundwork laid here, an intriguing approach to the analysis of

noisy relational data is to move from a model of random evolution

representing the absence of modules to a generative model driven

by the presence of modules. In such an approach, the probabilistic

model for relational data is represented by a likelihood function

that explicitly incorporates the properties of gene–gene relation-

ships between and within modules. Such an extension provides a

natural basis for solving even harder problems, such as the

integration of relational data arising from distinct experiments or

even different platforms.

Materials and Methods

Data Sources
The vesicle transport data was reported in [11]. The data is

obtained by plating yeast mutant colonies in 1536-array format on

nutrient media. The growth of the colonies in the presence of

various chemicals or the secretion of certain proteins (as

determined by biochemical assays) is measured by quantifying

images by densitometry. The measurement values were prepro-

cessed by averaging across replicates, correcting for background

intensity by subtracting the values of blank spots and converting

the measurement of growth or secretion into a percentage relative

to the wild-type strain. In an initial, independent genome-wide

screen, 279 genes that displayed a strong phenotype were selected.

Quantitative phenotype measurements can be arranged in array

form with the rows being the gene knockout strains and the

columns the conditions, the values of this array were processed by

scaling each column by its standard deviation. Indirect measures of

relationships were obtained by applying Euclidean distance to the

rows of the preprocessed array.

The DNA damage data was taken from [10], where the authors

report an analysis of 140 genes. We take the same genes here and

apply our procedure to the data using a Euclidean distance

measure.

Probabilistic model for the graph process and scoring
survival times

A graph process is a representation of the ranking of

quantitative, pairwise gene–gene relationships for n genes. Ties

within the N = n(n21)/2 gene–gene relationship ranks were

randomly ordered and the resultant ranking was held constant

for all analyses reported here. To analyze an observed graph

process in a probabilistic fashion, the null model assumes that all

rankings of pairwise relationships are equally likely. As noted by

Ling [9], this assumption does not strictly hold when the rankings

are derived from a distance measure, because of the constraint that

the triangle inequality imposes on pairwise distances.

As introduced above, a candidate module is a simply connected

subgraph and its survival time is the difference between the rank of

the edge that established the subgraph and the edge that adds a

new member. Our measure of significance is the p-value for the

survival time in a random graph process. Since edges are drawn

without replacement, the probability of choosing a particular edge

at step t out of all possible N edges is 1/(N2t) (any of the N-t edges

left has equal probability).

For the purpose of scoring a specific candidate module, we

define ‘success’ as the placement of an edge between two genes

either both within or both external to the module. We define

‘failure’ as the placement of an edge between one gene within the

module and one gene external to the module; this results in the

death of the candidate module. We denote the probability of

failure at step t as pt, and note that the probability of success is

simply (12pt). A survival time of r for a module of size c born at

step b then implies there were (r21) successes at steps b+1, b+2,…,

b+r21 followed by a failure at step b+r. The probability of failure

at step b+j can be computed as follows: there are N2(b+j) edges

remaining, of which c (n2c) constitute failures. Therefore the

probability of failure at step b+j is pb+j = c (n2c)/(N2b2j). The null

distribution of the survival time S is given by

P S~rð Þ~ 1{pbz1ð Þ 1{pbz2ð Þ . . . 1{pbzr{1ð Þpbzr

We approximate these probabilities by setting pb+j to the constant

pb+1, leading to an approximating geometric distribution for S.

Ling established that this approximation is good if r is small

compared to N2b.

Generalized isolation
To address the problem of mistimed edges, we consider a more

general set of survival times: the waiting times to the 1st, 2nd ,…,

k-th failure, where k is a low number (we evaluated up to k = 6).

To derive the null distribution of these survival times, we can

use the same reasoning, except that the number of the number of

edges that lead to failure is now c (n2c)2k21 so that pb+j = (c

(n2c)2k21)/(N2b2j). We are now waiting for the k-th failure, so

the approximating distribution is negative binomial rather than

geometric. These two distributions are identical for k = 1.

The situation where a group of genes is hit before birth requires

a different approach. To identify such groups, we analyze a

modified graph process: we remove all n21 module-killing edges

individually from the original graph process and apply our method

to the modified process, leading to the Miso(1,k) method. Iterating

this procedure by removing all n21 module-killing edges from all

n21 modified processes leads to the Miso(2,k) method. For any

candidate module, we utilize the minimum p-value for 1, 2, …, k.

Analyses of yeast mutant phenotype data
In all methods, we did not consider groups of size greater than

50 to be valid candidate modules since the true biological modules

of interest are of much smaller size. For the Miso method, the

results did not vary noticeably for a wide range of size cutoffs.

For the MCL method, we picked a sequence of threshold graphs

with 500, 1000, … up to half of the relationships available, at

which point MCL only finds a few clusters. We also tried different

settings of the granularity tuning parameter for MCL but found

that while this parameter can improve the results for a single

graph, the set of results for our sequence of graphs did not benefit

from choosing different levels of granularity. For this reason we

ran each MCL procedure with the default granularity setting.

For the global cuts of dendrograms, we chose cuts leading to 3,

10, 20, …, 100 clusters. We found that cuts leading to few clusters

did not perform well, but included 3 since it was the value chosen

by the gap statistic [17]. To create Figure 4 and Figure S1, we

retrieved the height corresponding to the chosen number of

clusters and matched it to the rank in the process (number of edges

with similarity less or equal to this height)

Miso: Module Isolation
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In contrast to the gap statistic and other methods that can be

applied to any partitioning (from a hierarchical or any other

clustering), local cuts (sometimes called ‘‘stopping rules’’) are

restricted to hierarchical agglomerative methods. The cuts are

conducted as formal tests if the cluster resulting from a merge step

in the clustering contains one or two clusters (the joins are

performed until there is evidence against the null-hypothesis of one

cluster). For any chosen rejection value for the test statistic, the

method delivers a set of candidate modules. To perform this test,

assumptions about the distribution of the data have to be made,

given in detail in [19].

All clustering except for MCL (version 06-058, default settings)

was done in R [13]. R code and a Cytoscape plug-in are available

from http://www.stat.ubc.ca/,jenny/webSupp/brummMiso/.

Supporting Information

Figure S1 Relative performance of module detection methods

applied to yeast DNA damage response data. Displayed are the

PPV (top row) and sensitivity (bottom row). The horizontal axes

correspond to the tuning parameters specific to each class of

methods; see Materials and methods. For the Miso methods in

column a), the tuning parameter is the threshold applied to

module-specific p-values., Ffor the local cuts in column b) the

tuning parameter is the rejection value for the Duda-Hart test

statistic. For the global methods in column c), the tuning

parameter corresponds to a step in the graph process. Column

d) summarizes the range of PPV and sensitivity values.

Found at: doi:10.1371/journal.pone.0003358.s001 (0.22 MB TIF)
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