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Abstract: Phellinus linteus is a well-known medicinal mushroom that is widely used in Asian countries.
In several experimental models, Phellinus linteus extracts were reported to have various biological
effects, including anti-inflammatory, anti-cancer, hepatoprotective, anti-diabetic, neuroprotective,
and anti-angiogenic activity. In the present study, several bioactive compounds, including palmitic
acid ethyl ester and linoleic acid, were identified in Phellinus linteus. The intermediate-conductance
calcium-activated potassium channel (IKc,) plays an important role in the regulation of the vascular
smooth muscle cells” (VSMCs) contraction and relaxation. The activation of the IKc, channel causes
the hyperpolarization and relaxation of VSMCs. To examine whether Phellinus linteus extract causes
vasodilation in the mesenteric arteries of rats, we measured the isometric tension using a wire
myograph. After the arteries were pre-contracted with U46619 (a thromboxane analogue, 1 uM),
Phellinus linteus extract was administered. The Phellinus linteus extract induced vasodilation in
a dose-dependent manner, which was independent of the endothelium. To further investigate
the mechanism, we used the non-selective K channel blocker tetraethylammonium (TEA). TEA
significantly abolished Phellinus linteus extract-induced vasodilation. Thus, we tested three different
types of K* channel blockers: iberiotoxin (BK¢, channel blocker), apamin (SK¢, channel blocker),
and charybdotoxin (IK¢, channel blocker). Charybdotoxin significantly inhibited Phellinus linteus
extract-induced relaxation, while there was no effect from apamin and iberiotoxin. Membrane
potential was measured using the voltage-sensitive dye bis-(1,3-dibutylbarbituric acid)-trimethine
oxonol (DiBAC4(3)) in the primary isolated vascular smooth muscle cells (VSMCs). We found that
the Phellinus linteus extract induced hyperpolarization of VSMCs, which is associated with a reduced
phosphorylation level of 20 KDa myosin light chain (MLCj).
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1. Introduction

Resistance arteries are blood vessels that have a small diameter in the microcirculation that
contributes to regulation of blood pressure and the distribution of cardiac output within the tissues
and organs to meet their physiological demands [1]. The arterial wall consists of a single layer of
endothelial cells, vascular smooth muscle cells, elastic fibers, and other extracellular matrix elements.
Vascular smooth muscle cells (VSMCs) play significant roles in the functioning of arteries [2]. VSMCs
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cause the contraction and relaxation of the vascular wall and hence contribute to the regulation of
blood flow.

Smooth muscle cells of resistance arteries express various ion channels, including calcium-activated
potassium channels (K. channels) [3]. The K¢, channels are a group of abundant K* channels
that are activated by increase in intracellular Ca* concentration, including the small-conductance
calcium-activated potassium channel (SKc,), the intermediate-conductance calcium-activated potassium
channel (IK:,), and large-conductance calcium-activated potassium (BKc,) channels. The activation of
Kca channels enables K* efflux, resulting in hyperpolarization and causing vasodilation. Thus, Kca
channel activity is one of the major determinants for vascular tone [4].

Phellinus linteus is a well-known medicinal mushroom that is widely used in Korea, Japan,
China, and other Asian countries [5]. In several experimental models, it has been reported that
Phellinus linteus extract contains various phenolic compounds that exert various biological effects,
including anti-inflammatory [6,7], anti-cancer [8,9], hepatoprotective [10,11], anti-diabetic [12,13],
and neuroprotective [14,15] effects. Recently, it has been shown that Phellinus linteus exhibited
anti-angiogenic activity in mice [16,17]. Although the biological activities of Phellinus linteus extract
have been widely reported, the vascular effect of Phellinus linteus extract has not been investigated.
Thus, in the present study, we investigated whether Phellinus linteus extract has effects on the mesenteric
resistance arteries of rats, and if so, what the underlying mechanisms were.

2. Results

2.1. Gas Chromatograms of the Compounds in Phellinus linteus Extract

The gas chromatogram of the compounds identified in the sample of Phellinus linteus extract
is demonstrated in Figure 1. The identities of eight compounds were determined, along with their
retention time (Table 1). The compounds identified based on the gas chromatography-mass spectrometry
(GC/MS) analysis include palmitic acid ethyl ester, linoleic acid, linoleic acid ethyl ester, lichesterol,
5,6-dihydroergosterol, 7-ergostenol, lupenone, and betulin (Table 1).
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Figure 1. Gas chromatogram of the compounds in Phellinus linteus extract.
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Table 1. Bioactive compounds detected in Phellinus linteus extract. (PK: peak, RT: retention time).

PK RT (min) Tentative Compounds Total (%)
1 19.68 palmitic acid ethyl ester 3.48
2 21.03 linoleic acid 10.39
3 21.27 linoleic acid ethyl ester 15.86
4 28.93 lichesterol 2.59
5 29.25 5,6-dihydroergosterol 3.26
6 29.69 7-ergostenol 2.80
7 30.40 lupenone 3.24
8 34.03 betulin 2.19

2.2. Effect of Phellinus linteus Extract on Agonist-Induced Contraction in Mesenteric Arteries of Rats

Phellinus linteus extract induced relaxation in a dose-dependent manner in the rats’ mesenteric
arteries pre-contracted with U46619 (1 pM) and phenylephrine (5 uM) (Figure 2(A1,A7)). There was no
difference in vasodilatory effect of Phellinus linteus extract between U46619- and phenylephrine-induced
contraction (Figure 2(A3)). The vehicle, dimethyl dulfoxide (DMSO, maximum of 0.4%) had no
significant effect on the U46619-induced contraction (Figure 2 inset). To compare the effect of
Phellinus linteus extract with another vasodilator, aceylcholine was administered in a U46619-induced
contraction (Figure 3). Acetylcholine induced dose-dependent relaxation in a U46619-induced
contraction in endothelium-intact mesenteric arteries (Figure 3(B;)), which was significantly abolished
by endothelium removal (Figure 3(By,B3)). These results suggested that Phellinus linteus extract can act
as a vasodilator in the mesenteric arteries of rats.
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Figure 2. Phellinus linteus extract induces vasodilation in mesenteric arteries of rats. (A1—As), data
showing responses to cumulative administration of Phellinus linteus (50 ng/mL-800 ng/mL) on U46619
(A1) and phenylephrine (Az)-induced contraction. Statistical analysis of the relaxation response to

Phellinus linteus (As). (B1—B3), data showing responses to cumulative administration of acetylcholine
(107 M=10"5 M) on U46619-induced contraction in endothelium intact (B1) and endothelium denuded
(B2) mesenteric arteries. Statistical analysis of the relaxation response to acetylcholine (B3). Inset,

representative trace showing responses to vehicle DMSO (0.01-0.4%). Mean + SD (n = 5).

*p <0.05 for

endothelium intact vs. endothelium denuded. (PLE: Phellinus linteus extract, W/O: wash out).
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Figure 3. Involvement of endothelium in Phellinus linteus extract-induced relaxation. (A) Relaxation by
Phellinus linteus extract in endothelium intact mesenteric artery pre-contracted with U46619 (1 uM).
(B) Relaxation by Phellinus linteus extract in endothelium denuded mesenteric artery pre-contracted
with U46619 (1 uM). (C) Relaxation by Phellinus linteus extract in mesenteric artery in the presence
of L-NNA (300 uM). (D) Statistical analysis of the relaxation response of Phellinus linteus extract.
Relaxation of arteries is expressed as the percentage of the contraction induced by U46619 (1 pM).
Mean + SD. (n = 5). (L-NNA: nomega-nitro-L-arginine).

2.3. Phellinus linteus Extract-Induced Endothelium-Independent Relaxation

To investigate the underlying mechanisms of Phellinus linteus extract-induced relaxation,
Phellinus linteus extract was applied in endothelium-intact and endothelium-denuded mesenteric
arteries (Figure 3A,B). There was no significant difference between endothelium-intact and
endothelium-denuded mesenteric arteries. To confirm the effect of Phellinus linteus extract on the
endothelium, the mesenteric arteries were pre-incubated with the endothelial nitric oxide synthase
(eNOS) inhibitor nomega-nitro-L-arginine (L-NNA, 300 uM) for 20 min before being contracted with
U46619 (1 uM, Figure 3C). The L-NNA did not affect the Phellinus linteus extract-induced relaxation,
indicating that the relaxation effect of Phellinus linteus extract was not related to the endothelium.
This result suggests that Phellinus linteus extract-induced relaxation is endothelium-independent.

2.4. Inhibition of Phellinus linteus Extract-Induced Relaxation by K* Channel Blockers

To clarify the underlying mechanisms of the Phellinus linteus extract-induced relaxation,
the mesenteric arteries were incubated with tetraethylammonium (TEA, 2 mM, Figure 4A), apamin
(50 nM, Figure 4B), iberiotoxin (100 nM, Figure 4C), or charybdotoxin (20 nM, Figure 4D) for 20 min,
and then Phellinus linteus extract was added. The non-selective K* channel blocker, TEA, and the IK.,
blocker, charybdotoxin, significantly inhibited Phellinus linteus extract-induced relaxation, while the
SKca channel blocker, the apamin, and the BK., channel blocker iberiotoxin did not affect the
Phellinus linteus extract-induced vasodilation (Figure 4E). These results indicate that the IK, channel is
involved in the relaxation induced by Phellinus linteus extract.
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Figure 4. Involvement of K* channel in Phellinus linteus extract-induced relaxation. (A) Effect of
Phellinus linteus extract in the mesenteric artery pre-contracted with U46619 (1 uM) in the presence of
TEA (2 mM). (B) Effect of Phellinus linteus extract in the mesenteric artery pre-contracted with U46619
(1 uM) in the presence of apamin (50 nM). (C) Effect of Phellinus linteus extract in the mesenteric artery
pre-contracted with U46619 (1 uM) in the presence of iberiotoxin (100 nM). (D) Effect of Phellinus linteus
extract in the mesenteric artery pre-contracted with U46619 (1 uM) in the presence of charybdotoxin
(20 nM). (E) Statistical analysis of the relaxation response of Phellinus linteus extract in the presence
of various blockers. Relaxation of arteries is expressed as the percentage of the contraction induced
by U46619 (1 uM). Mean + SD (n = 5). * p < 0.05 for control versus TEA or charybdotoxin. (TEA:
tetraethylammonium, IBTX: iberiotoxin, CBTX: charybdotoxin).

2.5. Effect of Phellinus linteus Extract on the Membrane Potential and Phosphorylation of 20 KDa Myosin Light
Chain (MLCZO)

To clarify whether Phellinus linteus extract-induced relaxation was produced by hyperpolarization
in VSMCs, we measured the membrane potential using the voltage sensitive dye bis-(1,3-dibarbituric
acid)-trimethine oxanol (DiBAC4(3)) and obtained confocal images. The application of U46619 (1 uM)
increased the fluorescence intensity of the membrane potential in VSMCs compared to the control group.
In the presence of Phellinus linteus extract (200 ng/mL), U46619 did not increase the fluorescence intensity
of the membrane potential in the VSMCs (Figure 5A). To investigate whether the Phellinus linteus
extract-induced relaxation was caused by the decreased phosphorylation of MLCyy, we measured
the phosphorylation and the expression level of MLCyq in the VSMCs (Figure 5). The administration
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of U46619 increased the phosphorylation level of MLCyj in the VSMCs compared to the control
group. In the presence of Phellinus linteus extract, U46619 did not increase the phosphorylation level of
MLCyg (Figure 5B). These results suggested that Phellinus linteus extract induced hyperpolarization
and inhibited the subsequent phosphorylation of MLCy in U46619-treated VSMCs.
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Figure 5. Effect of Phellinus linteus extract on the membrane potential and phosphorylation of
20 KDa myosin light chain (MLCyp). (A) Representative images of fluorescence intensity of DiBACy(3)
in control VSMCs, VSMCs treated with U46619 (1 uM), and VSMCs co-treated with U46619 (1 uM) and
Phellinus linteus extract (200 ng/mL) (scale bar: 50 um). (B) Representative western blot analysis and
quantitative data for phosphorylated MLCyy (P-MLCy) and total MLCyg (T-MLCp) in control VSMCs,
VSMCs treated with U46619 (1 uM), and VSMCs co-treated with U46619 (1 uM) and Phellinus linteus
extract (200 ng/mL). * p < 0.05 for VSMCs treated with U46619 vs. VSMCs co-treated with U46619 and
Phellinus linteus extract. (n = 4).

3. Discussion

In this study, we investigated the vasodilatory effect of Phellinus linteus extract on the mesenteric
arteries of rats. We found that this effect was independent of the endothelium. The mechanism of
vasodilation induced by the Phellinus linteus extract involved the IKc, channel. The non-selective K*
channel blocker TEA and the specific IKc, channel blocker charybdotoxin inhibited the relaxation
induced by the Phellinus linteus extract. We also found that the Phellinus linteus extract induced
hyperpolarization of the VSMCs, which caused a decrease of the phosphorylated MLC;( and subsequent
vasodilation of the mesenteric arteries.

In several experimental models, it has been reported that Phellinus linteus extract has several strong
biological activities, such as anti-oxidative, immune-modulating, hypoglycemic, and hepatoprotective
effect [18-21]. However, the vascular effect of Phellinus linteus extract has not been assessed. Thus,
the present study is the first investigation to explore the vascular effect of this extract in resistance arteries.
The vasodilatory effect of Phellinus linteus extract remained in endothelium-denuded mesenteric arteries
of rats and in endothelium-intact arteries in the presence of L-NNA. Thus, the relaxation caused by
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the extract was independent of the endothelium. We found in the Phellinus linteus extract various
compounds, including palmitic acid ethyl ester, linoleic acid, linoleic acid ethyl ester, lichesterol,
5,6-dihydroergosterol, 7-ergostenol, lupenone, and betulin. We assume that linoleic acid could play a
critical role in the relaxation induced by Phellinus linteus extract since it has been reported that linoleic
acid induced relaxation and hyperpolarization in the coronary arteries of pigs [22]. However, further
studies are needed to clarify the exact compound that causes relaxation.

Vascular smooth muscle contraction is initiated by an elevation of intracellular Ca?*, which can
result from either extracellular Ca?* influx through calcium channels, or Ca®* release from sarcoplasmic
reticulum (SR). Extracellular Ca?* influx via the voltage gated Ca?* channel can be evoked by membrane
depolarization. Inhibition of the K* channels contributes to membrane depolarization. By contrast,
activation of the K* channels enables K* efflux and leads to membrane hyperpolarization, which
contributes to the closure of the voltage-dependent Ca?* channels to block the influx of extracellular
Ca?*, thereby inducing relaxation of the smooth muscle cells [23].

It is well known that at least four different types of K* channels are expressed in VSMCs, including
Kca channels, voltage-gated K* (Ky) channels, ATP-sensitive K™ (Karp) channels, and inward-rectifier
K* channels [24]. K¢, channels play a functional role by coupling the increase of intracellular Ca%* to
the hyperpolarization of the membrane potential. This feature enables K¢, channels to play key roles in
regulating cell excitability and K* homeostasis [25]. The K¢, channels are divided into three subfamilies
that include small conductance K¢, (SK¢,) channels, large or big K¢, (BK¢,), and intermediate K¢,
(IKca). It has been reported that the IKc, channel seems to be involved in the VSMCs proliferation [26]
and vasodilation of porcine coronary arteries [27].

In the present study, we found that Phellinus linteus extract-induced relaxation was abolished
in the presence of the non-selective K* channel inhibitor TEA. Thus, we assumed that the K*
channel is involved in the extract-induced vasodilation. To delineate which K* channel is involved
in the Phellinus linteus extract-induced relaxation, we used specific blockers of BK, (iberiotoxin),
SKca (apamin), and IKq (charybdotoxin) channels. Interestingly, charybdotoxin significantly
inhibited Phellinus linteus extract-induced relaxation, while apamin and iberiotoxin did not affect the
extract-induced vasodilation. Charybdotoxin is known to block several K¢, channels [28], however it
is also known to specifically block the IK., channel in a concentration between 20 and 300 nM [29-31].
Additionally, in the present study we used a low dose (20 nM) of charybdotoxin to block only the 1K,
channel. Thus, we assume that the IK_.; channel could be involved in Phellinus linteus extract-induced
vasodilation. To confirm the effect of the Phellinus linteus extract, we measured the membrane potential
with the voltage-sensitive dye DiBACy4(3) in the primary isolated VSMCs. The membrane potential
is one of the major contributors to the contractile activity of VSMCs. The activation of the IKc,
channel and subsequent K* efflux leads to membrane hyperpolarization, which causes vasodilation.
We found that Phellinus linteus extract induced hyperpolarization of VSMCs. This result is consistent
with the previous report that showed that Phellinus linteus extract induced hyperpolarization in a
concentration-dependent manner in monocytes [15].

The increase of intracellular Ca?* concentration activates Ca?*/calmodulin-dependent myosin
light chain kinase (MLCK) and the phosphorylation of 20 KDa myosin light chain (MLCy¢) and thus
induces smooth muscle contraction. The decrease of intracellular Ca?* induces dephosphorylation of
the MLCy and thus smooth muscle relaxation [32,33]. Therefore, the phosphorylation of MLCy is
considered to be a key regulation step in smooth muscle contraction and relaxation. In the present
study, we found that phosphorylated MLCy is decreased in Phellinus linteus extract-treated VSMCs.
These results indicate that the relaxation induced by Phellinus linteus extract involves hyperpolarization
via IK¢, channel activation and subsequent decrease in MLC,( phosphorylation.

In conclusion, Phellinus linteus extract induces endothelium-independent relaxation in the
mesenteric arteries of rats, and this effect involves the opening of IK¢c, channels, thereby hyperpolarizing
the VSMCs. Thus, the IKc, channel may be a cellular target for the vasodilatory effects of Phellinus linteus
extract in the vasculature.



Molecules 2020, 25, 3160 90f12

4. Methods

All experiments were performed according to the Guide for the Care and Use of Laboratory
Animals, published by the US National Institutes of Health (NIH publication No. 85-23, 2011) and
were approved by the Ethics Committee and the Institutional Animal Care and Use Committee of
Yonsei University College of Medicine (Approval number: 2019-0278).

4.1. Phellinus linteus Extract Preparation

Dried Phellinus linteus was purchased from the Gyeong-dong medicinal herb market (Seoul,
Korea). The sample (1 kg) was ground into a powder and mixed in ethanol (5 L) by shaking for 24 h at
125 rpm (1.57% g). The ethanol extract was filtered through No. 42 filter paper (Whatman International
Ltd., Middlesex, UK) with five replicates, and evaporated in a rotary evaporator (Eyela, Tokyo, Japan)
under reduced pressure at 37 °C.

4.2. Gas Chromatography—Mass Spectrometry (GC/MS) Analysis

GC/MS analysis was performed by an Agilent 7890B gas chromatograph, equipped with a 5977A
mass selective detector quadrupole mass spectrometer system (Palo Alto, CA, USA). The DB-5 MS
capillary column (30 m x 0.25 mm i.d., 0.25 pm film thickness, 5% diphenyl-95% dimethylsiloxane
phase) was obtained from J&W Scientific (Folsom, CA, USA). The GC oven temperature was maintained
at 60 °C for 3 min, and then ramped to 320 °C at 10 °C per min. The sample was injected in the split
mode, at a splitting ratio of 1:30. The temperatures of the GC injection port and MS interface were
set at 300 °C. The mass selective detector was run in the electron impact (EI) mode, with an electron
energy at 70 eV. The mass spectrometer was operated in the full scan mode between 40 and 600 amu.
For the identification of the compounds, EI mass spectral library search (Wiley registry 7n edition,
Wiley Science Solutions, Hoboken, NJ, USA) was used.

4.3. Tissue Preparation

In this experiment, 12-week-old male Sprague Dawley rats were used. The rats were sacrificed
with isoflurane (5%), followed by CO, inhalation. To confirm death, the rats were carefully checked
for several signs, such as no response to toe pinch, no palpable heartbeat, and color change opacity
in the eyes. After we confirmed death, the heart was excised immediately and then the mesenteric
artery beds were removed and placed in ice-cold Krebs-Henseleit (K-H) solution (composition in mM:
NaCl, 119; CaCly, 2.5; NaHCO3, 25; MgSOy, 1.2; KH,POy,, 1.2; KCl, 4.6; and glucose, 11.1). Connective
tissues and adipose tissues were removed under an optical microscope (model SZ-40, Olympus, Tokyo,
Japan). The second or third branches of the mesenteric arteries (200-250 um, inner diameter) were
isolated and cut into 2-3 mm segments for subsequent analysis.

4.4. Isometric Tension Recording

The mesenteric artery segments were mounted in a myograph chamber (DMT, Arhaus, Denmark)
for recording of isometric tension. Briefly, two steel wires (40 um in diameter) were inserted into the
lumen of the artery and then mounted according to the methods previously described [34]. After a
30-min equilibration period in a K-H solution bubbled with 5% CO, + 95% O, at 37 °C, the arteries
were stretched to their optimal lumen diameter for active tension development. Vessel contractility was
tested by exposure to a high K* (70 mM) solution. Where required, the endothelium was mechanically
denuded by rubbing the inner surface of an arterial segment with a wire. Removal of the endothelium
was confirmed by the absence of relaxation from acetylcholine (10 uM) in the U46619 (thromboxane
analogue, 1 uM) pre-contracted artery. After another wash step, the rings of the mesenteric arteries were
pre-contracted with U46619 (1 pM), and at the steady maximal contraction, cumulative dose-response
curves were obtained for the Phellinus linteus extract. To determine the involvement of the endothelium,
the arteries were pre-incubated with L-NNA (300 uM), a nitric oxide synthase inhibitor, for 20 min
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before being contracted with U46619 (1 uM). To determine the effects of the Kz channel blockers
on vasodilation, the arterial segments were pre-treated with TEA (2 mM), iberiotoxin (100 nM),
charybdotoxin (20 nM), or apamin (50 nM) for 20 min, then U46619 was administered.

4.5. Isolation and Culture of Vascular Smooth Muscle cells (VSMCs)

Vascular smooth muscle cells (VSMCs) were obtained as previously described [35]. Briefly,
the aortas were excised, and fat and connective tissues were removed. And the lumen of the aorta was
gently rubbed for removal of the endothelium. The aortas were cut into small segments and transferred
into a tube containing elastase (0.5 mg/mL, Calbiochem, San Diego, CA, USA) and collagenase (1 mg/mL,
Worthington Biomedical Corporation, Lakewood Township, NJ, USA) in Dulbecco’s Modified Eagle
Medium (DMEM, Gibco, Waltham, MS, USA) at 37 °C for 30 min. After trituration and centrifugation,
the cells were seeded in culture dishes (Corning, New York, NY, USA) and cultivated in DMEM
supplemented with 10% fetal bovine serum (FBS, Gibco), 100 IU/mL penicillin (Gibco), and 100 ug/mL
streptomycin (Gibco) at 37 °C, 5% CO, with a humidified atmosphere. The early passage cells (between
2 and 4) were used.

4.6. Western Blot Analysis

The cultured VSMCs were frozen in liquid nitrogen after treatment with U46619, with or
without Phellinus linteus extract. VSMCs were homogenized in an ice-cold lysis buffer, as described
previously [36]. Western blot analysis was performed for total MLCjyp and phosphorylated MLCy
(1:1000 dilution; Cell signaling, Boston, MA, USA). The blots were stripped and then reprobed with the
B-actin antibody (1:2000 dilution; Santa Cruz Biotechnology, Santa Cruz, CA, USA) to verify equal
loading between the samples.

4.7. Determination of Membrane Potential of Vascular Smooth Muscle Cells by Confocal Microscopy

The cells were seeded in a plate coated with poly—1-lysine for 24 h, then incubated with membrane
potential-sensitive fluorescent dye DiBAC4(3) (5 uM) for 20 min. U46619 (1 uM) and Phellinus linteus
extract (200 ng/mL) were added to the cells for 10 min, and the cells were washed with PBS 2-3 times.
The cells were then fixed with formaldehyde (4%).

4.8. Drugs

The following drugs were used: U46619 (Tocris Bioscience, Ellisville, MO, USA), acetylcholine
(Sigma-Aldrich, St Louis, MO, USA), DiBAC4(3) (Biotium, Fremont, CA, USA), and general laboratory
reagents (Sigma-Aldrich, St Louis, MO, USA).

4.9. Statistical Analysis

Results were expressed as mean + SD. One-way or two-way ANOVA was used to compare each
parameter when appropriate. Comparisons between groups were performed with ¢-tests when the
ANOVA test was statistically significant. Values of p < 0.05 were considered significant. Differences
between specified groups were analyzed using the Student ¢ test (2-tailed) for comparing two groups,
with p < 0.05 considered statistically significant.

Author Contributions: All the work was done in the laboratory of Y.-H.L. in the department of physiology at
Yonsei University College of Medicine. S.-K.C. designed the experiments, contributed data acquisition, and wrote
the manuscript. YK., C.E.H., and S.B. performed the analysis. S.J.C. and D.-H.S. provided Phellinus linteus extract.
Y.-H.L. contributed to the analysis and interpretation of the data and revised the work critically. All authors
approved the final version of the manuscript. All persons designated as authors qualify for authorship, and all
those who qualify for authorship are listed.

Funding: This work was supported by the National Research Foundation of Korea (NRF) with funding from
the Ministry of Education, Science and Technology granted to S.-K.C. (2018R1D1A1B07041820) and Y.-H.L.
(2019R1F1A1061771). The funders had no role in study design, data collection and analysis, decision to publish,
or preparation of the manuscript.



Molecules 2020, 25, 3160 11 of 12

Acknowledgments: We thank Ahn (Korea Basic Science Institute, Western Seoul Center) for helpful discussions
about the data analysis.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Tykocki, N.R.; Boerman, E.M.; Jackson, W.F. Smooth Muscle Ion Channels and Regulation of Vascular Tone
in Resistance Arteries and Arterioles. Compr. Physiol. 2017, 7, 485-581. [CrossRef] [PubMed]

Jaminon, A.; Reesink, K.D.; A Kroon, A.; Schurgers, L.J. The Role of Vascular Smooth Muscle Cells in Arterial
Remodeling: Focus on Calcification-Related Processes. Int. J. Mol. Sci. 2019, 20, 5694. [CrossRef]

Brayden, J.E. POTASSIUM CHANNELS IN VASCULAR SMOOTH MUSCLE. Clin. Exp. Pharmacol. Physiol.
1996, 23, 1069-1076. [CrossRef] [PubMed]

LeDoux, J.; Werner, M.E.; Brayden, J.E.; Nelson, M.T. Calcium-Activated Potassium Channels and the
Regulation of Vascular Tone. Physiology 2006, 21, 69-78. [CrossRef] [PubMed]

Chen, H,; Tian, T.; Miao, H.; Zhao, Y.-Y. Traditional uses, fermentation, phytochemistry and pharmacology of
Phellinus linteus: A review. Fitoterapia 2016, 113, 6-26. [CrossRef] [PubMed]

Hu, T,; Lin, Q.; Guo, T; Yang, T.; Zhou, W.; Deng, X.; Yan, J.-K; Luo, Y.; Ju, M.; Luo, F. Polysaccharide isolated
from Phellinus linteus mycelia exerts anti-inflammatory effects via MAPK and PPAR signaling pathways.
Carbohydr. Polym. 2018, 200, 487-497. [CrossRef]

Kim, B.-C.; Jeon, W.-K.; Hong, H.-Y.; Jeon, K.-B.; Hahn, J.-H.; Kim, Y.-M.; Numazawa, S.; Yosida, T.; Park, E.-H.;
Lim, C.-J. The anti-inflammatory activity of Phellinus linteus (Berk. & M.A. Curt.) is mediated through
the PKCS/Nrf2/ARE signaling to up-regulation of heme oxygenase-1. J. Ethnopharmacol. 2007, 113, 240-247.
[CrossRef]

Mei, Y.; Zhu, H.; Hu, Q.; Liu, Y.; Zhao, S.; Peng, N.; Liang, Y. A novel polysaccharide from mycelia of
cultured Phellinus linteus displays antitumor activity through apoptosis. Carbohydr. Polym. 2015, 124, 90-97.
[CrossRef]

Chai, Y,; Wang, G.; Fan, L.; Zhao, M. A proteomic analysis of mushroom polysaccharide-treated HepG2 cells.
Sci. Rep. 2016, 6, 23565. [CrossRef]

Wang, H.; Wu, G,; Park, H.-J.; Jiang, PP; Sit, W.-H.; Van Griensven, L.J.; Wan, ].M. Protective effect of
Phellinus linteus polysaccharide extracts against thioacetamide-induced liver fibrosis in rats: A proteomics
analysis. Chin. Med. 2012, 7, 23. [CrossRef]

Huang, S.C.; Wang, PW.; Kuo, P.C.; Hung, H.Y.; Pan, T.L. Hepatoprotective Principles and Other Chemical
Constituents from the Mycelium of Phellinus linteus. Molecules 2018, 23, 1705. [CrossRef] [PubMed]

Kim, HM.; Kang, ].S.; Kim, J.Y,; Park, S.-K.; Kim, H.S.; Lee, Y.J.; Yun, J.; Hong, J.T.; Kim, Y.; Han, S.-B.
Evaluation of antidiabetic activity of polysaccharide isolated from Phellinus linteus in non-obese diabetic
mouse. Int. Immunopharmacol. 2010, 10, 72-78. [CrossRef]

Park, ].M,; Lee, ].S.; Song, J.E.; Sim, Y.C.; Ha, S.-J.; Hong, E.K. Cytoprotective Effect of Hispidin against
Palmitate-Induced Lipotoxicity in C2C12 Myotubes. Molecules 2015, 20, 5456-5467. [CrossRef] [PubMed]
Choi, D.J,; Cho, S.; Seo, ].Y.; Lee, H.B.; Park, Y.I. Neuroprotective effects of the Phellinus linteus ethyl acetate
extract against H202-induced apoptotic cell death of SK-N-MC cells. Nutr. Res. 2016, 36, 31-43. [CrossRef]
[PubMed]

Van Griensven, L.J.L.D.; Verhoeven, H.A. Phellinus linteus polysaccharide extracts increase the mitochondrial
membrane potential and cause apoptotic death of THP-1 monocytes. Chin. Med. 2013, 8, 25. [CrossRef]
Lee, Y.S,; Kim, Y.H.; Shin, EK,; Kim, D.H.; Lim, S.S.; Lee, ].-Y.; Kim, J.-K. Anti-angiogenic activity of methanol
extract of Phellinus linteus and its fractions. J. Ethnopharmacol. 2010, 131, 56-62. [CrossRef]

Song, Y.S.; Kim, S.-H.; Sa, J.-H,; Jin, C.; Lim, C.-J.; Park, E.-H. Anti-angiogenic, antioxidant and xanthine
oxidase inhibition activities of the mushroom Phellinus linteus. ]. Ethnopharmacol. 2003, 88, 113-116.
[CrossRef]

Shon, Y.-H.; Nam, K.-S. Inhibition of cytochrome P450 isozymes in rat liver microsomes by polysaccharides
derived from Phellinus linteus. Biotechnol. Lett. 2003, 25, 167-172. [CrossRef]

Fan, G.; Jian, D.; Sun, M.; Zhan, Y., Sun, F. Endogenous and Exogenous Calcium Involved in
the Betulin Production from Submerged Culture of Phellinus linteus Induced by Hydrogen Sulfide.
Appl. Biochem. Biotechnol. 2015, 178, 594-603. [CrossRef]


http://dx.doi.org/10.1002/cphy.c160011
http://www.ncbi.nlm.nih.gov/pubmed/28333380
http://dx.doi.org/10.3390/ijms20225694
http://dx.doi.org/10.1111/j.1440-1681.1996.tb01172.x
http://www.ncbi.nlm.nih.gov/pubmed/8977162
http://dx.doi.org/10.1152/physiol.00040.2005
http://www.ncbi.nlm.nih.gov/pubmed/16443824
http://dx.doi.org/10.1016/j.fitote.2016.06.009
http://www.ncbi.nlm.nih.gov/pubmed/27343366
http://dx.doi.org/10.1016/j.carbpol.2018.08.021
http://dx.doi.org/10.1016/j.jep.2007.05.032
http://dx.doi.org/10.1016/j.carbpol.2015.02.009
http://dx.doi.org/10.1038/srep23565
http://dx.doi.org/10.1186/1749-8546-7-23
http://dx.doi.org/10.3390/molecules23071705
http://www.ncbi.nlm.nih.gov/pubmed/30002357
http://dx.doi.org/10.1016/j.intimp.2009.09.024
http://dx.doi.org/10.3390/molecules20045456
http://www.ncbi.nlm.nih.gov/pubmed/25826786
http://dx.doi.org/10.1016/j.nutres.2015.11.005
http://www.ncbi.nlm.nih.gov/pubmed/26773779
http://dx.doi.org/10.1186/1749-8546-8-25
http://dx.doi.org/10.1016/j.jep.2010.05.064
http://dx.doi.org/10.1016/S0378-8741(03)00178-8
http://dx.doi.org/10.1023/A:1021935922722
http://dx.doi.org/10.1007/s12010-015-1896-4

Molecules 2020, 25, 3160 12 of 12

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Nam, S.W,; Baek, ].T.; Kang, S.B.; Lee, D.S.; Kim, ].I; Cho, S.H.; Park, S.-H.; Han, ].-Y.; Ahn, B.M.; Kim, ] K,; et al.
A case of the hepatocellular carcinoma during the pregnancy and metastasis to the left atrium. Korean J. Hepatol.
2005, 11, 381-385.

Liu, Y,; Wang, C.; Li, J.; Mei, Y,; Liang, Y. Hypoglycemic and Hypolipidemic Effects of Phellinus Linteus
Mycelial Extract from Solid-State Culture in A Rat Model of Type 2 Diabetes. Nutrients 2019, 11, 296.
[CrossRef] [PubMed]

Pomposiello, S.I; Alva, M.; Wilde, D.W.; Carretero, O.A. Linoleic acid induces relaxation and
hyperpolarization of the pig coronary artery. Hypertension 1998, 31, 615-620. [CrossRef] [PubMed]
Jackson, W.E. Potassium Channels in Regulation of Vascular Smooth Muscle Contraction and Growth.
Adv. Pharmacol. 2016, 78, 89-144. [CrossRef] [PubMed]

Cheng, J.; Wen, J.; Wang, N.; Wang, C.; Xu, Q.; Yang, Y. Ion Channels and Vascular Diseases. Arter. Thromb.
Vasc. Boil. 2019, 39, e146—156. [CrossRef]

Kshatri, A.; Gonzéalez-Hernandez, A ].; Giraldez, T. Physiological Roles and Therapeutic Potential of Ca2+
Activated Potassium Channels in the Nervous System. Front. Mol. Neurosci. 2018, 11, 258. [CrossRef]

Bi, D.; Toyama, K.; Lemaitre, V,; Takai, J.; Fan, E; Jenkins, D.P.; Wulff, H.; Gutterman, D.D.; Park, F.; Miura, H.
The Intermediate Conductance Calcium-activated Potassium Channel KCa3.1 Regulates Vascular Smooth
Muscle Cell Proliferation via Controlling Calcium-dependent Signaling. J. Biol. Chem. 2013, 288, 15843-15853.
[CrossRef]

Dalsgaard, T.; Kroigaard, C.; Misfeldt, M.; Bek, T.; Simonsen, U. Openers of small conductance
calcium-activated potassium channels selectively enhance NO-mediated bradykinin vasodilatation in
porcine retinal arterioles. Br. J. Pharmacol. 2010, 160, 1496-1508. [CrossRef]

Hermann, A.; Erxleben, C. Charybdotoxin selectively blocks small Ca-activated K channels in Aplysia
neurons. J. Gen. Physiol. 1987, 90, 27-47. [CrossRef]

Sanchez-Carranza, O.; Torres-Rodriguez, P.; Darszon, A.; Trevifio, C.L.; Lopez-Gonzalez, I. Pharmacology of
hSlo3 channels and their contribution in the capacitation-associated hyperpolarization of human sperm.
Biochem. Biophys. Res. Commun. 2015, 466, 554-559. [CrossRef]

Logsdon, N.J.; Kang, J.; Togo, J.A.; Christian, E.P; Aiyar, J. A Novel Gene, hKCa4, Encodes the
Calcium-activated Potassium Channel in Human T Lymphocytes. J. Boil. Chem. 1997, 272, 32723-32726.
[CrossRef]

Anderson, A J.; Harvey, A.L.; Rowan, E.G.; Strong, P.N. Effects of charybdotoxin, a blocker of Ca2+ -activated
K + channels, on motor nerve terminals. Br. J. Pharmacol. 1988, 95, 1329-1335. [CrossRef]

Ip, K.; Sobieszek, A.; Solomon, D.; Jiao, Y.; Paré, P.; Seow, C. Physical Integrity of Smooth Muscle Myosin
Filaments is Enhanced by Phosphorylation of the Regulatory Myosin Light Chain. Cell. Physiol. Biochem.
2007, 20, 649-658. [CrossRef]

Deng, M.; Ding, W.; Min, X,; Xia, Y. MLCK-independent phosphorylation of MLC20 and its regulation by
MAP kinase pathway in human bladder smooth muscle cells. Cytoskeleton 2010, 68, 139-149. [CrossRef]
[PubMed]

Sun, J; Yang, G.M.; Tao, T.; Wei, L.S.; Pan, Y.; Zhu, M.S. Isometric Contractility Measurement of the Mouse
Mesenteric Artery Using Wire Myography. J. Vis. Exp. 2018, 20, e58064. [CrossRef] [PubMed]

Choi, S.-K.; Kwon, Y.; Byeon, S.; Haam, C.E.; Lee, Y.-H. AdipoRon, adiponectin receptor agonist, improves
vascular function in the mesenteric arteries of type 2 diabetic mice. PLoS ONE 2020, 15, €0230227. [CrossRef]
[PubMed]

Choi, S.-K.; Ahn, D.S.; Lee, Y.-H. Comparison of contractile mechanisms of sphingosylphosphorylcholine and
sphingosine-1-phosphate in rabbit coronary artery. Cardiovasc. Res. 2008, 82, 324-332. [CrossRef] [PubMed]

Sample Availability: Not available.

@ © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.3390/nu11020296
http://www.ncbi.nlm.nih.gov/pubmed/30704063
http://dx.doi.org/10.1161/01.HYP.31.2.615
http://www.ncbi.nlm.nih.gov/pubmed/9461230
http://dx.doi.org/10.1016/bs.apha.2016.07.001
http://www.ncbi.nlm.nih.gov/pubmed/28212804
http://dx.doi.org/10.1161/ATVBAHA.119.312004
http://dx.doi.org/10.3389/fnmol.2018.00258
http://dx.doi.org/10.1074/jbc.M112.427187
http://dx.doi.org/10.1111/j.1476-5381.2010.00803.x
http://dx.doi.org/10.1085/jgp.90.1.27
http://dx.doi.org/10.1016/j.bbrc.2015.09.073
http://dx.doi.org/10.1074/jbc.272.52.32723
http://dx.doi.org/10.1111/j.1476-5381.1988.tb11772.x
http://dx.doi.org/10.1159/000107548
http://dx.doi.org/10.1002/cm.20471
http://www.ncbi.nlm.nih.gov/pubmed/20722044
http://dx.doi.org/10.3791/58064
http://www.ncbi.nlm.nih.gov/pubmed/30176012
http://dx.doi.org/10.1371/journal.pone.0230227
http://www.ncbi.nlm.nih.gov/pubmed/32182257
http://dx.doi.org/10.1093/cvr/cvp054
http://www.ncbi.nlm.nih.gov/pubmed/19218288
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Gas Chromatograms of the Compounds in Phellinus linteus Extract 
	Effect of Phellinus linteus Extract on Agonist-Induced Contraction in Mesenteric Arteries of Rats 
	Phellinus linteus Extract-Induced Endothelium-Independent Relaxation 
	Inhibition of Phellinus linteus Extract-Induced Relaxation by K+ Channel Blockers 
	Effect of Phellinus linteus Extract on the Membrane Potential and Phosphorylation of 20 KDa Myosin Light Chain (MLC20) 

	Discussion 
	Methods 
	Phellinus linteus Extract Preparation 
	Gas Chromatography–Mass Spectrometry (GC/MS) Analysis 
	Tissue Preparation 
	Isometric Tension Recording 
	Isolation and Culture of Vascular Smooth Muscle cells (VSMCs) 
	Western Blot Analysis 
	Determination of Membrane Potential of Vascular Smooth Muscle Cells by Confocal Microscopy 
	Drugs 
	Statistical Analysis 

	References

