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Oral probiotics in coronavirus disease 2019: connecting the gut– lung axis
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Abstract
Defined as helpful live bacteria that can provide medical advantages to the host when administered in tolerable amounts, oral probiotics might

be worth considering as a possible preventive or therapeutic modality to mitigate coronavirus disease 2019 (COVID-19) symptom severity.

This hypothesis stems from an emerging understanding of the gut– lung axis wherein probiotic microbial species in the digestive tract can

influence systemic immunity, lung immunity, and possibly viral pathogenesis and secondary infection co-morbidities. We review the

principles underlying the gut– lung axis, examples of probiotic-associated antiviral activities, and current clinical trials in COVID-19 based

on oral probiotics.
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Gut– lung connectivity in infection and
immunity
The spike protein of severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2) uses angiotensin converting enzyme 2 as

the receptor for cell entry, which is highly expressed in gut and
This is an open access arti
lung tissues that produce well-described symptoms in corona-
virus disease 2019 (COVID-19) [1,2]. In the gut, proximal and

distal enterocytes are targets [3], and both the receptor and
these cell types are known to be pathologically connected with

intestinal inflammation and diarrhoea [4]. Nausea and diarrhoea
are reported to be primary symptoms of COVID-19 even before

the development of fever and respiratory symptoms, whereas
abdominal pain continues to be reported frequently in patients

admitted to intensive care [5]. The most severe cases of COVID-
19 often involve pneumonia followed by acute respiratory
distress syndrome [6], involving hypoxaemic respiratory distress

concurrent with lung neutrophilia, mucus and fluid accumulation
in bronchi, and bronchiectasis [7].

Besides the shared trait of direct viral targeting in both gut
and lung, the two tissues share a relationship influencing in-

flammatory and immune responses via the gut– lung axis that
can be responsive to probiotics through effects on commensal

microbial flora. From birth, both gut and lungs share exposure
to microbes through the oral route, a process that over time

seeds a quasi-stable and complex gut flora, with growing
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evidence for a much lower level of microbial species in the lung

that are different between the upper and lower respiratory
tracts [8–10]. Focusing on gut flora, microbe interactions and

their products influence innate and adaptive immune signals and
cells locally, systemically, and specifically in the lungs, where it

has been shown that the gut microbiome affects susceptibility
to asthma, lung allergic responses and chronic obstructive
pulmonary disease [11,12]. Various insults can cause dysbiosis

of the gut microbial flora, including antibiotic treatment or
pathogenic infection, which can result in increased gut perme-

ability, in turn leading to microbial translocation and systemic
dispersal of toxins and inflammatory products to the circulatory

system [13]. Therefore, whether due to pre-existing differences
in gut flora, or differences induced upon infection, it is

conceivable that the microbiome may influence differences in
the inflammatory response between patients that could
correspond with COVID-19 severity.
Probiotics improving anti-viral responses
Oral probiotics are live bacteria that can improve gut health in
homeostasis, and can exhibit antiviral effects [14,15] via the

gut– lung axis [16]. Upon delivery, probiotics are understood to
adjust the crosstalk between commensal microbes and the

mucosal immune framework, and in this way alter the basal and
induced inflammatory balance in response to viral infections [14].

Regarding upper respiratory tract disease, some probiotics have
shown anti-viral protective and therapeutic effects, lessening the

severity and extent of tissue damage from infection and inflam-
mation [17,18]. Diminished plasma titres of Epstein–Barr virus
TABLE 1. Probiotics, targeted viral infections, immunostimulator

references

Probiotic bacteria (strain) Viral infection Immunostimulat

Lactobacillus brevis (KB290) Influenza virus Increased IFN-α pr
influenza-virus-spec
production

Lactobacillus rhamnosus (GG) Influenza virus Increased IFN-γ pro
Lactobacillus bulgaricus (OLL1073R-1)

and Streptococcus thermophiles
Rhinovirus Increased IFN-γ pro

Lactobacillus rhamnosus (GG) Rhinovirus Not determined

Lactobacillus rhamnosus (GG) Rhinovirus Not determined
Lactobacillus rhamnosus (GG) Rhinovirus, respiratory

syncytial virus,
parainfluenza virus 1

Not determined

Lactobacillus casei (DN-114001) Rhinopharyngitis, influenza
virus

Increased expressio

Lactobacillus rhamnosus (M21) Influenza virus Increased IFN-γ an

Bacillus subtilis (OKB105) Transmissible
gastroenteritis virus

Inhibition of virus e
entry receptors

Bifidobacterium animalis Rhinovirus Inhibition of CXCL

Abbreviations: COVID-19, coronavirus disease 2019; IFN, interferon; SARS-CoV-2, severe
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and antibody titres against cytomegalovirus were observed in

upper respiratory tract infections upon treatment with the lactic
acid-producing bacterium Lactobacillus casei, by a mechanism

dependent on Toll-like receptors [19]. Another probiotic bac-
terium, Lactococcus lactis JCM 5805, was demonstrated to have

antiviral activity against influenza virus infection and to activate
plasmacytoid dendritic cells using Toll-like receptor 9 [20].
Treatment with the probiotic Bifidobacterium lactis HN019 was

reported to increase mononuclear leucocyte recruitment and
elevate phagocytic and lytic activity [21]. The probiotic impact of

Lactobacillus gasseri has been shown against respiratory syncytial
virus infection in mice by a significant reduction of viral titre in

the lungs along with decreases in several pulmonary pro-
inflammatory cytokines, but increases in interferon types I and

II [22]. Lactic acid-producing bacteria (LAB) have been used in
probiotic settings via nasal and oral application, where modula-
tion of cytokine profiles was associated with protection against

respiratory syncytial virus [23,24], and wider application for
respiratory infections has been suggested [25]. A clinical report

in neonates demonstrated that probiotic treatment in early life
was associated with decreased rates of subsequent respiratory

tract infections [26]. Up to this point, many clinical trials have
investigated the potential impacts of probiotics on viral infections

(Table 1), with some current trials exploring the effectiveness of
probiotics in the context of COVID-19 (Table 2).
Anti-inflammatory probiotics and COVID-19
Some probiotics enhance regulatory T-cell activity and reduce
pro-inflammatory cytokine production [27–30]. For example,
y mode of action, reported medicinal effects and supporting

ory mode of action Reported medicinal effects Ref.

oduction and augmentation of
ific immunoglobulin A

Reduced risk of infection [61]

duction in serum Reduced risk of infection [62]
duction in serum No significant difference [63]

Reduced incidence of respiratory tract
infections (RTIs)

[64]

Reduced incidence of RTIs [65]
Reduced number of days with symptoms [66]

n of defensins Decreased duration of common
infectious diseases

[67]

d interleukin-2 Increased host resistance against influenza
virus infection

[68]

ntry by competing with viral Reduced viral entry in vitro [69]

8 response upon viral infection Decreased viral titres in nasal lavage and
viral shedding in the nasal secretions

[70]

acute respiratory syndrome coronavirus 2.

nses/by-nc-nd/4.0/).
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TABLE 2. Current clinical trials of probiotics in coronavirus disease 2019 registered at ClinicalTrials.gov

ClinicalTrials.gov identifier Study title Probiotic bacteria (strain) Procedure synopsis

NCT04458519 Efficacy of intranasal probiotic treatment to
reduce severity of symptoms in COVID-19
infection

Lactococcus lactis (W136) Nasal irrigation with probiorinse

NCT04390477 Study to evaluate the effect of a probiotic in
COVID-19

Not revealed Dietary supplementation

NCT04366180 Evaluation of probiotic Lactobacillus
coryniformis K8 on COVID-19 prevention in
health-care workers

Lactobacillus coryniformis (K8) Dietary supplementation

NCT04517422 Efficacy of Lactobacillus plantarum and
Pediococcus acidilactici in adults with SARS-
CoV-2 and COVID-19

Lactobacillus plantarum (CECT7481)
Lactobacillus plantarum (CECT7484)
Lactobacillus plantarum (CECT7485)
Pediococcus acidilactici (CECT7483)

Not revealed

Abbreviations: COVID-19, coronavirus disease 2019; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.
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the anti-inflammatory activity of Weissella cibaaria (JW15) was
assessed upon lipopolysaccharide challenge in mouse macro-

phages, where the probiotic was associated with reduced in-
duction of interleukin-1β (IL-1β), IL-6 and tumour necrosis
factor-α (TNF-α). When the stimulus was changed to heat-

killed JW15, the same study observed diminished production
of nitric oxide and prostaglandin E2 using down-regulation of

inducible nitric oxide synthase and cyclooxygenase 2 [31].
Human commensal strains Lactobacillus rhamnosus GG and GR-

1 appear capable of anti-inflammatory effects using down-
regulation of TNF-α production in human monocytes and

mouse macrophages [32].
Evidence to date suggests that probiotics with anti-

inflammatory or immunomodulatory properties might be pre-

dicted to have the most beneficial potential to prevent or
alleviate COVID-19 symptoms (Fig. 1). Clinical investigations

along with increasing data worldwide suggest that cytokine
storm causing hyper-inflammation in the respiratory tract has

an apparent causal, positive correlation with COVID-19 disease
severity [33]. Blood plasma analysis of 41 individuals with

confirmed COVID-19 in Wuhan, China revealed increased
levels of various cytokines including IL-1β, IL-7, IL-8, IL-9, IL-10,

fibroblast growth factor, granulocyte colony-stimulating factor,
granulocyte–macrophage colony-stimulating factor, interferon-
γ, IFN-γ-inducible protein-10, monocyte chemoattractant

protein-1, macrophage inflammatory protein-1A and -1B,
platelet-derived growth factor, TNF-α, and vascular endothelial

growth factor in people with COVID-19 compared with
healthy individuals [34]. Given these observations, inhibiting or

down-regulating this cytokine response may create a healthier
immune activation balance to reduce inflammatory symptoms

while maintaining adaptive immune engagement against SARS-
COV-2 (Fig. 1).

Because probiotics have been studied and recommended in

the context of respiratory tract infections, the hypothesis
emerges that probiotics might play a positive role against

COVID-19. For example, gut dysbiosis during influenza virus
This is an open access artic
infection has been shown to worsen lung pathology and
aggravate secondary pneumococcal lung infections [35,36],

and gut microbiota dysbiosis has been reported in some
COVID-19 patients concurrent with decreases in natural
probiotic bacterial species including Lactobacillus and Bifido-

bacterium [37]. Clinical transcriptome analyses from COVID-
19 patients have also indicated a gastrointestinal disease

course and potential systemic crosstalk between gut and lungs
during SARS-CoV-2 infection [38]. Sufficient rationale has

accumulated such that clinical trials of probiotics against
COVID-19 are already underway, so far emphasizing pro-

biotics with expected anti-inflammatory effects in the
gut– lung axis (Table 2).

Possible roles of probiotic antimicrobial
peptides
Probiotics can produce direct antimicrobial effects via me-

tabolites and antimicrobial peptides, including bacteriocins,
which could potentially contribute beneficial effects against

SARS-CoV-2 as a membranous envelope virus. A species of
genus Lactococcus is in a current clinical trial for probiotic

activity against COVID-19 (Table 2), and this genus includes
LAB whose anti-viral effects may be due in part to secreted

metabolites and an enormous number of bacteriocins [39],
one class of antimicrobial peptides considered to be guard

peptides [40]. Nisin is one of the most widely studied bacte-
riocins and has been approved for many years as an FDA
endorsed food additive. Antimicrobial peptides that can be

expressed by LAB appear to contribute to probiotic antiviral
effects against influenza A virus and other respiratory viruses

[41,42]. From a different genus, the probiotic Bacillus subtilis
strain was shown to produce an antiviral peptide, P18, which

inhibited influenza infection both in vitro and in vivo [43]. Ex-
amples of probiotic lipopeptides include lipopeptide deter-

gent-12, subtilisin, curvacin A, sakacin P and lactococcin Gb,
© 2021 The Authors. Published by Elsevier Ltd, NMNI, 40, 100837
le under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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FIG. 1. Step-by-step progressive schematic illustration of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and involvement

of the gut– lung axis. Potential targets or steps at which the action of probiotics might mitigate coronavirus disease 2019 (COVID-19) are represented,

with specific mechanisms of action possible for probiotics highlighted in yellow.
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which are well described extracellularly expressed products

that may block the virus–cell fusion process or other steps of
viral entry by mechanisms involving their amphiphilic nature

[44,45]. If such probiotic products were to have direct access
to SARS-CoV-2 virions in the gut, or perhaps in the lungs
through disease-induced dysbiosis, gut permeability, and

dissemination, it can be hypothesized that direct antiviral ef-
fects may be possible.
© 2021 The Authors. Published by Elsevier Ltd, NMNI, 40, 100837
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/lice
Possible probiotic protection against
infections secondary to SARS-CoV-2
Because probiotics can mitigate problems of dysbiosis, inflam-

mation and immune function, and can include direct antimicrobial
activities, there may be the potential for a positive contribution

against secondary infection co-morbidities in COVID-19. New
nses/by-nc-nd/4.0/).
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evidence is emerging that infections secondary to SARS-CoV-2

might contribute to COVID-19 pathology or severity [46–49].
Although an early study suggested relatively little concern across

the COVID-19 patient population [50], recent reports are
finding increased secondary infections in hospitalized individuals

with severe disease, observations that may have some association
with immunosuppressive drugs in current treatment regimens
[51–53]. Outside the COVID-19 context, application of the

probiotic strains Lactobacillus rhamnosus GG, Bacillus subtilis and
Enterococcus faecalis during clinical trials, showed a significant

improvement in patients with ventilator-associated pneumonia,
including pathogens of various types, compared with placebo

treatment [54,55]. In general, probiotic strains themselves,
including LAB strains, are well known to be non-pathogenic and

non-immunogenic, and therefore are considered safe and not a
source of potential secondary infections, themselves [56]. Along
with protective effects reported against influenza A virus, LAB

have been reported to promote heterotypic immunity to sec-
ondary infections [57,58]. Furthermore, probiotics have been

reported to provide some protection against biofilm-forming
pathogens in the respiratory tract [59,60]. As secondary in-

fections may rise to more prominence in COVID-19, perhaps
commensurate with increasing anti-inflammatory regimens,

treatment options that include probiotics may present an even
more attractive modality that merits further investigation and

attention in clinical trials.
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