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Diffuse large B cell lymphoma (DLBCL) is one of the most usual types of adult lymphoma with heterogeneousness in histological
morphology, prognosis, and clinical indications. Prior to this, several studies were carried out to determine the DLBCL subtype
based on the analysis of the genome profile. However, classification based on assessment of genes related to the immune
system has limited clinical significance for DLBCL. We systematically explored the DLBCL gene expression dataset and
provided publicly available clinical information on patients with GEO. In this research, 928 DLBCL samples were applied, and
we calculated 29 immune-related genomes’ enrichment levels in each sample and stratified them into high immunity
(Immunity_H, n = 135, 28.7%), moderate immunity (Immunity_M, n = 135, 28.7%), and low immunity (Immunity_L, n = 12,
2.6%) that was based on ssGSEA score. The ESTIMATE algorithm was used to calculate stromal scores (range 586.88 to
1982.43), immune scores, estimated scores (range 2,618.2 to 8,098.14), and tumor purity (range 0.216 to 0.976). All of them
were significantly correlated with immune subtypes (Kruskal-Wallis test, p < 0:001). At the same time, the correlation of
related genes was analyzed by immunohistochemistry staining. In addition, DLBCL cells were cultured in transfected and
in vitro with siRNA to verify correlation analysis and gene expression. Finally, human peripheral blood lymphocytes were
incubated with DLBCL cells and stained. Flow cytometry was applied to analyze genes’ influence on immune function. By
analysis, immune checkpoint and HLA gene expression levels were higher in the Immunity_H group (Kruskal-Wallis test,
p < 0:05). The levels of Tfhs (follicular helper T cells), monocytes, CD8+ T cells, M1 macrophages, M2 macrophages, and CD4+

memory-activated T cells were the most excellent in Immunity_H, and the total survival rate was higher in the Immunity_L.
Through analysis, IRF4 (MUM1) was identified by us as immunotherapeutic target and a potential prognostic marker for
DLBCL, which was made sure by using molecular biology experimentations. To conclude, immunosignature made a connection
between DLBCL subtypes playing a position in DLBCL prognostic stratification. Immunocharacteristics-related DLBCL
subtypes’ construction predicts expected patient results and supplies conceivable immunotherapy candida.

1. Introduction

Diffuse large B cell lymphoma (DLBCL) is the most com-
mon subtype of non-Hodgkin lymphoma (NHL) in the

United States, accounting for about a quarter of NHL cases
[1]. Two molecularly different DLBCL’s shapes have been
identified through gene expression patterns including germi-
nal center B cell-like (GCB) types and activated B cell-like
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(ABC) [2]. The immunohistochemical (IHC) expression of
CD10, IRF4/MUM1, and Bcl-6 have been used to categorize
DLBCL’s examples into non-GCB groups and GCB. Rele-
vant researches have revealed that IRF4’s overexpression is
connected with patients’ unfavorable prognosis with
DLBCL. In spite of the variety of clinical, morphologic,
and molecular human malignancies used to be classified by
parameters nowadays, DLBCL patients’ 40% survival con-
tinues to be poor.

Up until the present moment, there are few treatment
alternatives for DLBCL. Immunotherapy is a new treatment
that improves the survival prospects of DLBCL patients,
including the blocking of immune checkpoints [3]. In spite
of the fantastic advance in immunotherapy strategies, favor-
able effects, nevertheless, have been demonstrated merely in
a subset of patients. Immunotherapy’s responsiveness is
influenced by definite factors, for example, host germline
genetics, PD-L1 grades, and tumor genomics [4, 5]. It has
been discovered that tumor microenvironmental heteroge-
neousness can be used as biomarkers for prognosis and
immunotherapy sensitivity of various kinds of cancers [6,
7]. It is noteworthy that both tumor-associated stromal cells
and infiltrating immune cells are significant components of
tumor immune microenvironment and drama a significant
part in tumor development, progression, and drug opposi-
tion [8, 9]. In consequence, an increasing number of
researches are concentrating on these factors, supplying
fresh perceptions into the prognostic value and therapeutic
methods of tumor biology.

In our research, based on immune genomic analysis,
patients were divided with DLBCL into three groups: Immu-
nity_L, Immunity_M, and Immunity_H. A strong connec-
tion has been demonstrated by us between categorization
and immune infiltration and survival results. The construc-
tion of immune signatures that are associated with DLBCL
subtypes may contribute to the search for prognostic
markers and novel immunotherapy marks.

2. Materials and Methods

2.1. Data Source. DLBCL patient of gene expression and
clinical data were downloaded from Gene Expression Omni-
bus (GEO) database (GSE117556). In this research, clinical
data that were related to age, stage, subtype, LDH, IPI,
ECOG, and survival were collected by us from GEO, and a
total of 928 DLBCL patients were enrolled.

2.2. Hierarchical Cluster Analysis of DLBCL. 29 immune-
related gene sets which were widely used in previous studies
were applied by us, including 707 genes, depicting different
immune cell types, pathways, and functions (Supplementary
Table (available here)) [10, 11]. The enrichment grades of 29
immune-related gene sets were worked out by using single-
sample gene set enrichment analysis (ssGSEA), as demon-
strated in former learnings [10], and quantified by immune
cell types, pathways, and functions. DLBCL was hierarchi-
cally clustered by using unsupervised machine learning
approach and further divided into high immunity (Immu-

nity_H), moderate immunity (Immunity_M), and low
immunity (Immunity_L) that be based on ssGSEA score.

2.3. Calculation of the Immune and Stromal Scores and
Estimation of the CIBERSORT. ESTIMATE is an approach
to infer tumor purity’s fraction by using immune cells and
stromal cells in malignancy tissue applying expression data.
In the light of the Immunity_H, Immunity_M, and Immu-
nity_L groups, ESTIMATE algorithm was applied to esti-
mate the immune grade, stromal grade, and tumor purity
of DLBCL patients. CIBERSORT is a biological method of
Cell-type Identification By Estimating Relative Subsets of
RNA Transcripts (https://cibersortx. stanford.edu/). The
CIBERSORT package was applied to calculate immune cell
types’ distribution in each subset, and immune cell’s propor-
tion types in DLBCL’s subtypes was compared based on the
Kruskal-Wallis test, and “∗∗∗,” “∗∗,” “∗,” and “ns” indicate
p < 0:001, p < 0:01, p < 0:05, and p < 1, respectively [12].
ESTIMATE and CIBERSORT package in R version 3.6.2
(https://www.R-project.org/) are used in this article.

2.4. GO and KEGG Pathway Enrichment Analysis. GSEA
package was used to analyze gene aggregation and enrich-
ment in DLBCL patients. Gene Ontology (GO) and the
Kyoto Encyclopedia of Genes Genomes (KEGG) analyses
were used to evaluate the differentially expressed genes’
functional function between the low and high group [13].
Differential gene set enrichment was examined using the
limma R package. p < 0:05 was used as the cut-off value.

2.5. Survival Analyses. The Kaplan–Meier survival curve was
drawn based on the patient’s survival information to visual-
ize the survival difference between immune subtypes.

2.6. Cell Lines and Cell Culture. Human DLBCL cell line
(DS) is a gift from Professor Mingzhi Zhang, Oncology
Department, The First Affiliated Hospital of Zhengzhou
University (purchased from ATCC through Genetimes
ExCell Technology, Inc. Shanghai, China, ATCC Number:
CRL-3381), and used after cryopreservation and thawing.
They were cultured in RMPI 1640 medium (Gibco, USA)

Table 1: Dataset related information.

Characteristics
GSE117556 (n = 928)

(%)

Age
<=60 332 (35.8)

>60 596 (64.2)

Subtype
ABC 274 (26.3)

GCB 475 (51.2)

Stage
Stage I-II 268 (30.8)

Stage III-IV 638 (68.8)

ECOG
<=1 823 (88.7)

>1 105 (11.3)

LDH
<500 589 (63.4)

>=500 339 (36.5)

IPI
<=2 482 (51.9)

>2 446 (48.1)
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supplemented with 10% fetal bovine serum (FBS, Gibco,
USA), streptomycin, and penicillin in 5% CO2 humidified
chamber, at 37°C.

2.7. Using siRNA to Interfere with Gene Expression. DS cells
were transfected with synthetic siRNA oligonucleotides
(concentration:100 nmol/L). Lipofectamine 8000 (Beyotime,
China) was used by GenePharma (GenePharma, Shanghai,
China) [14]. The sequence of siRNA is as follows: siIRF4:
5′-GGACACACCUAUGAUGUUAUU-3′; and siControl,
5′-UAAGGCUAUGAAGAGAUACUU-3′ [15].

2.8. RNA Extraction and Quantitative Real-Time PCR.
DLBCL cells were inoculated into transfected and cell cul-
ture dishes with siRNA oligonucleotide. After transfection
with siIRF4 or control siRNA for 48 h, the PrimeScript™
RT Kit with gDNA Eraser (CAT. No. RR047A, Takara,
Dalian, China) was reversed transcription following instruc-
tions of manufacturer. After transcription, cDNA was quan-
titatively analyzed applying QuantiNova™ SYBR Green PCR
kit (Cat. No. 208054, QIAGEN, Germany) and real-time
PCR system (Applied Biosystems, Foster City, California),
pursuant to instructions of the producer. For each sample,
the mRNA abundance was normalized to the quantity of
GAPDH. Primers are as follows: IRF4: Forward, 5 ′-CTAC
ACCATGACAACGCCTTACC -3′ and reverse, 5-GGCT

GATCCGGGACGTAGT -3′. GAPDH: Forward, 3′ -
AAAGGGTCATCATCTCTG -5′, reverse,5 ′- GCTGTT
GTCATACTTCTC -3′.

2.9. Western Blotting Assay. DLBCL was inoculated into cell
culture dishes and transfected with siControl and siIRF4 oli-
gonucleotides, respectively. After 48 h, cells were collected
and lysed with cell lysate for western blotting analysis.
BCA assay was used to determine protein concentration,
and primary antibody was used: anti-IRF4 (Cat. No.
62834) and anti-PD-L1 (Cat. No.13684) (Cell Signaling
Technology, Inc., Boston, MA). The primary antibody was
diluted at 1 : 1000 and incubated overnight (12-18 h) at
4°C. And wash with TBST (Tris-Buffered Saline-Tween 20)
4 times, 5 minutes each time. Incubate with peroxidase-
labeled 1 : 5000 or secondary peroxidase-labeled goat anti-
mouse IgG (diluted ZGSB Bio, Inc., China) for 2 hours at
room temperature. ECL kit (Beyotime, China) was applied
for membrane detection. All proteins were loaded with
GAPDH as control.

2.10. Flow Cytometry Analysis. We directly incubated cells
with fluorescent-labeled antibodies and performed cell fluo-
rescence analysis using flow cytometry (BD FACS Canto) to
ascertain cell phenotypes for assessment. CD8 and PD-L1
can be stained straight on the cell surface and discovered,

GSE117556 (928 patients)

Hierarchical
cluster analysis

�ree immune subtypes: Immunity-H, Immunity-M and Immunity-L

Survival analysis Exploration of immune
subtype-related markers

Calculation of
the immune and
stromal scores

Immune subgroups are
significantly associated

with HLA genes

Estimation of the
CIBERSORT

GSEA enrichment
analysis

Western blotting assay and
flow cytometry analysis

Immunohistochemistry
(IHC)

IRF4 regulates PD-L1 expression and immune
function in DLBCL

Figure 1: The follow diagram of this study.
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while granular enzyme B and IFN-γ are employed for intra-
cellular staining, so cells are foremost immobilized with 4%
paraformaldehyde for 20-30min, then stained with
fluorescent-pigment-labeled antibodies, and incubated in
dark ice for 15min. Antibody choice FITC-conjugated
anti-Granzyme B antibodies and anti-IFN-γ were stained
with PE-conjugated anti-PD-L1, PE-Cy7-conjugated anti-
CD8, and APC-conjugated cells (BD, USA).

2.11. Immunohistochemistry (IHC) Staining of Human
Diffuse Large B Lymphoma Tissue Array. We purchased
human diffuse large B lymphoma tissue Chip array (OD-
CT-LY02-001) from Shanghai Outdo Biotech Co. Ltd. Od-
CT-LY02-001 Chip array was purchased from Shanghai
Outdo Biotech Co., Ltd. It included 30 cases from different

parts of the digestive tract and different DLBCL (stomach,
small intestine, cecum, colon, etc.). The webpage link of this
array is (https://www.superchip.com.cn/biology/tissue
.html). IRF4 antibody (Cat. No. 62834, Cell Signaling Tech-
nology) and PD-L1 antibody (Cat. No. 13684, Cell Signaling
Technology) were stained by IHC to detect the expression of
IRF4 and PD-L1 (1 : 50 dilution) [16]. Briefly, 4μm of tissue
array sections were blocked with dehydrated peroxidase.
Antigen recuperation was executed at 0.01mol/L in citrate
buffer and autoclaved. The primary antibody was added
and incubated overnight at 4°C. Following washes with
phosphate-buffered saline (PBS) and incubation with a
labeled polymer-HRP second antibody for 30min, 3, 3-
diaminobenzidine tetrachloride (DAB) was applied to initi-
ate the colorimetric reaction. Slides were restained with
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Figure 2: (a) Based on unsupervised cluster analysis of genomic ssGSEA score, 928 DLBCL samples were divided into three groups:
Immunity_H (n = 636), Immunity_M (n = 322), and Immunity_L (n = 71). (b) Heat map of Immunity_H, Immunity_M, and Immunity_
L subtypes according to 29 immune cell types.
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Figure 3: Continued.
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hematoxylin. The stained slides were observed by micros-
copy to obtain images. IHC scoring was also performed sep-
arately to analyze the correlation between IRF4 and PD-L1.
IHC kit was purchased from Absin (Cat. No. abs957).

2.12. Statistical Analysis. The enrichment analysis was con-
ducted applying R (3.5.2), and Kaplan-Meier plots were gen-
erated using the R package of the survey. ESTIMATE
algorithm and CIBERSORT package were applied in R,

and Kruskal-Wallis test were applied to compare 22 immune
cell types in DLBCL’s subtypes. Based on the ANOVA, “∗∗∗,”
“∗∗,” “∗,” and “ns,” respectively, indicate p < 0:001, p < 0:01,
p < 0:05, and p < 1, to demonstrate the HLA family genes’
expression in the Immunity_H, Immunity_M, and Immu-
nity_L groups. The GraphPad Prism 8 software (GraphPad
Software, Inc., La Jolla, CA, USA) was used to evaluate the sta-
tistical significance between two groups. The comparison of
parameters between groups was analyzed using t-test. “∗,”
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Figure 3: (a) Analysis of differences in tumor purity between three immune subtypes. Tumor purity was importantly more down in
Immunity_H group and importantly more excellent in Immunity_L (p < 0:001, Kruskal-Wallis test). (b) Survival analysis of three
immune subgroups. The survival curves of Immunity_L, Immunity_M, and Immunity_H subgroups were significantly different
(p = 4:396E − 08). It also proved that immune grouping had a good predictive effect on the survival of DLBCL. Patients in Immunity_H
had the best prognosis, patients in Immunity_L had got the poorest prognosis, and the Immunity_M was between them. (c–h) The
expression of PD-1, PD-L1, CD3D, HIF1A, IRF4, and other genes was meaningfully correlated with the immune subgroup. The
expressions of PD-1, PD-L1, CD3D, HIF1A, IRF4, and other genes were meaningfully dissimilar between Immunity_L and Immunity_H
(ANOVA text, p < 0:001).
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“∗∗,” and “∗∗∗” represent that the difference between the two
experimental groups was statistically significant (p < 0:05, p
< 0:01, and p < 0:001).

3. Results

3.1. Construction Is Modeled by Immune Subtype and Patient
Clinical Characteristics. In this study, we involved clinical
data and gene expression profiles of 928 patients with
DLBCL from the GEO database. The selected patients’ clin-
ical characteristics are summarized by Table 1. 62.2 years
was the median age at diagnosis (range: 20.8–86.0), with
517 males (55.7%) and 411 females (44.3%). We conducted
the study according to the scheme flow in Figure 1. An unsu-

pervised cluster analysis of 29 immune-associated gene sets
was foremost performed by us. There were three clear sets
of samples according to the ssGSEA score of the genome:
Immunity_L (n = 71, 7.7%), Immunity_M (n = 322, 34.7%),
and Immunity_H (n = 535, 57.7%) (Figure 2(a)). As demon-
strated in the heat map (Figure 2(a)), immunity-related
genes’ expression degree was more depressed in the low
group than in the high group. Stromal scores (range 586.88
to 1982.43), immune scores (range 832.23 to 3359.60), esti-
mate scores (range 1387.54 to 4737.90), and tumor purity
(scope 0.27 to 0.69) are revealed for patients with DLBCL.
Immune scores and stromal scores were worked out to fore-
cast the level of infiltrating immune cells and mesenchymal
and to provide a basis for inferring tumor purity in the
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Figure 4: (a) Immune subsets were significantly associated with HLA family genes. Among 24 HLA-related genes, only five genes, HLA-G,
HLA-DRB6, HLA-DPB2, HLA-DOB, and HLA-B, were not significant in the distribution of immune subsets. The remaining HLA family
members were statistically distributed in the immune subgroups (p < 0:06). (b) Immune subtypes were significantly associated with immune
cell infiltration. Monocytes, M1 macrophages, M2 macrophages, CD8+ T cells, CD4+ memory-activated T cells, and follicular helper T cells
were substantially high up in the Immunity_H group than in the Immunity_M groups and Immunity_L. The results of B cells naive, B cells
memory, plasma cells, and CD4+ naive T cells in Immunity_L were considerably more excellent than those in Immunity_M and Immunity_
H. (c and d) GO and KEGG analysis differential gene enrichment analysis of Immunity_H and Immunity_L groups.
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tumor tissue (Figure 2(b)). Results demonstrated that tumor
purity was importantly more down in the Immunity_H
group and substantially more excellent in the Immunity_L
group (Kruskal-Wallis test, p < 0:001), indicating that this
immunotyping correlation analysis with tumor purity in
DLBCL is meaningful.

3.2. Survival Rate Was Significantly Correlated with Immune
Subsets. Next, three immune subtypes’ prognostic value was
measured by us on patient survival. It was discovered that
the survival curves of the three subgroups Immunity_H,
Immunity_M, and Immunity_L were statistically signifi-
cantly different (p = 4:396e − 08). It also demonstrated that
immunophenotyping was a good predictor of survival in
DLBCL. Patients in Immunity_H group had the best prog-
nosis, those in Immunity_L group had the worst prognosis,
and those in Immunity_M group were in between, as shown
in (Figure 3(b)).

3.3. Exploration of Immune Subtype-Related Markers. In
addition, we also explored the connection during the expres-
sion of PD-1, PD-L1, CD3D, HIF1A, and IRF4 genes and
immune subgroups. These results showed that the expres-
sion of PD-1, PD-L1, CD3D, HIF1A, IRF4, and other genes
were meaningfully different in both Immunity_H and
Immunity_L groups (ANOVA text, p < 0:001), as shown in
(Figures 3(c)–3(h)). The results of this study strongly sup-
port that the immune microenvironment affects action of
immune checkpoint inhibitors in cancer patients, and it also
sounds an alarm for the development of new immune check-
point inhibitors, which cannot ignore the important role of
immune microenvironment in novel immunotherapy.

3.4. HLA Genes Were Meaningfully Correlated with Immune
Subsets. To test immune-related genes’ expression in each
subgroup, HLA genes’ expression is then explored by us in
three immune subgroups. “∗∗∗,” “∗∗,” “∗,” and “ns”,
respectively, based on one-way ANOVA (p < 0:001, p <
0:01, p < 0:05, and p < 1). These consequences demonstrated
that HLA family genes’ expression in the Immunity_H was
importantly more excellent than that in Immunity_M and
Immunity_L, and it was the most down in Immunity_L
(Figure 4(a)). Among 24 HLA-related genes, only HLA-G,
HLA-DRB6, HLA-DPB2, HLA-DOB, and HLA-B genes
had no significance in immune subgroup distribution. The
distribution of other HLA family members in immune sub-
group was statistically significant (p < 0:05).

3.5. Immune Subtypes Were Correlated with Immune Cell
Infiltration Importantly. To further investigate the important
function of tumor microenvironment in DLBCL, the ratio of
22 human immune cell subsets in DLBCL was assessed using
the CIBERSORT package in R software. The results revealed
that monocytes, M1 macrophages, M2 macrophages, CD8+

T cells, CD4+ memory-activated T cells, and follicular helper
T cells were importantly high up in Immunity_H than
Immunity_L, and the consequences of B cells naive, B cells
memory, plasma cells, and CD4+ naive T cells in Immu-
nity_H groups and Immunity_M were importantly more
down than the Immunity_L group (Figure 4(b)).

3.6. KEGG Enrichment Analysis and GO. Based on the
improvement scores in each sample, the differential genes
in the Immunity_L and Immunity_H groups were screened.
(Figure 4(c)) shows correlation to the best 5 pathways with
the most excellent GO and (Figure 4(d)) reveals the highest
5 pathways with the most excellent KEGG correlation.
KEGG analysis showed that the differential genes in Immu-
nity_H and Immunity_L groups were mainly enriched in
allograft rejection, Ferroptosis, PD-1 expression, protein
export, and PD-1 checkpoint pathway in cancer. GO analy-
sis showed that the low group differential genes and high
group were improved with immunological synapse forma-
tion, positive regulation of interleukin-2 biosynthetic pro-
cess, positive regulation of nitric oxide synthase
biosynthetic process, regulation of tolerance induction, and
T cell receptor complex.

3.7. PD-L1 Regulates IRF4 Expression in DLBCL. We then
valued the expression of PD-L1 proteins and IRF4 by using

Table 2: Detailed information of tissue array used in IHC.

Age(n = 30
)

Gender TNM
IHC store
(IRF4)

IHC store (PD-
L1)

72 Female T3N1M0 6 9

74 Female — 9 12

50 Male — 1 4

60 Male — 4 6

38 Male — 0 2

64 Female T2N0M0 2 6

73 Male T2N0M0 6 9

55 Male T2N3M0 3 9

53 Male T2N2M0 2 6

73 Female T1N0M0 4 6

50 Female T1N1M0 1 4

81 Female T1EN2M0 6 9

72 Male T1EN1M0 9 12

55 Male T2N1M0 9 12

58 Male T1N0M0 2 4

81 Female T1N0M0 2 4

57 Male T1N0M0 1 4

61 Male T1N0M0 4 6

52 Female T2N1M0 12 12

65 Male T3N3M0 12 12

78 Male T3N1M0 3 6

32 Female T1N0M0 2 6

60 Male T2N0M0 4 6

73 Male T3N1M0 12 12

47 Male — 12 12

65 Female — 2 4

64 Male T2N1M0 12 12

75 Male T1N0M0 9 12

58 Male — 9 12

56 Male T3N0M0 9 12
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Figure 5: (a) IHC was used to detect the expression of IRF4 and PD-L1 in DLBCL. Two cases were stained with IRF4 and PD-L1
immunohistochemistry. Examine the section under a microscope. (b) The images described are representative of 30 cases of DLBCL.
Correlation between IRF4 IHC score and IRF4 IHC score in 30 DLBCL patients, calculated by Spearman’s rank correlation methods, in
30 DLBCL cases. (c) We transfected siControl and siIRF4 into DS cell line by transient transfection method. Proteins were collected and
lysed, and the displayed proteins were analyzed by western blotting. (d) The expression of PD-L1 was detected by real-time fluorescence
quantitative PCR. The error bar represents three separate experiments.
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immunohistochemistry (IHC) in 30 patients diagnosed with
DLBCL (Table 2). IRF4 expressions and PD-L1 were notably
discovered in the majority of examples in this cohort,
whereas PD-L1 overexpression was substantially more usual
in cases with excellent IRF4 (Figure 5(a)). PD-L1 IHC score
had a good correlation with IRF4 score (p < 0:001,
Figure 5(b)). Finally, immunoblotting (Figure 5(c)) and
real-time quantitative PCR (Figure 4(d)) detection con-
firmed that knockdown of IRF4 expression in DLBCL could
effectively inhibit PD-L1 expression.

3.8. Effect of IRF4 on Immune Function. In this study, we
observed that knocking down IRF4 resulted in reduced
PD-L1 induction, and IFN-γ induction further confirmed
the correlation between IRF4 and PD-L1 (Figures 6(a) and
6(b)). Compared with the control group, DS cells with
knockdown IRF4 were coincubated with PBMC, and the
immune function of CD8+ T cells was detected by using flow
cytometry. It was observed that the production of IFN-γ and
Granzyme B-related molecules of CD8+ T cells was more
excellent than that of the control group (Figure 6(c)). At
the same time, we found that compared to the control group.
Knocking down IRF4 can inhibit the differentiation of CD4+

T cells into Treg (Figure 6(d)).

4. Discussion

Despite the wide variety of clinical, morphological, and
molecular parameters used to classify DLBCL today, the
40% survival rate remains poor [17, 18]. At present, genome
map has been used to identify and diagnose various molecu-
lar subtypes of cancer, and a large amount of evidence indi-
cates that tumor microenvironment plays an important role
in tumor genesis, development and treatment [19, 20]. In the
meanwhile, immune cells and stromal cells in tumor micro-
environment also play a significant part in prognosis at the
same time and tumor progression [21, 22]. Therefore,

immune-related hierarchical clustering is used to better
assess patient outcomes and select therapies that are effective
only for specific subtypes of DLBCL.

In our study, we calculated 928 DLBCL samples using
ssGSEA and analyzed the enrichment levels of 29 immune-
related genomes in each sample. Next, we used unsupervised
clustering, which could be clearly based on the three DLBCL
subtypes identified by the ssGSEA score: Immunity_High
subtype, Immunity_Medium subtype, and Immunity_Low
subtype. We used estimation algorithms to calculate each
patient’s score of immune, stromal, and tumor purity. Anal-
ysis showed that of the three subtypes, Immunity_High was
connected with importantly more excellent prognosis and
accommodated more stromal cells and immune cells than
the other groups, showing increased activity in this sub-
group. In addition, we discovered the expression of PD-1,
PD-L1, CD3D, HIF1A, and IRF4 genes were substantially
different in both Immunity_L groups and Immunity_H
(ANOVA text, p < 0:001).

Class L human leukocyte antigen is an intracellular pep-
tide that can be recognized by T cells on the cell surface.
Changes in the HLA gene may alter the ability to express
neoantigens and thus affect immune escape. Numerous
studies have shown that HLA alterations are strongly associ-
ated with cancer prognosis and treatment. In our research,
HLA family genes’ expression was importantly higher in
Immunity_H than in Immunity_L and Immunity_M.

At the same time, an increasing number of researches
have illustrated a correlation between the treatment respon-
siveness and prognosis of tumor patients and the level of
immune cell infiltration [23]. We used the CIBERSORT
package in R software to evaluate 22 human immune cell
subpopulations’ part in DLBCL. We discovered significant
differences in the level of immune cell infiltration and the
proportion of immune infiltrating cell types by immune sub-
type grouping through our analysis [24]. For instance, the
highest proportions of CD8+ T cells and CD4+ memory T
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Figure 6: (a and b) PD-L1’s flow cytometry analysis in siIRF4 DS cells in relation to restriction with or without IFN-γ therapy. (c and d)
Flow cytometry was used to analyze Granzyme B+ CD8+ T cell or IFN-γ+ CD8+ T cell frequencies. (e and f) CD4+T cell frequency or Treg
(FOXP3) in the PBMC.
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cells were discovered in Immunity_H. Meanwhile, immune
checkpoints’ role is to exert antitumor impacts by increasing
the role of CD4+ T and CD8+ T cells [25, 26]. It has been
reported in the past that CD8+ T cell infiltration degrees
are positively correlated with cancer prognosis after immu-
notherapy in various kinds of solid tumors. We found by
further study that monocytes, M1 macrophages, M2 macro-
phages, CD8+ T cells, CD4+ memory-activated T cells, and
follicular helper T cells were meaningfully high up in Immu-
nity_H than these consequences of B cells naive, B cells
memory, plasma cells, and CD4+ naïve which were mean-
ingfully high up in Immunity_L than in Immunity_H and
Immunity_M. Besides, the CD8+/Treg ratio was consider-
ably high up in Immunity_High than in Immunity_Low.
This indicates that Immunity_High has higher immune
response and stronger antitumor activity [27–29].

IRF4/MUM1, a member of the IRF family, is specifically
expressed in lymphocytes and is involved in immune regula-
tion through a series of signal transduction actions. Previous
studies have shown that abnormal IRF4 expression can be
used as a diagnostic and prognostic marker for various
hematologic malignancies. IRF4 was described by Qian
et al. as a negative prognostic factor for non-small-cell lung
cancer [30]. Our study found that IRF4 (MUM1) was an
immunotherapeutic target and a potential prognostic
marker for DLBCL. We first demonstrated in DLBCL that
IRF4 can upregulate the PD-L1 expression of tumor cells.
What is more, on the one hand, the high expression of
IRF4 in tumor can inhibit function of effector T cells and
on the other hand increases the proportion of immunosup-
pressive cells Treg, which promote the immune escape of
cancer cells. Our research showed that it was possible to
inhibit the expression of IRF4 in tumor cells and relieve
the immunosuppressive effect to achieve the effect of treat-
ing DLBCL.

In our study, we found IRF4’s expression was meaning-
fully high up in Immunity_H than in Immunity_M and
Immunity_L; meanwhile, we verified the positive correlation
between IRF4 and PD-L1 and demonstrated that IRF4 could
enhance immunosuppressive effect of tumor microenviron-
ment. These researches showed that it was possible to inhibit
the expression of IRF4 in tumor cells and relieve the immu-
nosuppressive effect to achieve the effect of treating DLBCL.
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