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Exercise has been widely believed to be a preventive and therapeutic aid in the treatment of various

pathophysiological conditions such as cardiovascular disease and cancer. A common problem associ-

ated with such pathologies is cachexia, characterized by progressive weight loss and depletion of lean

and fat body mass, and is linked to poor prognosis. As this syndrome comprises changes in many

physiological systems, it is tempting to assume that the modulation of the psychoneuroimmunoendo-

crine axis could attenuate or even prevent cachexia progression in cancer patients. Cancer cachexia is

characterized by a disruption in the rhythmic secretion of melatonin, an important time-conditioning

effector. This hormone, secreted by the pineal gland, transmits circadian and seasonal information to

all organs and cells of the body, synchronizing the organism with the photoperiod. Considering that

exercise modulates the immune response through at least two different mechanisms—metabolic and

neuroendocrine—we propose that the adoption of a regular exercise program as a complementary

strategy in the treatment of cancer patients, with the exercise bouts regularly performed at the same

time of the day, will ameliorate cachexia symptoms and increase survival and quality of life.
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Introduction

In many chronic diseases, such as cancer and chronic heart

failure, patients die as a direct consequence of cachexia, a

profound metabolic process characterized by the breakdown

of skeletal muscle and deleterious, chaotic abnormalities in

fat and carbohydrate metabolism (1). This syndrome is

accompanied by changes in the neuroimmunoendocrine axis,

as reviewed by Langstein and Norton (2) and Langhans (3).

Physical exercise is one of the strategies adopted to counter-

act protein wasting during chronic diseases (4). In addition to

the positive impact of exercise on protein metabolism, we

propose that exercise acts as a ‘time-conditioning effector’

which regulates the neuroimmunoendocrine axis, increases

survival and improves quality of life.

Exercise or regular physical activity has been widely

adopted as a preventive or therapeutic aid in the treatment of

numerous physiopathological conditions, including cardio-

immense potential of exercise in various conditions seems to

be correlated to the fact that it promotes adaptations in all

the systems of the organism. This concept about the benefi-

cial effects of exercise on human health is quite recent. In the

past, physicians traditionally advised patients with chronic

diseases, such as cardiovascular disorders, to avoid physical

activity. However, the investigation of cardiac rehabilitation

in the 1960s showed the benefits of early mobilization after

myocardial infarction, which led to the development of car-

diac rehabilitation programs based on exercise (7–9). In fact,

these studies served as a starting point for research on the

effects of exercise on other systems and pathophysiological

processes such as immune response, cancer and inflamma-

tion.

As evidence supporting cardiac rehabilitation programs is

available, we have started developing a scientific basis for the

use of exercise as an adjuvant therapy for cancer patients. In

fact, exercise has been used to improve shoulder mobility

after breast cancer surgery (10), to help maintain the energy

balance during adjuvant chemotherapy (4,11) and to improve

the quality of life of cancer survivors (12,13). Leung et al.

(14) showed that serum obtained from patients who had

undergone exercise programs had reduced LNCaP prostate



64 Exercise and neuroimmunoendocrine system
cancer cell growth by 27%, through an increase in cellular

p53 protein content. Despite these emerging results, the

present exercise programs are neither well defined nor

included in the list of possible interventions for management

of cancer symptoms.

Exercise and the Immune System

During the last two decades, a great effort has been made to

understand the mechanisms that underlie the relationship

between exercise and the immune system, as a second step in

the study of the effects of physical activity on health. In fact,

physical fatigue, caused by exercise or manual work, has long

been considered a factor affecting susceptibility to illness. A

study carried out in the earlier part of the previous century

linked physical fatigue with increased susceptibility to polio-

myelitis (15). Several studies provide epidemiological evi-

dence that supports the anecdotal belief that regular exercise

increases resistance to infections such as common cold

whereas intense training is associated with increased upper

respiratory tract infections (16–18). The positive effect of

exercise on other diseases has also been acknowledged, and

there is increasing evidence that physical activity, as a life-

style, offers protection against malignancy (19).

This dual effect of exercise on the immune system led a

group of scientists (20) to postulate a J-shaped curve to

better express this relationship. Their results indicate that

moderate intensity exercise lowers the incidence of infections

while intense exercise increases it. Therefore, the present

study aids to investigate the underlying mechanisms of such a

relationship. Two principal research approaches have emerged

in trying to establish a link between exercise and the immune

system—a metabolic approach that involves glutamine

metabolism (21), and another that considers changes in the

neuroendocrine milieu as the mechanism for immunomodu-

lation (22).

Glutamine Hypothesis

Glutamine is a ‘conditionally essential’ amino acid, which

comprises 20% of the total plasma amino acids, and is

actively produced in different organs—liver, kidneys, lungs

and skeletal muscle (23)—under different pathophysiological

conditions. Skeletal muscle is a major glutamine producer,

and can release the amino acid into the bloodstream at a high

rate (24,25). During the 1980s, Professor Eric Newsholme, at

the University of Oxford, demonstrated that rapidly dividing

cells, such as lymphocytes, as well as macrophages, both

immune cells possessing a high secretory activity, utilize high

rates of glutamine even when quiescent (26–28). It was also

demonstrated that the glutamine pathway in both cell types is

under external regulation, partly because of the supply of

glutamine itself (26,27,29). Glutamine, when supplied to the

immune cells in the proper concentration (30,31), allows

lymphocytes to proliferate, killer cells to respond to lym-

phokines, and immune cells to produce cytokines. It also reg-

ulates macrophage function. The demand of the skeletal

muscle and other organs for glutamine during intense

exhaustive exercise, or after surgery, trauma, burns and

sepsis, is such that the immune system may be forced into

a glutamine debt, which temporarily affects its function (32–

34).

Poortmans et al. (35) and Decombaz et al. (36) reported

that a biphasic response of plasma glutamine concentration

is present during exercise. A short-term exercise results in an

increase in plasma glutamine concentration (27,35,37), while

its concentration may decrease by as much as 25%, after a

full marathon (21). Rennie et al. (38) demonstrated that ath-

letes who ran on a treadmill at 50% of the maximal oxygen

uptake showed increased glutaminemia during the first

three hours of running, followed by a 17% decrease below

pre-exercise levels after 3.75 h. This reduction in plasma

glutamine concentration was also observed in overtrained

athletes, who showed an unexplained decreased performance

associated with higher incidence of upper respiratory tract

infections (39,40).

Castell et al., who studied more than 350 runners, reported

that plasma glutamine concentration also falls after a mara-

thon. They observed a 15% decrease in the amino acid

concentration, 15 min after the end of the race, and an

additional 15% decrease within the next hours, from 669 to

533 µmol/l (21). The magnitude and the duration of lowered

plasma glutamine vary considerably with the type of sport

studied and the intensity of the exercise bout. Walsh et al.

(41) observed a reduction in plasma amino acid concentra-

tion 5 h after an exhaustive cycling protocol while Rhodes et

al. recorded the same observation in triathletes, 2 h after pro-

longed exercise. In our laboratory we found a reduction of

25% in plasma glutamine concentration after an Olympic

triathlon, in well-trained, top-ranking athletes (42). A similar

change was observed in athletes after 12 bouts of a 20-min

cycling protocol (20-min rest period between two bouts) at

95% of the maximum oxygen uptake (43). It is interesting to

note that the group that received carbohydrate supplementa-

tion, in the latter experiment, did not show any change in

plasma glutamine concentration (43). The same observation

was recorded by Lehman et al. (44) and Castell (29) after

ultramarathons, during which the runners stopped routinely

for 15 min and ingested food and drinks ad libitum.

The decrease observed in glutaminemia correlates with

increased symptoms of upper respiratory tract infections

(21,42), suggesting that immunodepression may occur in

some athletes due to stress induced by prolonged, exhaustive

exercise and competition. Some of the factors that might

render athletes more vulnerable to opportunistic viruses or

bacterial agents, as proposed by Castell (21), are a higher

training mileage, additional stress (the mental stress of com-

petition more than doubled the risk of getting an upper respi-

ratory tract infection), a low body mass, bypassing the nasal

filter mechanism (during exercise, athletes breathe through

the mouth rather than through the nose, impairing the pro-
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tective effects of mucosal secretions) and a decrease in envi-

ronmental temperature.

Immune Changes after Exercise

The most common changes in immune cell function after

strenuous exercise comprise decreased neutrophil activity,

impaired antibody synthesis, decreased immunoglobulin lev-

els in blood and saliva, decreased cytolytic activity of natural

killer (NK) cells, lower circulating T lymphocyte number for

3–4 h after exercise, a reduction in the proliferative ability of

lymphocytes in response to mitogens, and profound changes

in the profile of cytokines produced after exercise, including a

100-fold increase in interleukin-6 production, and an aug-

mented production of anti-inflammatory mediators (21,22).

These changes are transient, and most of them return to

the basal level a few hours after exercise. In general, however,

there are some long-term changes in the immune response of

athletes. The adaptive immune system (resting state) seems

to be largely unaffected by intensive and prolonged exercise

training (45,46). The innate immune system appears to

respond differently to the chronic stress of intensive exercise,

with NK cell activity tending to be enhanced while neutrophil

function is suppressed (47–50). However, the clinical signifi-

cance of such changes remains to be elucidated.

How to Deal with Changes in Plasma 
Glutamine?

While considering the glutamine hypothesis, it is quite tempt-

ing to speculate that maintaining the plasma glutamine con-

centration within the normal range (found at rest) will restore

the immune changes observed after strenuous exercise.

Castell et al. (51,52) supplemented athletes with 7 or 5 g of

glutamine per day and found only a slight and transient

increase in plasma amino acid levels, which was, nevertheless,

enough to decrease the incidence of upper respiratory tract

infections (URTI) (53) as well as to prevent the changes in the

CD4 : CD8 ratio found in the athletes of the placebo group

(52). Our own studies (42) showed a similar magnitude of

decrease in the incidence of infections in triathletes, in a

group of athletes supplemented for 1 month with branched

chain amino acids—precursors for glutamine synthesis. The

supplementation protocol was efficient in maintaining the

plasma glutamine levels after an Olympic triathlon within the

same range as that found at rest. The maintenance of plasma

glutamine levels was paralleled by an augmented production

of IL-1, IL-2, tumor necrosis factor α (TNF-α), and inter-

feron γ (IFN-γ), with changes in the balance between Th1:

Th2 type immune response. Another study on athletes

reported a reduction in IL-4 production in the supplemented

group after a 30-km run (54), reinforcing the potential

change in the type of immune response presented by the ath-

letes who received branched chain amino acids as precursors

for glutamine synthesis, and its diversion towards a Th1 type

response, which promotes cellular immunity (55).

Therefore, it may be possible that the supplementation of

glutamine or branched chain amino acids to athletes engaged

in long-distance high-intensity exhaustive exercise might

increase glutamine availability for the immune system at a

critical period when athletes are vulnerable to opportunistic

infections. On the other hand, moderate intensity exercise

will warrant constant plasma glutamine concentration, which

could be beneficial to the integrity of the immune response

during wasting conditions such as cancer cachexia.

The ‘Open Window’ Hypothesis

The second hypothesis that attempts to explain the relation-

ship between exercise and the immune system is based on the

changes observed in the neuroendocrine system, and is

known as the ‘open window’ hypothesis (22). During exer-

cise, there is a marked increase in the plasma levels of

adrenaline, noradrenaline, growth hormone and cortisol.

Depending on the exercise intensity and duration, the profile

of secretion of these hormones and their clearance rates are

substantially modified (22,56). Adrenaline, and to a lesser

degree noradrenaline, seem to be responsible for the acute

effects of exercise on lymphocyte dynamics and lymphocyte

function (57) and NK cell activity (22). Increase in growth

hormone and catecholamine levels mediates the acute effects

on neutrophils whereas cortisol exerts its effects within a time

lag of at least 2 h, depending on the exercise duration and

intensity, and therefore may help to maintain lymphopenia

and neutrocytosis only after long-term exercise (18,58). The

role of β-endorphins is less clear, but possibly linked to the

immediate recruitment of NK cells in the blood (22).

As shown by several authors (43,54,59), exhaustive exercise

induces a drift towards a Th1 type immune response associ-

ated with the production of glucocorticoids. Considering that

glucocorticoids suppress the production of TNF-α, IFN-γ

and IL-2 (60,61), which are important regulators of the Th1

type immune response, and that humoral immunity decreases

during exhaustion, we can accept this as an important

mechanism to explain exercise-induced immunodepression.

Another interesting aspect is the effect of catecholamines in

shifting the immune response towards a Th2-mediated

humoral immunity. This effect could counteract the immuno-

depression related to exhaustion immediately after an acute

bout of exercise, thereby maintaining the homeostasis of the

immune response in such conditions. In fact, this could be

linked to the ‘stress–immune paradox’ (62). Dhabbar et al.

observed an enhancement in delayed type hypersensitivity

response after acute stress. However, their studies demon-

strated that the immune response should be enhanced, and

not depressed, to protect the host during acute physical

and/or psychological stress (62–64). If the physical exercise

or psychological stress is above the adaptive capacity of the

organism, over a long period of time, the effect will be delete-

rious (62,65).

The ‘stress-immune paradox’ could be correlated with

the ‘Cognitive Activation Theory of Stress’, postulated by
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Eriksen et al. (66) as a reformulation of the stress theory,

within a homeostatic and physiological framework. Accord-

ing to this theory, the phases of the response are interpreted

as an alarm occurring within a complex cognitive network,

with feedback and control loops. One important consequence

of this approach, at least for the model that correlates

immunological changes and exercise through a neuroendo-

crine mechanism, is that the response is dynamic and

develops over time. This time element must be taken into

account as the stress response develops in phases. A better

understanding of these phases is crucial to predict the patho-

physiological consequences of the relationships between

the stressor and the observed physiological response. As

postulated by Eriksen et al. (66), subjects with efficient coping

show the fast- and short-lasting catecholamines response while

subjects with high defense mechanisms (related to stimulus

expectancies) may show more signs of prolonged activation.

Non-coping individuals show a sustained general activation,

which may develop into somatic disease or illness.

Therefore, many metabolic and hormonal changes

observed during cachexia could be counteracted by those

induced by regular exercise, known to promote changes that

can be sustained for more than 24 h in the hormonal profile

of athletes and also to positively modulate the immune

response.

Integrating the Systems: 
a Psychoneuroimmunoendocrine System

Based on previous studies (67–70), we can hypothesize the

existence of a neuroimmunoendocrine system that communi-

cates through peptides, monoamines, glucocorticoids, free

radicals, cytokines and opioids. Furthermore, neuropeptides

found in the central nervous system, which show several

immunomodulatory properties, are also expressed by

immune cells (71,72). Another interesting point that rein-

forces the existence of such an integrative axis is the presence

of ‘receptors’ of various neurohormones and hypothalamic

releasing factors in leukocytes (67,68,70,73,74). Many

authors, on the other hand, have postulated the existence of

a psychoneuroimmunologic axis that (69,75) integrates the

central nervous system, behavior and the immune system. As

the nervous and the immune system actively interact with

the endocrine system, we can acknowledge a psychoneuro-

Figure 1. Interconnections among the nervous, immune, endocrine and muscular systems. These interactions involve the actions of small molecules such as

neuropeptides and cytokines, hormone secretion, nervous activation and opioid peptides. ACTH, adrenocorticotropin hormone; CRH, corticotropin releasing

hormone; E, estrogen; T, testosterone; TSH, thyroid-stimulating hormone; GH, growth hormone; IL-6, interleukin 6; LH, luteinizing hormone; LHRH,

luteinizing hormone-releasing hormone.
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immunoendocrine system. This system is the key to under-

standing various mechanisms, which are still primarily a

patchwork of loosely linked observations, and thereby provide

novel but fundamentally unsubstantiated treatments for dis-

orders such as cancer, as proposed by Schleifer (75).

In the early 1980s, traditional immunologists and other sci-

entists and physicians reviewed the proposal of this integra-

tive system as an attempt to legitimize alternative medicine,

and maintained that there was no correlation between

psychosocial factors and survival in cancer patients (76,77).

However, over the last decade, evidence showing that psycho-

logical stress modulates the immune system has been accu-

mulated. In fact, it seems that chronic stress, such as marital

problems, work-related stress or bereavement, has a suppres-

sive effect on the parameters of immune response (69),

including a reduction in the number of T and B lymphocytes,

decreased proliferative response to mitogens and decreased

NK activity, leading to increased susceptibility to infections

and worsening of existing diseases such as cancer. On the

other hand, it seems that acute stress, such as examination

stress or experimentally induced stress, has a positive impact

on immune parameters (69,78–82).

Considering the information presented in the previous par-

agraph, it seems quite impossible to avoid changing the terms

‘chronic stress’ and ‘acute stress’ to ‘chronic exhaustive exer-

cise’ and ‘acute exercise’. The assumption that exercise may

be acting on a psychoneuroimmunoendocrine system opens

multiple possibilities of using exercise as a therapy: prevent-

ing and/or reducing the incidence of chronic diseases, acting

as a coadjuvant in the treatment of Alzheimer’s disease (83),

sub-acute low back pain (84), rheumatoid arthritis (85),

fibromyalgia syndrome (86), cancer (87), chronic heart fail-

ure (88) and HIV-associated depression (89), among others.

Therefore, considering that an organism functions in an

integrative manner, we can accept the proposal made by Pro-

fessor Newsholme and integrate the skeletal muscle in our

psychoneuroimmunoendocrine axis (Fig. 1) because gluta-

mine seems to be essential for immune cells and its synthesis

is controlled by hormones (90). In fact, when investigating

the relationship between glutamine and the immune system

during exercise, we tested the immune response of athletes

subjected to 12 bouts of indoor cycling, 20 min each, with 20

min interval, at 95% of the maximal oxygen consumption.

We observed that the athletes who received carbohydrate

supplementation during the trial showed a blunted response

of cortisol during exercise and were able to maintain plasma

glutamine levels within the normal range (43). After exercise,

the proliferative response of lymphocytes to mitogens as well

as the production of IL-1, IL-2, IL-4 and TNF-α were restored

to the pre-exercise levels, indicating that both hypotheses—

glutamine and ‘open window’—cannot be excluded.

Exercise as a ‘Zeitgeber’

In the past few years, the studies carried out in our laboratory

provided evidence that led us to evaluate the possible effect

of exercise as a ‘Zeitgeber’ or a time-conditioning effector. In

mammals, the pineal gland transduces photoperiodic infor-

mation to the neuroendocrine axis through nocturnal mela-

tonin secretion (91). This hormonal message plays a key role

in the biorhythm regulation, acting as a ‘Zeitgeber’, adjusting

the internal clock to a 24-h cycle based on dark and light

periods (91,92). Cachexia is a metabolic syndrome that

occurs in about 80% of all advanced cancer patients and is

associated with a decreased survival time (93,94). It is defined

as ‘a wasting syndrome involving loss of muscle and fat

directly caused by tumor factors or indirectly caused by an

aberrant host response to tumor presence’, characterized by

breakdown of skeletal muscle and harmful, chaotic abnor-

malities in fat and carbohydrate metabolism, despite ade-

quate nutritional intake (1,95,96). These changes in energy

metabolism are mediated by factors such as cytokines, sero-

tonin, lactate, ketone bodies, glucocorticoids and thyroid

hormones (97,98). The net metabolic result is increased basal

energy expenditure that reflects a global change in energy

use, associated with wasting of energy reserves combined

with anorexia, which significantly reduces caloric intake (99).

Considering that melatonin transmits circadian and seasonal

information to all organs and cells of the body, thereby

synchronizing the physiological processes and metabolism

including energy metabolism (100) with the daily and annual

photoperiod variations, it seems quite reasonable to assume

that changes in its profile would lead to a loss of metabolic

control that facilitates the initiation of cachexia-related

changes. In fact, Bartsch et al. (101) showed a tumor-depend-

ent depression of serum melatonin in patients with prostate

or breast cancer. However, according to Bartsch and Bartsch

(102) it is unclear whether the plasma melatonin depletion in

cancer patients is due to peripheral metabolic processes or a

reduced production by the pineal gland. Therefore, consider-

ing the possible link between melatonin and cancer cachexia,

we showed that the administration of a daily dose of mela-

tonin to Walker-256 tumor-bearing rats extended the life

span of the animals by approximately 100% (103). This

Figure 2. Life span of Walker-256 tumor-bearing rats trained for 8 weeks, 5

days a week, 3 h after the beginning of the dark period, at 60% maximum

oxygen consumption (RegT), and that of tumor-bearing rats that followed

the same training protocol, but exercised randomly throughout the day

(RanT), compared with that showed by sedentary tumor-bearing animals

(Sed). There were 25 animals/group, and the protocol described by Bacurau

et al. (107) was followed. *P <0.05 for comparison with Sed group.
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result indicates that the rhythm of melatonin or its produc-

tion may be impaired in our model, as previously described

for other types of cancer (101,104).

To better understand what happens to melatonin rhythm

during cachexia, we determined the 24-h profile of melatonin

production in tumor-bearing rats during cachexia develop-

ment. Ferreira et al. (105) showed that during Walker-256

tumor progression, the animals showed profound changes in

the profile of melatonin secretion, with changes in the secre-

tory profile of the amine as well as in the total amount of its

secretion and in the response of the pineal gland to noradren-

aline stimulation. It is interesting to note that the total

amount of melatonin produced increased during cancer

cachexia, but the profile of production during the dark period

was profoundly changed. In fact, we observed a dramatic

alteration on day 7 after tumor implantation, when the first

signs of cachexia could be observed in the tumor-bearing rats

(106). We also detected the highest melatonin production on

day 7. On the day 14, the melatonin secretory profile was dif-

ferent from that observed in control rats, but the total

amount of melatonin secreted during the night decreased.

The change in the total amount and in the profile of mela-

tonin production by the pineal gland of tumor-bearing rats

could be involved in cancer cachexia progression, leading to a

disruption in metabolism.

We also demonstrated that a regular exercise program pro-

longs the life span of Walker-256 tumor-bearing rats (107).

The animals were trained for 1 h every day, starting always at

the same hour during the dark period. Interestingly, we found

that the moderate intensity protocol (60% maximal oxygen

uptake) and the high-intensity protocol (85% maximal oxy-

gen uptake) provoked the same effect, increasing the rats’ life

span if the training sessions were carried out at the same hour

during the day. If the daily exercise bout was performed ran-

domly through the day, the increase in life span was abolished

(Fig. 2). Therefore, it seems quite reasonable to assume that

a possible mechanism to explain the effects of exercise upon

cancer cachexia could be related to its ability to act as a

‘time-conditioning effector’, assuming the previous function

of melatonin. In fact, Baehr et al. (108) showed that exercise

can phase-shift the circadian rhythms of young adults if per-

formed at the right time of the day. The literature provides

evidence of many other time markers that may partially

replace melatonin in entraining the organism, such as food-

anticipatory activity (109), exogenous corticosteroids (110)

or even a carbohydrate-rich meal (111). On the other hand, a

loss in melatonin secretory pattern is observed during ageing

(112) and some pathologies such as chronic fatigue syndrome

(113), in which the prescription of a regular training program

restores the sleep pattern and general feeling of wellness

(6,113). The potential role of exercise as a time-conditioning

effector in different pathophysiological conditions needs to

be further evaluated. The fact that a regular exercise program

could postpone cell death by cancer cachexia assumes even

more importance if we consider the premise of Zajicek (114)

that the treatment of cancer patients is based on the false

premise that the tumor is the only threat to the patient. Thus,

exercise would be an important complementary and alterna-

tive strategy for the treatment of cachexia.

Therefore, taking into account that physical exercise

affects all tissues and systems in the human body, interacting

and modulating the psychoneuroimmunoendocrine system,

that changes in the equilibrium of such a system during

chronic diseases such as cancer and chronic heart failure lead

to cachexia, and that during cachexia there is a loss of control

of the internal rhythm through rhythmic melatonin produc-

tion by the pineal gland, it seems that a regular exercise pro-

gram could be a useful and low-cost intervention to reduce

cachexia-related mortality as well as serving as a complemen-

tary strategy for improving the quality of life of cancer survi-

vors and reducing costs of the public health system.
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