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A B S T R A C T

Continuous increase in global human population and depletion of natural resources of energy posing threat to
environment needs, sustainable supply of food and energy. The most ecofriendly approach ‘green technology’
has been exploited for biofertilizer preparation. Cyanobacteria are the most successful and sustained prokaryotic
organism during the course of evolution. They are considered as one of the primitive life forms found on our
planet. Cyanobacteria are emerging candidates for efficiently conversion of radiant energy into chemical energy.
This biological system produces oxygen as a by-product. Cyanobacterial biomass can also be used for the large
scale production of food, energy, biofertilizers, secondary metabolites, cosmetics and medicines. Therefore,
cyanobacteria are used in ecofriendly sustainable agricultural practice for production of biomass of very high
value and decreasing the level of CO2. This review article describes the methods of mass production of cyano-
bacterial biofertilizers and their applications in agriculture and industrial level.

1. Introduction

Cyanobacteria are the most abundant group of organisms on the
earth. They are autotrophic and found in a diverse environment,
especially in the marine and freshwater. Marine water is the richest
source of nutrient for the cultivation of cyanobacteria [1–4]. They are
small and generally unicellular and often grow in large colonies. Cya-
nobacteria are composed of a broad range of bacteria with different
shapes and sizes. They can cover 150 genera that have been identified
so far. They have characteristics of the oldest fossils of about more than
3.5 billion years ago. They also have an evolutionary significance be-
cause they are responsible for present-day oxygenic environment.

Classification of cyanobacteria proposed in 1985, in which four
orders of the bacteria have been identified as Chroococcales, Nostocales,
Oscillatoriales and Stigonematales, and their phyla are Chroococcales,
Gloeobacterales, and Pleurocapsales. Cyanobacteria are associated with
the periods of origin of plants. The cyanobacteria are immensely im-
portant in determining the path of evolution and ecological changes all
over the earth's history. In the late Proterozoic or the early Cambrian
period, cyanobacteria began to take up residence within certain eu-
karyote cells, this event is called endosymbiosis, for the origin of the
eukaryotes. They have the potential to fix atmospheric nitrogen, so that
could be used as a biofertilizer for the cultivation of economically im-
portant crops such as rice and beans. Outer most layers of cyanobacteria
are made up of distinct three types of layers such as a mucilaginous

layer, cell wall, and innermost plasma membrane. The cytoplasm con-
tains pigmented lamellae which are not organized into plastid. The
pigments include chlorophylls, carotenes, xanthophylls, c-phycoery-
thrin and c-phycocyanin, and the last two pigments are found in blue-
green algae [5–7].

Cyanobacteria consist of numerous organic inclusion bodies that
can carry out different specialized functions. These inclusion bodies
include the light-harvesting antennae, the phycobilisomes [8,9], poly-
phosphate bodies [10], cyanophycin granules [11], polyhydroxyalk-
anoate (PHA) granules [5,12,13], carboxysomes/polyhedral bodies
[14], lipid bodies [11,15], thylakoid centers [16], DNA-containing re-
gions [17] and ribosomes [18,19]. Cyanophycin granules acquire large
polypeptides containing approximately the same number of the amino
acids such as arginine and aspartic acid. These granules are visible large
under the light microscope and store more nitrogen. Carboxysomes are
also found in nitrifying bacteria and thiobacilli. Carboxysomes are
polyhedral in shape about 100 nm in diameter. It is the reserve of ri-
bulose-1,5-bisphosphate carboxylase (RuBisCo) in a paracrystalline
arrangement site of CO2 fixation. Halobacterium and Thiothrix are
purple and green photosynthetic bacteria; contain organic inclusion
bodies such as gas vacuoles which provide buoyancy to the cyano-
bacteria to float over the surface. The nucleoplasm or the DNA en-
closing region is present in the center of the cell and shows a fibrillar
structure. There is unorganized nucleus is found in cyanobacteria and
DNA is clumped without nuclear boundary and nucleolus. During the

https://doi.org/10.1016/j.bbrep.2020.100737
Received 27 November 2019; Received in revised form 4 January 2020; Accepted 24 January 2020

∗ Corresponding author.
E-mail addresses: mukeshmeenamlsu@gmail.com, mukeshmeenabhu@gmail.com (M. Meena).

Biochemistry and Biophysics Reports 22 (2020) 100737

2405-5808/ © 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/BY-NC-ND/4.0/).

T

http://www.sciencedirect.com/science/journal/24055808
https://www.elsevier.com/locate/bbrep
https://doi.org/10.1016/j.bbrep.2020.100737
https://doi.org/10.1016/j.bbrep.2020.100737
mailto:mukeshmeenamlsu@gmail.com
mailto:mukeshmeenabhu@gmail.com
https://doi.org/10.1016/j.bbrep.2020.100737
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bbrep.2020.100737&domain=pdf


cell division, the nucleoplasmic materials dispersed throughout the
cytoplasm without the participation of the spindle apparatus. Cyano-
bacteria consist of two important cells: (i) Heterocysts (responsible for
nitrogen fixation for ammonia synthesis), and (ii) Vegetative cells (ex-
hibit normal photosynthesis and reproductive growth).

2. Emerging roles of cyanobacteria as functional foods

Functional foods provide the necessary amounts of important nu-
tritional compounds, such as proteins, carbohydrates, vitamins, fats,
and minerals [9]. They may consist of bioactive compounds which are
natural chemicals derived from plants, animals or micro-organisms and
useful for human health. Cyanobacteria may be used as potential food
supplements and provide nutritional, therapeutic and beneficial values.
There are several characteristics which make cyanobacteria as an at-
tractive substitute for sustainable food production: global distributions,
high nutrient content, require small volumes of water for growth and
development (saltwater can also be used), need lesser amounts of land
which may be infertile and unsuitable for other crops, easily digestible,
product constancy over an extensive pH and temperature range, etc.
[20–22]. In the present time, cyanobacteria are available as food sup-
plements in the market in various forms like instance capsules, tablets
and liquids [23,24]. They are considered to increase the nutritive values
of snack foods, pasta, candy bars or gums and beverages, and also act as
a source of natural food colorants [25–30].

In recent time, the most frequent cyanobacterial strain used for
human nutrition value is Spirulina (Arthrospria), due to its immense
protein contents and significant nutritive values [27,31,32]. According
to certain statistical analysis, 1 Kg of Sprulina may substitute of 1000 Kg
of diversified fruits and vegetables in terms of nutritive value. Some
cyanobacterial members (for example Spirulina, Anabaena, and Nostoc)
are consumed as food supplements in several countries comprising
Mexico, Chile, Peru and the Philippines. Spirulina platensis is grown on a
huge scale using either aqueduct ponds or sophisticated photo-
bioreactors and promoted as flakes, powder and tablets or capsules. It
comprises more than 60% proteins, broad spectrum of prophylactic and
therapeutic nutrients containing beta-carotene, thiamine, riboflavin, B-
complex vitamins, minerals, trace elements and many surprising
bioactive compounds [33–36].

In the current scenario, it has been realized that existing require-
ment for wide research on functional food from cyanobacteria; several
companies have introduced large scale production of cyanobacteria.
The crucial steps involved for large scale productions are; culturing,
harvesting, processing (drying) and packaging. At present time, more
than 70 countries have commercialized products of nutritional im-
portance which is obtained from cyanobacteria [37]. There are several
commercial companies involved in the production of cyanobacteria as
functional food products listed in Table 1. The demand for wide-scale
production of cyanobacterial products is enhancing, but there are re-
strictions related to their production which essential to be determined
(Fig. 1). Therefore, advancement of proficient technologies is needed to
decrease the production cost along with maintenance and upgrading of
product quality. Furthermore, selection of potential cyanobacterial
strain should be intensive and research oriented for the collection of the
valuable germplasm [40–42]. Moreover, limitation in relations of water
constraint should be considered for possible substitutes like wastewater
or seawater [40,43,44]. There are some examples of cyanobacteria such
as Oscillatoria limnetica, Phormidium abronema, Oscillatoria tenuis,
Lyngbya cryptovaginata, Tolypothrix tenuis [45], Spirulina platensis [46],
Calothrix fusca and Gloeocapsa livida [47], Lyngbya limnetica, Scytonema
bohneri, Oscillatoria acuminate, Oscillatoria calcuttensis, Oscillatoria
foreaui, Spirulina pacifica and Spirulina platensis [48], which are the good
source of carbohydrates and proteins. Lipids of Spirulina are cholesterol-
free, which is useful for reducing blood cholesterol level, treatment of
obesity, atherosclerosis, and diabetes [49–51]. Cyanobacteria are the
source of minerals and vitamins which are good for bones, teeth, and

blood. They contain vitamin A, B1, B2, B3, B6, E, H, folacin, pan-
tothenic acid, inositol and abundant in vitamin B12 [49]. They also
produce secondary metabolites which are the source of bioactive mo-
lecules including cytotoxic (41%), antitumor (13%), antiviral (4%), and
antimicrobial (12%), and other compounds (18%) such as anti-
malarials, antimycotics, multidrug resistance reversers, herbicides, in-
secticides, algaecides, and immunosuppressive agents [52,53]. All the
above important characteristics make cyanobacteria as an emerging
and attractive alternative source for sustainable food production.

3. Cyanobacteria use as a biofertilizer

Present day's population is continuously increasing, and it will be
reached to ~9.7 billion within 30 years. The major proportion of the
population would be contributed by India (DESA UN, 2015). Increment
in population has directly and indirectly dependent on the demand for
contamination-free healthy food. World Health Organization has in-
creased 50% of global food production by 2029. “Green Revolution”
practices are also working for the increases in productivity of agri-
culture and reduce the risk of chemical-based fertilizers on human
health as well as the environment. Thus, ‘green technology’ has been
used by researchers for making eco-friendly environment by the ex-
ploitation of microbes. Green technology discusses several aspects of
the use of cyanobacteria to improve crop productivity and soil fertility.
Cyanobacteria can degrade a wide range of pollutants and perform
different roles in the soil ecosystem to sustain soil fertility [54].

Cyanobacteria are emerging microorganism for sustainable agri-
cultural development [24,55,56]. Fig. 2 displays a theoretical re-
presentation that exhibits the potential functions of cyanobacteria in
sustainable agriculture and the environment. Diazotrophes are cyano-
bacteria useful for the generation of eco-friendly biofertilizers which
are easily available and less costly. They can control the nitrogen de-
ficiency in plants, improve the aeration of soil, water holding capacity
and add vitamin B12 [57–60]. The most efficient nitrogen-fixing cya-
nobacteria are Nostoc linkia, Anabaena variabilis, Aulosira fertilisima,
Calothrix sp., Tolypothrix sp., and Scytonema sp. are present in the rice
crop cultivation area [61]. Anabaena and Nostoc are surviving on the
surface of soil and rocks, and fix up to 20–25 kg/ha atmospheric ni-
trogen. Anabaena can fix 60 kg/ha/season of nitrogen and also enriches
soils with organic matter [62]. Cyanobacteria do not require a host for
their growth, development, and production of valuable organic pro-
ducts. Azolla-Anabaena association is an example of symbiosis for ni-
trogen fixation and nutrient enrichment in the rice paddy field. They
exhibit lysis of lignin of cell wall and released phenolic compounds
which induced profuse sporulation of the organism [63]. Applications
of these biofertilizers have been reported in barley, oats, tomato, radish,
cotton, sugarcane, maize, chilli and lettuce [64].

Song et al. [60] stated that cyanobacteria play a chief role in the
maintenance and build-up of soil fertility, consequently yield as a
natural biofertilizer (Fig. 3: Development of sustainable agricultural
practices by utilization of beneficial outcomes of cyanobacterial
growth). The major actions of blue-green algae include; (a) Make
porous soil and produce adhesive substances. (b) Excretion of phyto-
hormones (auxin, gibberellins, etc.), vitamins, amino acids [65,66]. (c)
Improve the water holding capacity of soil through their characteristic
jelly structure [65]. (d) Increase in biomass of soil after their death and
decomposition [67]. (e) Decrease in soil salinity [67]. (f) Controls
weeds growth [67]. (g) Availability of soil phosphate by excretion of
organic acids [68]. (h) Efficient absorption of heavy metals on the
microbial surface (bioremediation) [69].

4. Preparation of biofertilizer(s)

The pure culture of a potent strain of nitrogen-fixing cyanobacteria
is grown on required agar medium on the slant. A loopful of inoculum is
transferred in a 250 ml capacity conical flask containing a liquid
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Table 1
Some commercial companies involved in the production of cyanobacteria as functional food products [37–39].

Country Companies

USA Earthrise Farms, Cyanotech Corporation, BioEarth Spirulina, Kalmath Valley Botanicals LLC
Myanmar Myanmar Microalgae Biotechnology Project, Myanmar Spirulina Factory
China Hainan DIC Microalgae, Nan Pao Resins, Fuqing King Dnarmsa Spirulina Co. Ltd, Hainan Simai Pharmacy Co. Ltd, Jiangsu Cibainian Nutrition Food Co. Ltd,

Jiangxi Boyuan Spirulina Co. Ltd, Nanjing General Spirulina Developing Corporation, Bluebio Bio-Pharmaceutical Co. Ltd
Italy BioEarth Spirulina
Germany Green Valley Spirulina, Blue Biotech, Sanatur Spirulina
France Natésis Spirulina
India Ballarpur Industries, EID Parry, Zydus Cadila, Ahmedabad; Mapra Laboratories Pvt Ltd, Mumbai; Cosmic Nutracos Solutions Pvt Ltd, New Delhi; Hash Biotech

Limited, Chandigarh; Sanat Products Ltd, New Delhi; Parry Neutraceuticals, Oonaiyur; Hydrolina Biotech Pvt Ltd, Chennai; Ecotech Technologies India Pvt Ltd,
Mumbai; Essar Biotech, Hindupur; Miraculous Mushroom, Pune; Admark, Vijayawada; Care

Taiwan Nan Pao Resins, Far East Bio-Tec Co. Ltd; Far East Microalgae Ind Co. Ltd
Thailand Neotech Food, Siam Algae, Boonsom Spirulina Farm
UK All Seasons Health
Switzerland NaturKraftWerke Spirulina
Netherlands Marcus Rohrer Spirulina
Monacco Exsymol S.A.M.
Cuba Genix
Chile Solarium Biotechnology
Canada Ocean Nutrition
Japan Nippon Spirulina, Dainippon, DIC Lifetec
Mexico Spirulina Mexicana
Australia Panmol
Mongolia Inner Mongolia Biomedical Engineering
Israel Koor Foods

Fig. 1. Diagrammatic representation of the production methods, applications, limitations related to the production of the cyanobacterial food products and their
tentative elucidations.
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medium. Keep the conical flak on rotary shaker or incubator for 3–7
days depending on whether they are fast-growing or slow-growing. The
content of these flasks usually attain a load of 105–106 cells per ml
called mother culture or starter culture. These mother cultures are
further multiplied in larger flasks. The flasks are then kept on a rotary
shaker for 96–120 h until the viable count per ml reaches 109–1010 cells
achieved. The broths become thicker inconsistency. This broth culture
with a population of 109–1010 cells per ml should not be stored more
than 24 h or stored at 4 °C temperature. After that, fermenters are used
for large scale production of microbial products like bio-fertilizers and

bio-pesticides. A fermenter is a device in which the optimum conditions
for the microbial growth and activities are established artificially. For
the production of liquid biofertilizer, the broth from the fermenters
directly goes to the automatic filling machine and get packed in 250 ml
or 500 ml or 1 L pet bottles as per the demand of 0.5 mm thickness
leaving 2/3rd space open for aeration of the bacteria. Then the bottles
get sealed by automatic sealing machines. The pet bottles used for
filling of microbial inoculants should be printed with the following
information; Inoculants Name; Direction for Use; Crops Name;
Manufacture Date; Expiry Date, etc.

The microbial count of the inoculants has to be checked at the time
of manufacturing. The viable cell count in the inoculants should be
maintained as per ISI specifications. The inoculants shall be stored by
the manufacturer in a cool place away from direct heat preferably at a
temp of 15 °C and not exceeding 30 °C±2 °C for six months. For long
survival of microorganisms, the bottles need to be stored below 33 °C
temperature. Fig. 4 explains the preparation of biofertilizers and their
steps. The biofertilizer has been carrier-based and contains 108 viable
cells per gram of carrier and stored at 25–30 °C. The best suitable pH for
biofertilizer preparations is at the range between 6.0 to 7.5. Bio-
fertilizers are the mixture of the inoculants and carriers. The carriers are
fine and inert, good moisture absorption capacity, free of lump forming
material, easy to sterilize, economical, easily available and excellent
buffering capacity. Peat is the most frequently used carrier for bio-
fertilizer preparation but, a limited amount of peat is produced in India.
Alternates of the carrier include lignite, coal, charcoal, filter mud,
vermiculite, polyacrylamide, mineral soils, vegetable oils, coir waste,
etc. Carrier has been processed by mining, drying, and milling. This is
the expensive aspects of biofertilizer production.

Preparation of biofertilizer has started with mining, draining and
clearing off stones, roots than drying, etc. The carrier has been fined
through heavy mills. 10–40 μm particle size of carrier material has been
used for seed coating and carrier with particle size 500–1500 μm is used
for soil implantation. The activity of carriers has to be neutralized by

Fig. 2. A theoretical representation exhibits the potential functions of cyanobacteria in sustainable agriculture and the environment.

Fig. 3. Development of sustainable agricultural practices by utilization of
beneficial outcomes of cyanobacterial growth.
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treating with calcium carbonate (pH 6.5–7.0). After this step, the car-
rier has been sterilized for use as inoculants [70], patented legume
biofertilizer and marketed as Nitragin in England and the United States.
Nitragin is an agar-based biofertilizer, having high mortality rate im-
ported from the U.S.A. so, the Nitragin is replaced by a peat-based
biofertilizer. In India, commercial productions of peat-based bio-
fertilizers are started in the late 1960s at Indian Agricultural Research
Institute, New Delhi. The performance of peat-based biofertilizer and
‘Nitragin’ was compared at the Indian Agricultural Research Institute,
New Delhi.

Carrier material is easily handled, longer shelf life and provides
higher effectiveness of biofertilizer. Among various types of bio-
fertilizers, bacterial inoculant is one major group that includes rhizobia,
nitrogen-fixing rhizobacteria, plant growth-promoting rhizobacteria,
phosphate-solubilizing bacteria, etc. Various types of material are used
as a carrier for seed or soil inoculation. For the preparation of seed
inoculant, the carrier material is milled to a fine powder with a particle
size of 10–40 μm. The properties of a good carrier material for seed
inoculation are: (1) non-toxic and inert (2) good moisture content (3)
good absorption capacity, (4) easy to operate and free of lump-forming
materials, (5) easily to sterilized by autoclaving or gamma-irradiation,
(6) available in adequate amounts, (7) inexpensive, (8) good adhesion
to seeds, and (9) good pH buffering capacity and (10) non-toxic to
plant, is another important property. Peat is the most frequently used
carrier material for seed inoculation. Peat-based rhizobial inoculant is
already used in many countries and pieces of information are available
on the properties and effects of the inoculants. Carrier material with
granular size 0.5–1.5 mm is generally used for soil inoculation.
Granular forms of peat, perlite, charcoal or soil aggregates are suitable
for the inoculation of soil. Sterilization of carrier material is essential to
keep a high number of inoculant bacteria on the carrier for a long
storage period. Gamma-irradiation is the most suitable way of carrier
sterilization because the sterilization process makes almost no change
in the physical and chemical properties of the material. Carrier material

should be packed in a thin-walled polyethylene bag and then gamma-
irradiated at 50 kGy (5 Mrads). Another way of carrier sterilization is
autoclaving at 121 °C for 60 min.

The biofertilizer is free of contaminants and expires after one year
from manufacture. Each packet of biofertilizer has contained the fol-
lowing information such as product name, leguminous crop, manu-
facture name and address, carrier type, batch or code number, manu-
facture date, expiry date, net quantity meant for net area and
instructions of storage. Packets should be marked with ISI (BIS) certi-
fication mark. The biofertilizer has been stored at 15 °C for maintains in
a viable state without multiplication. As certification arrangements are
not in place at present, legislation for quality monitoring and accredited
labs for testing may be needed in the future to ensure proper quality
and promote these products.

5. Mass production of cyanobacterial biofertilizers

Due to the useful property of cyanobacteria and other microalgae in
diverse sectors has necessitated their large-scale cultivation. Economic
sustainability is the most important factor which determines the success
of large scale biomass production of commercially important products.
Five critical abiotic parameters are light, pH, temperature, water,
carbon dioxide, and nutrient supplements (C, N, P, S, K, Fe, etc.) de-
termine the success of the growth of cyanobacteria [71–74]. Tre-
mendous expertise and resources are required to control all these fac-
tors. Few cyanobacteria and microalgae such as Arthrospira, Chlorella,
Haematococcus, and Dunaliella have been cultivated on a large scale as
economically and commercially viable crops [75]. Commercial pro-
duction of photosynthetic microorganisms can be achieved in different
ways:

(1) Open system cultivation using sunlight
(2) Closed system cultivation using sunlight
(3) Closed system cultivation using artificial light

Fig. 4. Represents the mass culture of biofertilizers and their steps.
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5.1. Open system cultivation using sunlight

In open cultivation systems natural sunlight is the source of energy.
Raceway or circular type shallow open ponds are used for the mass
cultivation of cyanobacteria and microalgae [76,77]. There are major
advantages and disadvantages compensate for the limit of the overall
biomass production.

Advantage:

• Solar radiation is free of cost

Disadvantage.

• Contamination by algae, grazers and other microorganisms are un-
preventable which compromises net productivity.

Contamination problems could be avoided for organisms requiring
unique growth conditions which generally prevent the growth of other
organisms, however, this strategy limits the application of open systems
for cultivation of only selected organisms [78,79]. Example: Spirulina
has been extensively cultivated in Mexico, USA, China, and Thailand
using the open system under unique growth requirement [80,81].

5.2. Closed system cultivation using sunlight

In this system solar radiation is a source of energy [82,83]. Trans-
parent material such as plastic or glass is used for making vessels which
are placed outdoors in the natural light for illumination [84].

Advantages:

• Helps in preventing contamination of grazers and competitors.

• Provides a higher surface to volume ratio and cell densities obtained
are often higher then in open systems.

Disadvantages:

• Cost of these systems is increased significantly by the application of
transparent materials [85].

• Removal of oxygen produced by photosynthesis and maintenance of
optimum temperature are other factors which need to be critically
observed in closed systems.

There are many techniques have been developed to maintain these
parameters; however, the associated costs usually, offset the cost ad-
vantage of using natural sunlight [84].

5.3. Closed system cultivation using artificial light

In this system source of radiation is artificial light [86–88]. Photo-
bioreactor is used for the cultivation of various organisms. Photo-
bioreactor is closed vessels that are similar to conventional fermenters
driven by light. All empower real-time control and culture parameters
are optimized using software [86,89,90]. Photobioreactors serve as an
important tool for the production of high-value products such as stable-
isotope-labeled biochemicals [91]. These systems are also ideal for the
cultivation of genetically modified organisms. The disadvantage is the
utilization of plastic or glass material for making the vessel and power
consumption is costly. However, the cost can be offset by the produc-
tion of high quality and quantity biomass using these systems. The mass
cultivation of cyanobacteria has been done by four other techniques
such as cemented tank method, shallow metal troughs method, poly-
thene lined pit method and field method. The polythene lined method is
most suitable for small and marginal farmers for the preparation of
biofertilizer. In this method, small pits are prepared in the field and
lined with thick polythene sheets, for example, Anabaena, Aulosira,
Cylindrospermum, Gloeotrichia, Nostoc, Plectonema, Tolypothrix, etc. are

used for inoculum preparation [24].

6. Potential roles of cyanobacteria in sustainable agriculture

The indiscriminate use of chemical nitrogenous fertilizers in agri-
culture is global concern. Sustainability considerations mandate that
alternatives to nitrogen fertilizers must be urgently sought. Biological
nitrogen fixation (BNF), a microbiological process that converts atmo-
spheric nitrogen into a plant useable form, offers this alternative.
Nitrogen-fixing systems offer an economically attractive and ecologi-
cally sound means of reducing external inputs and improving internal
resources [92].

Production cost of inorganic nitrogen fertilizers is very high
[93–95]. Deficiency of nitrogen in crops is fulfilled by the use of bio-
fertilizer in a sustainable manner. Cyanobacteria are the example of
biofertilizer, they can fix less than 10 kg/ha Nitrogen. Yearly approx.
10–30 kg/ha of nitrogen is fixed by dense mats of cyanobacteria
[96,97].

Cyanobacteria are involved in the biogeochemical cycle of carbon,
nitrogen, and oxygen [98–100]. They can survive in wet soils and sig-
nificantly affect the nutritional status, structural stability and crop
productivity [101]. During the course of evolution continuous changes
occurs at the molecular level, that is required for survival under high
intensity of UV radiation (280–400 nm), desiccation, fluctuation in
temperature, and high salinity condition [100,102,103]. All these
conditions are advantageous and provide protection from other com-
petitors and grazers [104]. Table 2 shows the types of metabolites and
their category. These cyanobacterial metabolites are important as
agronomical and economically [24,94,105].

Other applications of symbiotically associated cyanobacteria in
bioremediation of affected soils or aquatic systems [106–108], and
production of exopolysaccharides (EPS) [101]. The EPS act as a gluing
agent for aggregation of soil particles, organic matter accumulation and
increase in water holding capacity of the upper layer of soil [109].
PGPRs along with EPS-producing cyanobacteria may contribute to im-
provement and reclamation of infertility of soil [110–114].

7. Research achievements and challenges to commercialization

Cyanobacteria present a potent platform by utilizing carbon dioxide
(CO2) and convert it into fuels, commodity chemicals, and value-added
products using sunlight as the energy source [115]. So, they can be used
as green cyanobacterial catalysts. The resultant carbon capture and
utilization technologies have the potential to reduce the harmful effects
of elevated CO2 levels if the technology progresses to an industrial
scale. Cyanobacteria carry promising physiological processes, including
light-induced hydrogen evolution by biophotolysis [116,117]. Wide-
spread and advance research has been taken place in the relevant fields
of biotechnology. Cyanobacteria may be used for food or fodder be-
cause some strains have a very high content of proteins, vitamins and
other essential growth factors and vital pigments of interest can also be
produced [118]. Cyanobacteria are also sources for substances of
pharmaceutical interest (such as antibiotics) [119,120]. These ex-
amples are only a few of the possible applications of cyanobacteria for
economic development and their utilization is among the several
challenges for biotechnology for the next millennium. Despite the po-
tential, several technological challenges need to be overcome before
cyanobacteria-based processes become commercially viable [121–125].

Recent research leading to technical improvements and increased
consumer demand has resulted in market expansion for cyanobacterial
species and their products [126,127]. However, their biotechnological
potential is still not explored completely and requires exhaustive re-
search for industrial-scale development of its approved functional food
products [128–131]. Cyanobacteria provide an ultimate mix of nutri-
tion in the right quantities as a single food. Although they are a pro-
mising source offering diverse functional foods, they are still
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underexplored as a natural resource [132–137].

8. Conclusion

Cyanobacteria have an emerged potential as biofertilizer. They have
the ability to utilize CO2, water, and nutrients to convert solar energy
into biomass. Efficient applications of cyanobacteria have been re-
ported in agricultural practices to reduce global warming by decreasing
CO2 gas. The overall study stated that cyanobacteria biomass can be
utilized for improving the quality of food products, physicochemical
properties of soil, controlling soil-borne diseases, added organic matter,
release growth-promoting substances, solubilize the insoluble phos-
phates, use as nutraceuticals and also apply in pharmaceuticals. Hence,
biofertilizers prepared from cyanobacteria are economical and en-
vironment-friendly.
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