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Abstract: Generation of induced pluripotent stem cells (iPSCs) has revolutionized the field of regenerative medicine 
by providing researchers with a unique tool to derive disease-specific stem cells for study. iPSCs can self-renew and can 
diff erentiate into many cell types, off ering a potentially unlimited source of cells for targeted diff erentiation into somatic eff ector 
cells. Hence, iPSCs are likely to be invaluable for therapeutic applications and disease-related research. In this review, we 
summarize the recent progress of iPSC generation that has been made with an emphasis on both basic and clinical applications 
including disease modeling, drug toxicity screening/drug discovery and cell replacement therapy.
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In 2006, it was demonstrated that mouse fi broblasts could 
be reprogrammed into a pluripotent state similar to that 
observed in ESCs by the retroviral transduction of the Oct4, 
Sox2, Klf4 and c-Myc genes [2]. Spurred by this landmark 
study, human induced pluripotent stem cells (hiPSCs) 
have been successfully generated from human embryonic, 
neonatal, or adult fibroblasts [3-5]. hiPSCs have been 
generated from patients with various diseases [6-10], with 
several groups reporting disease-specific phenotypes when 
these cells subsequently differentiate to directed functional 
cells [9, 11-19]. 

The recent advances in iPSC technology have made 
patient- and disease-specific human cells widely available. 
Patient-specifi c iPSCs have been derived as sources for drug 
screening, toxicology, cell replacement therapy as well as 
generating disease models. For example, for patients with 
end-stage liver disease, liver transplantation is the only 
method of treatment [20]. However, the limited availability 
of donor livers and immunological incompatibilities 
are major obstacles to liver transplantation. Therefore, 
alternative methods with the potential to substitute for liver 

Introduction 

Th e discovery of human embryonic stem cells (hESCs) has 
raised hopes for curing diseases that currently have a dismal 
prognosis [1]. However, aft er more than a decade of research, 
several challenges related to ESC safety, effi  cacy, and bioethics 
have not been suffi  ciently answered. For example, in 2009 the 
United States Food and Drug Administration (FDA) approved 
a clinical trial of hESC-derived oligodendrocyte progenitors 
in spinal cord injury patients, but the trial was subsequently 
suspended pending further data regarding safety issues (http://
www.medicalnewstoday.com/articles/162269.php).
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transplantation are required. In recent years, the interest in 
liver cell therapy has been increasing continuously [21]. From 
the clinical point of view, transplantation of hepatocytes or 
hepatocyte-like cells could represent an alternative, either to 
liver transplantation in acute liver failure or for the correction 
of genetic disorders resulting in metabolically defi cient states. 
The use of ex vivo adult human hepatocytes is a desirable 
option for cellular therapies or drug testing. However, these 
cells have limited proliferation potential, and lose function 
and viability upon isolation. Although there have been great 
advances in liver stem cell biology [22-24], hepatic stem 
cells are infrequent within tissue, making their isolation 
and expansion unfavorable for large-scale applications 
[25]. Attempts to immortalize hepatocytes by introducing 
telomerase constructs and viral transfections also suffer the 
shortcomings of phenotypic changes, poor liver function, 
and karyotypic abnormalities [6, 26]. Recently there has been 
a focus on deriving human hepatocytes from other sources, 
in particular hESCs and hiPSCs [27-30]. This holds great 
promise as an unlimited hepatocyte source.

Advances of iPSC Generation Methods 

Th e original method of iPSC induction used a retrovirus 
vector for transgene expression [2]. Most patient-specific 
iPSCs have been established with retroviral vectors. However, 
the retrovirally derived iPSCs have numerous transgene 
integrations in the genome, and the integration may result 
in leaky expression, which could disturb the endogenous 

transcription factor network and lead to the failure of 
differentiation. Another important problem of transgene 
integration is the risk of tumorigenesis aft er transplantation. 
In particular, the reprogramming factor c-Myc is a well-
known oncogene; its reactivation could give rise to transgene 
derived tumor formation in chimeric mice [31]. 

There have been several improvements of the gene 
transduction method for making safe iPSCs. Removal 
of the c-Myc oncogene from reprogramming cocktail is 
one of important approaches. Human and mouse iPSCs 
can be established from fibroblasts with only Oct4, Sox2, 
and Klf4, although the efficiency is significantly reduced 
[32]. Other many approaches have been designed to insert 
reprogramming factors into somatic cells (Table 1) [33-
43]. One is the reduction of integration sites by putting 
the reprogramming factors into a single vector with an 
internal ribosome entry site or 2A self-cleavage peptide. Th is 
reprogramming cassette was used with a lentivirus system 
containing a loxP sequence in the long terminal repeat 
(LTR) and produced iPSCs with only single insertions [39]. 
Th e expression of Cre recombinase successfully cuts out the 
cassette. Although it leaves an incomplete LTR in the iPSC 
genome, this method minimizes the genomic alteration. 
A transposon system encoding a reprogramming factors 
cassette has also been successfully induced iPSC generation 
[37, 38]. The transduction of a plasmid-based transposon 
vector can integrate into the host genome with the help 
of transposase, and induces iPSC colony formation. The 
excision of the transposon does not leave a footprint, so it 
maintains the original endogenous sequences. Several other 

Table 1. Integration-free factor delivery methods for iPSC derivation

Methods Pros Cons References

Episomal vectors

Non-integrating vector Possibility of integrated vector subfragments

Yu et al. [33]

Adenoviral vectors Stadtfeld et al. [34]

Sendai vectors Fusaki et al. [35]

Transient transfection Okita et al. [36]

PiggyBac transposon Precise deletion Possible ineffi  cient and laborious excision Kaji et al. [37]

Woltjen et al. [38]

Lentiviral vectors Effi  cient reprogramming, vector deletion Vector DNA external to the loxP sites remain integrated
 (viral promoters+LTRs)

Sommer et al. [39]

Protein transduction No genetic modifi cation Low effi  ciency Zhou et al. [40]

Small molecules No genetic modifi cation Still requires at least one factor to be transduced Huangfu et al. [41]

Synthetic mRNA No integration, high effi  ciency Multiple rounds of transfection needed Warren et al. [42]

miRNA-based Rapid and easy reprogramming, high effi  ciency Anokye-Danso et al. [43]

iPSCs, induced pluripotent stem cells; LTR, long terminal repeat. 
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methods also accomplish iPSC generation by the transient 
expression of reprogramming factors. These include viral 
vectors (adenovirus and Sendai virus) [34, 35], DNA vectors 
(plasmid and episomal plasmid vector) [33, 36], or direct 
protein delivery [40]. Th eir effi  ciencies of iPSC induction are 
lower than that with retrovirus vectors, possibly due to low 
transduction efficiency, and unstable expression. A recent 
study used synthetic mRNA to reprogram human fi broblasts 
and diff erentiate into myogenic cells [42]. 

 The mixture of specific reprogramming factors has 
been evaluated. The standard mixture contains Oct4, Sox2, 
Klf4, and c-Myc; this mixture has successfully induced 
cellular reprogramming in mouse, human, rat, pig and dog. 
Human iPSC induction has been achieved with a slightly 
diff erent set of reprogramming factors, including Oct4, Sox2, 
Nanog, and Lin28 [33]. Inclusion of Oct4 and Sox2 in both 
sets indicates their importance for reprogramming. The 
reprogramming efficiency is enhanced by the addition of 
extra factors, such as ESRRB, UTF1, Sall4, Tbx3, mitochon-
drial RNAs (miRNAs, such as miR-291-3p, miR-294, and 
miR-295), and small hairpin RNAs (shRNAs) for p53 or 
p21. Lin28 and shRNA reprogramming factors for p53 
mainly regulate the reprogramming efficiency through the 
control of cell proliferation [44]. Recently Anokye-Danso et 
al. [43] reported iPSCs can be generated solely through the 
expression of miR302/367. Th ey show that miRNA-mediated 
reprogramming proceeds faster than with Yamanaka’s four 
factor (Oct4, Sox2, Klf4, c-Myc) reprogramming.

Advances of hiPSCs Generation from Diff erent 
Somatic Cell Types

One of the most important issues that hiPSCs can be 
applicable for clinical purposes is the generation of safe and 
functional cell types for cell based therapy. Mouse embryonic 
fibroblasts and tail-tip fibroblasts in mouse and dermal 
fi broblasts have been the cell types which are the most widely 
used to reprogram, because of their availability and easy 
accessibility. A comprehensive study using various mouse 
iPSCs have demonstrated that the origin of the iPSCs is 
very important on the tumor-forming propensities in a cell 
transplantation therapy model [45]. Mouse tail-tip fi broblast 
iPSCs (mesoderm origin) revealed as the highest tumorigenic 
propensity, whereas gastric epithelial and hepatocyte derived 
iPSCs (both are endoderm) have shown lower tumorigenic 

propensities [45]. Recent studies have suggested that mouse 
iPSCs of different origins possess distinct capacities to 
differentiate into blood cells [46, 47]. Although it has been 
demonstrated that hiPSCs retain certain gene expressions of 
the parent cells [48], it remains largely unclear whether the 
cell origin could aff ect the safety and function of hiPSCs. It is 
therefore extremely important to establish hiPSCs lines from 
multiple developmental origins and thoroughly examine the 
sources that impact on both the safety and their diff erentiation 
potentials. The ideal source of the cell to be isolated from 
the patients and used for reprogramming must have easy 
accessibility with minimal risk procedures, availability in large 
quantities, relatively high reprogramming effi  ciency, and fast 

Table 2. Diff erent somatic cell types reprogrammed to human iPSCs 

Cell type Factors Effi  ciency (%) References

Fibroblasts OKSM 0.02 Takahashi et al. [3]

OSLN 0.02 Yu et al. [4]

OKS 0.002 Nakagawa et al. [32]

Mobilized peripheral blood OKSM 0.01 Loh et al. [49], 

Ye et al. [14], 

Staerk et al. [50]

Peripheral blood and bone
 marrow mononuclear cells

OKSM <0.01 Kunisato et al. [51]

Bone marrow stem cells OKSM <0.01 Ye et al. [14]

Circulating T cells OKSM 0.1 Seki et al. [52]

Brown et al. [53]

Staerk et al. [50]

Loh et al. [49]

Cord blood endothelial cells OSLN <0.01 Haase et al. [54]

Cord blood stem cells OKSM 0.01 Eminli et al. [55]

Ye et al. [14]

OS <0.01 Giorgetti et al. [56]

Umbilical vein endothelial cell OKSM 2.5-3 Panopoulos et al. [57]

Adipose stem cells OKSM 0.5 Sugii et al. [58]

OKS <0.1 Aoki et al. [59]

Th ird molar mesenchymal
 stromal cell

OKS 0.002-0.03 Oda et al. [60]

Mesenchymal cells OKSM ND Park et al. [7]

Hepatocytes OKSM 0.1 Liu et al. [29] 

Kidney mesangial cell OKSM ND Song et al. [61]

Keratinocytes OKSM ND Aasen et al. [62]

OKS ND Aasen et al. [62]

Neural stem cells O <0.004 Kim et al. [63]

Melanocyts OKSM 0.19 Utikal et al. [64]

O, Oct4; K, Klf4; S, Sox2; M, c-Myc; L, Lin28; N, Nanog; ND, not determined.
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iPSC derivation speed. Recent reports revealed that most of 
hiPSCs have been derived from mesoderm (fibroblasts and 
blood cells) or ectoderm (keratinocytes, melanocytes and 
neural stem cells) (Table 2) [3, 4, 7, 14, 29, 32, 49-64]. The 
technology to develop hiPSC lines provides a foundation to 
elucidate the mechanisms of cellular reprogramming and 
to study the safety and efficacy of differentially originated 
hiPSCs for cell therapy. The expression of the exogenous 
transcription factors may trigger a cascade of epigenetic 
events-chromatin modifications (e.g., DNA methylation, 
histone [de]acetylation), leading to iPSCs. It can be speculated 
that the modifi ed chromatin state allows for easier access of 
the reprogramming factors to downstream genes needed for 
reprogramming [65].

Directed Diff erentiation of hiPSCs

One of the main strengths of the iPSC approach – the 
ability to generate large numbers of disease-specific iPSCs 
derived from the relevant cell types – can only be realized if 
a robust differentiation protocol for the desired cell type is 
available. For some cell types, diff erentiation is relatively well-
defined. iPSCs can be readily differentiated into neurons, 
although the conditions to derive many specific neuronal 
subtypes remain unknown [17]. Cardiomyocytes can be 
easily obtained and identified [66]. Efficient differentiation 
protocols for other cell types, for example hepatocytes, are still 
being developed [29]. The hepatic differentiation of hiPSCs 
holds great promise as an ultimate source of hepatocyte which 
can be utilized for drug screening, disease modeling and 
cell therapy. However, more research is required to improve 
their diff erentiation effi  ciency and function of diff erentiated 
cells. The function of hiPSCs derived hepatocytes can be 
analyzed in vitro, by various methods, including analyses for 
cytochrome P-450 activity and glycogen storage ability with 
the periodic acid-Schiff assay [45]. Although these in vitro 
methods are highly informative and convenient, the most 
definitive proof for the function of hiPSCs derived hepatic 
cells would be the demonstration of hepatic engraftment 
in vivo using animal models [67] and detection of secreted 
human hepatocyte proteins in animal serum/plasma. A 
recent study demonstrated the feasibility of hiPSCs derived 
hepatocyte as modeling several inherited liver diseases [25]. 
Although in vitro culture may recapitulate certain disease 
features and may be suitable for drug screening purposes, 

successful regenerative therapy will require hepatic cells to be 
engrafted to the liver functionally. Even though hiPSCs can 
be diff erentiated to many lineages, overall remaining concern 
is to have safe cells and enough number of the iPSCs for the 
research as well as clinical trials.

Disease Modeling with hiPSCs

Th e concept of utilizing hiPSCs to model a disease in vitro 
is based on the unique capacity of these cells to continuously 
self-renew and their potential to give rise to all cell types in 
human body. Th us, hiPSCs could provide a limitless reservoir 
of cell types that, in many cases, would not be otherwise 
possible to obtain, for example, the motor and dopaminergic 
neurons affected in amyotrophic lateral sclerosis (ALS) and 
Parkinson's disease (PD). The overwhelming advantage 
of iPSC technology is that it allows for the generation of 
pluripotent cells from any individual in the context of his/
her own particular genetic identity, including individuals 
with sporadic forms of disease and those aff ected by complex 
multifactorial diseases of unknown genetic identity, such 
as autism spectrum disorders [17] and type 1 diabetes [68]. 
Recently, a number of studies have reported the successful 
generation of patient-specific iPSC lines from individuals 
with any one of a number of diseases. However, effective 
disease modeling has been demonstrated in a few studies. 
For example, Ebert et al. [11] reported the differentiation 
of iPSC-derived motor neurons from a patient diagnosed 
with a genetic form of spinal muscular atrophy (SMA), a 
neurodegenerative disease that leads to loss of lower motor 
neurons. Importantly, this study was the fi rst to demonstrate 
a disease-related in vitro phenotype in iPSC-derived cells. 
Motor neurons derived from the patient-specifi c iPSCs were 
initially similar in morphology and number to those derived 
from wild-type iPSCs. However, their numbers and size 
selectively declined after 8 weeks in culture. Furthermore, 
these cells exhibited a deficiency in survival of motor 
neuron (SMN) protein aggregates, which is a characteristic 
phenotype associated with SMA. Another study effectively 
demonstrated the potential of iPSC technology to model 
disease pathogenesis and treatment by creating iPSC lines 
from patients with familial dysautonomia (FD), a neuropathy 
caused by a point mutation in the iκB kinase complex-
associated protein (IDBKAP) gene [12]. Th is mutation leads 
to a tissue-specific splicing defect that was recapitulated in 
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iPSC-derived tissues. The authors went on to show disease-
specifi c defects in neurogenesis and migration of neural crest 
precursors, tissues that were previously unobtainable. Th ese 
disease-specific phenotypic changes were then assayed after 
treatment with candidate drugs, one of which had a benefi cial 
effect. Recently, two groups reported generation of iPSCs 
from patients who have inherited liver diseases [69, 70]. 
Importantly, some of the key disease features of the inherited 
metabolic disorders were recapitulated in culture [70]. While 
the generation of disease-specifi c iPSCs is a critical fi rst step, 
ultimately it will be derived to a representative set of hiPSCs 
from diff erent patients. 

Drug Screening/Drug Discovery Using hiPSCs

The costs of drug development are heavily influenced 
by compound attrition rate. For every drug that reaches 
the market, 5,000-10,000 compounds have been tested 
preclinically. More accurate predictive toxicity models would 
help reduce these costs. The hiPSCs also offers exciting 
opportunities for reliable high throughput drug screening in 
terms of specifi c disease phenotypes. Th is powerful ability in 
toxicology studies has the potential to increase the effi  ciency 
of novel human drug development, while reducing drug 
attrition in the fi nal stages of development and therefore costs. 
Additionally, the use of iPSCs would also enable the single 
nucleotide polymorphism-related research that influences 
the ability of an individual to effectively metabolize and 
clear drugs and toxins. Accurate prediction of human drug 
toxicity is a key part of drug discovery process. In particular, 
hepatotoxicity and cardiotoxicity are two principal causes of 
drug failure during preclinical testing, while the variability in 
individual responses to potential therapeutic agents is also a 
major problem in eff ective drug development [71]. However, 
the safety evaluation process is hindered by the availability 
and quality of primary human liver models with which to 
study drug toxicity. The major hurdles in developing the 
scalable and high-fidelity human hepatocytes from hepatic 
cell lines, and fetal and adult progenitors have been limited 
organ availability, homogenous cell purification, short term 
cell culture, and rapid loss of hepatocyte phenotype and 
function in culture. The advantage of iPSC technology is 
that it allows the generation of a library of cell lines that may 
represent the genetic and potentially epigenetic variation 
of a broad spectrum of the population. Because hiPSCs can 

grow indefi nitely in culture, they could provide the unlimited 
source for any desired specialized cells. Ultimately, the goal of 
this approach is to use an in vitro model of disease to identify 
novel drugs to treat the disease; for example, neurons of ALS 
and SMA patients or abnormal loss of insulin-producing β 
cells in diabetes patients. In fact, several laboratories have 
already derived iPSCs from patients of Huntington’s disease, 
PD, ALS, juvenile diabetes, SMA, Fanconi’s anemia and others 
[7, 8, 11, 19, 72, 73]. Moreover, promising reports showed that 
iPSCs derived from patients suffering from the devastating 
disorders SMA, FD and LEOPARD syndrome recapitulated 
the cell abnormalities an in vitro seen in patients [11, 12, 15]. 
Remarkably, with drugs for these diseases, the “symptoms” 
were partially alleviated in vitro. This principle can now 
be applied to many other diseases and cell types for which 
we currently do not have treatments, and may result in the 
development of drugs from which not just one individual, as 
in cell therapy, but many patients may benefi t.

Therapeutic Potential of hiPSCs 

An ultimate goal of iPSC research is using the iPSC 
(generation and differentiation) technology for cell therapy 
to intractable diseases. Because iPSCs can overcome the 
ethical issues related to ESC derivation and potential issues 
of allogenic rejection. Th is may represent a more ideal source 
to produce patient-specific and disease-specific adult cells 
for future clinical application and drug development. Organ 
transplantation among non-related individuals is very limited 
due to low availability of matched tissues and the requirement 
for life-long immunosuppressive drug treatment that can have 
serious side eff ects. hiPSCs can potentially circumvent these 
problems, as they could be coaxed into the desired cell types 
that would already be genetically matched with the patient. 
Another big advantage of iPSCs over current transplantation 
approaches is the possibility of repairing disease-causing 
mutations by gene targeting and other correction techno-
logies. A proof of principle that iPSCs can be used to treat 
disease by correction of the underlying genetic defect was 
demonstrated in a mouse model of sickle cell anemia using 
gene editing method [16]. The wild-type β-globin gene 
was used to replace the defective gene by homologous 
recombination using zinc finger technology. Remarkably, 
transplantation with genetically corrected iPSC-derived 
hematopoietic progenitors was successful in ameliorating 
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the symptoms of anemia and for restoring physiological 
function in the diseased animal. In principle, this approach 
could be applied to most of diseases in humans for which 
the underlying mutation is known, and that can be treated 
by cell transplantation. A similar approach was performed 
with human patients with Fanconi's anemia [8]. In this case, 
the mutant gene was replaced using lentiviral vectors prior to 
reprogramming of the patient’s fi broblasts and keratinocytes, 
as the genetic instability of the mutant fi broblasts made them 
nonpermissive for iPSC generation. Importantly, these iPSCs 
could be differentiated into hematopoietic progenitors as 
efficiently as ESCs and wild-type iPSCs, stably maintaining 
the disease-free phenotype in vitro. 

Gene Correction Methods for Personalized 
Medicine

The familial human disease is often linked to defined 
mutations in individual genes. Precise correction of these 
genetic lesions in patient-derived stem cells and iPSCs prior 
to in vitro differentiation and re-engraftment back into 
the donor is a critical barrier to the broad application of 
personalized autologous cell-based therapy. Classical gene 
targeting in mammalian cells combines positive and negative 
selection to isolate the rare targeted events [74]. Recent 
evolution of recombinant adeno-associated virus-mediated 
approaches has, however, boosted the efficiency of classical 

gene targeting in hiPSCs [75-77].
Zinc finger nuclease (ZFN) technology has emerged as a 

highly efficient new tool for precise eukaryotic gene editing 
directly at the endogenous genomic locus (reviewed by 
Urnov et al. [78]). ZFNs are comprised of a pair of engineered 
zinc finger DNA binding domains that are each linked to a 
modifi ed catalytic nuclease domain of the restriction enzyme 
FokI [79-81]. Th e DNA binding specifi city can be engineered 
to direct the ZFN pair to the desired genomic locus to induce 
a double strand DNA break (DSB) with high fidelity. The 
highly-conserved natural cellular DNA repair pathways of 
non-homologous end joining (NHEJ) or homology directed 
repair function to resolve the ZFN-induced DSB. NHEJ 
acts to efficiently rejoin the cleaved DNA ends. However, 
occasionally unfaithful repair can lead to variable small 
deletions or insertions at the site of DSB.

 The recent application of ZFNs to genome editing in 
hiPSCs has signaled an important advance towards the goal 
of patient-derived cell-based therapy [82]. Initial studies 
used integration defective lentivirus (IDLV) to deliver both 
ZFNs and the donor repair template into hESCs to achieve 
targeted transgene insertion into the endogenous CCR5 locus 
in the absence of antibiotic selection [83]. Targeting of the 
same locus in human MSCs using adenoviral-mediated ZFN 
delivery coupled with IDLV-mediated donor delivery was also 
successful, again without selection [84]. While viral strategies 
can overcome the challenges of low delivery efficiency to 
recalcitrant cell types, optimized electroporation mediated 

Fig. 1. Generation of isogenic pairs 
of wild type and mutant induced 
plu ripotent stem cells (iPSCs) using 
zinc finger nucleases for correcting 
a target sequence. When the DNA-
binding and DNA-cleaving domains 
are fused together a highly specifi c pair 
of ‘genomic scissors’ is created, which 
binds with 24-36 bp specificity of 
the zinc finger nucleases (ZFNs) and 
cleaves the DNA of iPSCs. Homology 
directed repair with normal donor 
DNA can be applied to the DNA 
cleavage site of iPSCs. Gene edited 
iPSCs can be diff erentiated into lineage 
specific way such as cardiomyocyte, 
neuron or hepatocyte etc.
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nucleic acid delivery coupled with positive selection strategies 
have led to the successful inactivation of the endogenous 
genes, such as PIG-A, by insertion of a drug resistance 
expression cassette into the gene’s coding sequence in both 
hESCs and hiPSCs [85]. 

Individual patient-derived iPSCs are providing new 
opportunities to modeling human disease in vitro [86]. 
Careful reprogramming of both wild type and diseased cells 
to become models for the tissues that are affected by the 
disease off ers investigators a novel system for comparing the 
biology and, importantly, the drug sensitivity of aff ected and 
unaffected cells. However, notwithstanding the technical 
challenges of accurate and reproducible reprogramming, the 
molecular basis of a disease may diff er between patients, even 
for apparently monogenic disorders. If two iPSC lines from 
the same disease behave diff erently it is diffi  cult to determine 
whether the cause is other disease-relevant genetic diff erences, 
or a variable consequence of reprogramming. Generation of 
isogenic pairs of wild type and mutant iPSCs differing only 
in the disease-linked gene offers a solution resolving and 

eliminating variable genetic background as a confounding 
factor (Fig. 1). Yet to achieve this goal requires a strategy for 
gene correction in patient-derived iPSCs (or mutation of 
wild type cells) that leaves only the disease-linked mutation 
and no other genetic modification – including selectable 
markers used for isolating the genomic modification events 
or even the genetic “scar” left by recombinase-mediated 
removal of the marker. To this end, Soldner et al. [87] have 
used ZFN-based genomic editing to generate isogenic sets of 
human disease and control pluripotent stem cells that diff er 
solely in the α-synuclein gene. Recent reports have shown 
that ZFNs can be used to efficiently insert both inducible 
and constitutively active constructs specifically into a safe 
harbor locus (AAVS1) in pluripotent stem cells to render their 
expression controllable by a small molecule drug [40, 88, 89]. 
Importantly, site-specific insertion into a safe harbor avoids 
the genomic and phenotypic uncertainty that surrounds 
random integration (e.g., epigenetic silencing of the transgene 
or disrupted regulation of other genes near the site of 
insertion), thereby providing the investigator with greater 

Fig. 2. Potential applications of human induced pluripotent stem cells (iPSCs). iPSC technology can be potentially utilized in disease modeling, 
drug discovery, gene therapy, and cell replacement therapy. Cell replacement therapy with healthy iPSC-derived cells is also a possible future 
development. Genetic mutations can be targeted by gene therapy approaches before or aft er reprogramming.
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control over the biology of the cell.

Conclusion and Future Perspectives 

Since the first description of iPSC generation, there has 
been remarkable progress toward clinical implementation 
of reprogramming technologies. However, iPSC-based 
therapies are still in their infancy, and many hurdles remain 
to be overcome before their clinical applications become a 
reality. Th e suitability of individual iPSC derivation methods 
for generating cell populations for cell replacement therapy, 
disease modeling, and drug discovery remains to be widely 
demonstrated, and studies assessing the equivalence of 
different types of iPSCs are eagerly anticipated. Moreover, 
extensive characterization of the functionality of iPSC-derived 
somatic cells and their functional equivalence with in vivo 
counterparts need to be widely demonstrated. Th e application 
of the benefi ts that iPSCs off er is also limited by the ability to 
derive disease-relevant somatic cells, and major challenges 
remain in defi ning pathways that effi  ciently lead to pure and 
functional populations of many disease-relevant cells. Given 
the rapid pace of developments within the iPSC field, it is 
likely that the future of personalized stem cell therapy will lie 
in our ability to take a patient’s own cells, correct the disease 
allele, and then return those cells to the patient in a genetically 
and physiologically correct format (Fig. 2).
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