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Objective. The aim of this study was to identify the candidate genes in type 2 diabetes mellitus (T2DM) and explore their potential
mechanisms. Methods. The gene expression profile GSE26168 was downloaded from the Gene Expression Omnibus (GEO)
database. The online tool GEO2R was used to obtain differentially expressed genes (DEGs). Gene Ontology (GO) term
enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed by using
Metascape for annotation, visualization, and comprehensive discovery. The protein-protein interaction (PPI) network of DEGs
was constructed by using Cytoscape software to find the candidate genes and key pathways. Results. A total of 981 DEGs were
found in T2DM, including 301 upregulated genes and 680 downregulated genes. GO analyses from Metascape revealed that
DEGs were significantly enriched in cell differentiation, cell adhesion, intracellular signal transduction, and regulation of protein
kinase activity. KEGG pathway analysis revealed that DEGs were mainly enriched in the cAMP signaling pathway, Rap1
signaling pathway, regulation of lipolysis in adipocytes, PI3K-Akt signaling pathway, MAPK signaling pathway, and so on. On
the basis of the PPI network of the DEGs, the following 6 candidate genes were identified: PIK3R1, RAC1, GNG3, GNAI1,
CDC42, and ITGB1. Conclusion. Our data provide a comprehensive bioinformatics analysis of genes, functions, and pathways,
which may be related to the pathogenesis of T2DM.

1. Introduction

Type 2 diabetes mellitus (T2DM), a disease with significant
morbidity, disability, and mortality, has affected increasing
numbers of people worldwide. The World Health Organiza-
tion (WHO) projected that diabetes would be the 7th leading
cause of death in 2030. In addition, it has been predicted that
by 2030, developing countries would account for 77.6% of all
diabetic patients [1]. Although diabetes is a chronic disease
that often causes various complications, in terms of financial
burden, the cost of diabetes is 2-4 times more than that of the
average patient in all medical systems [2]. Early detection and
diagnosis of diabetes to prevent diabetes-associated compli-

cations and to reduce the economic costs on medical care
are therefore of significant importance.

T2DM, which is characterized by hyperglycemia in the
case of insulin resistance and impaired insulin secretion, is
also a multigene heterogeneous disease that is the result of
the interaction of genetic and environmental factors [3].
Although genetic factors play an important role in the occur-
rence and development of T2DM, the elaboration of its exact
mechanism depends on the identification of susceptibility
genes for T2DM.

At present, most of the gene research on T2DM mainly
uses gene chip technology to detect and analyze model ani-
mals or clinical patient samples alone. Through this single
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analysis method, some valuable genes can be screened out for
research and analysis. Gene expression analysis based on
microarray technology is a powerful and high-throughput
research method. Through gene expression profiling, some
studies have found that hundreds of differentially expressed
genes (DEGs) are involved in multiple molecular functions,
biological processes, and signaling pathways [4], which
played an important role in the occurrence and development
of diseases and could be used as a potential molecular target
and diagnostic marker. In the current study, the GSE26168
dataset [5] was downloaded from the Gene Expression Omni-
bus (GEO) database to identify T2DM-associated DEGs
between T2DM and normal samples. Subsequently, GO term
enrichment analysis, Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analysis, and PPI network analysis
were performed to discover candidate genes as T2DM bio-
markers and therapeutic targets worthy of further progress.

2. Methods

2.1. Microarray Data. The dataset GSE26168 based on the
GPL6883 platform (Illumina HumanRef-8 v3.0 expression
bead chip) was downloaded from GEO. A total of 9 T2DM
samples and 8 normal samples were analyzed.

2.2. Identification of DEGs. GEO2R (http://www.ncbi.nlm
.nih.gov/geo/geo2r/) is an interactive web tool for comparing
two sets of data under the same experimental conditions and
can analyze any geo series [6]. GEO2R was applied to explore
DEGs between T2DM and normal blood samples. Statisti-
cally significant DEGs were defined with ∣logFC ∣ ≥2, and
the P value < 0.05 was the cut-off criterion.

2.3. Functional and Pathway Enrichment Analysis of DEGs.
GO is a common way to annotate genes, gene products,
and sequences as potential biological phenomena, mainly
including biological process (BP), cellular component (CC),
and molecular function (MF); the Kyoto Encyclopedia of
Genes and Genomes (KEGG) is a comprehensive data-
base resource for the biological interpretation of genomic
sequences and other high-throughput data. GO and KEGG
analyses were performed using the Metascape database to
analyze the DEGs at the functional level. A P value < 0.01
and min overlap > 3 were set as the cut-off criterion.

2.4. Integration of the Protein-Protein Interaction (PPI)
Network. The PPI network of DEGs was constructed by
STRING. A confidence score ≥ 0:9was set as significant. Sub-
sequently, the PPI networks were visualized using Cytoscape
software (3.7.1). MCODE was used to screen out the core
genes that constitute the stable structure of the PPI network
with degree cut‐off = 3, haircut on, node score cut‐off = 0:2,
k‐core = 4, and maximum depth = 100. Moreover, the Cen-
tiScape plug-in was used to calculate the centrality index
and topological properties for the identification of the
most important nodes of a network, including undirected,
directed, and weighted networks. The key (hub) genes were
defined with degree value ≥mean + 2SD, while the bottle-
neck genes were defined with betweenness value ≥mean + 2
SD. Then, using Venn diagram analysis, the genes in the

Figure 1: Cluster analysis of DEGs. The abscissa represents different
samples; the vertical axis represents clusters of DEGs. Red indicates
that expression of the gene is relatively upregulated while green
indicates that expression of the gene is relatively downregulated;
black indicates no significant changes in gene expression.
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Figure 2: Enriched GO functions of DEGs. DEGs: differentially expressed genes; GO: Gene Ontology; BP: biological process; CC: cellular
component; MF: molecular function.
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intersection of the above three datasets were selected as can-
didate genes for the diagnosis of T2DM.

3. Results

3.1. Identification of DEGs. Based on the aforementioned
threshold (∣logFC ∣ ≥2 and P < 0:05), a total of 981 DEGs
including 301 upregulated DEGs and 680 downregulated
DEGs were filtered with GEO2R (Figure 1).

3.2. Functional and Pathway Enrichment Analysis. Three GO
category results are presented in Figures 2(a)–2(c). As to the
biological process (BP), DEGs were significantly enriched in
cell morphogenesis involved in differentiation, chemotaxis,
and regulation of cell adhesion (Figure 2(a)). For the cell
component (CC), DEGs were enriched in the microtubule
organizing center, dendrite, and anchored component of
the membrane (Figure 2(b)). In terms of the molecular func-
tion (MF), DEGs were enriched in protein domain-specific
binding, ubiquitin protein ligase binding, and anion trans-
membrane transporter activity (Figure 2(c)). The KEGG
pathway analysis revealed that DEGs were highly associated
with the cAMP signaling pathway, Rap1 signaling pathway,
and bacterial invasion of epithelial cells (Figure 3).

3.3. PPI Network Construction and Analysis of Modules. The
PPI network consisted of 945 nodes and 835 edges after hid-
ing nodes which could not interact with other nodes
(Figure 4(a)). Then, we used MCODE to perform K kernel
analysis of the string network, a total of 9 clusters were gen-
erated, and 90 core genes were screened out (Table 1,
Figures 4(b)–4(j)). Besides, the topology characteristics of
the string network and each node were computed with Cen-
tiScape. 12 hub genes and 14 bottleneck genes were obtained
(Table 1). Moreover, using Venn diagram analysis, 6 candi-
date genes in the intersection of the above three datasets were
selected for further analysis, including phosphoinositide-3-
kinase regulatory subunit 1 (PIK3R1), ras-related C3 botuli-
num toxin substrate 1 (rho family, small GTP-binding pro-
tein Rac1) (RAC1), G protein subunit gamma 3 (GNG3), G

protein subunit alpha i1 (GNAI1), cell division cycle 42
(CDC42), and integrin subunit beta 1 (ITGB1) (Figure 5).

4. Discussion

In this study, we identified a total of 981 significant DEGs
between T2DM and normal samples, including 301 upregu-
lated genes and 680 downregulated genes, and conducted a
series of bioinformatics analysis to screen candidate genes
and pathways related to T2DM. DEGs were investigated in
both GO term enrichment analysis and KEGG pathway anal-
ysis for functional annotation. As the outcomes of GO term
enrichment analysis, DEGs might play critical roles in
T2DM through cell differentiation, cell adhesion, intracellu-
lar signal transduction, and regulation of protein kinase
activity. Meanwhile, KEGG pathway analysis revealed that
DEGs were mainly enriched in the cAMP signaling pathway,
Rap1 signaling pathway, regulation of lipolysis in adipocytes,
PI3K-Akt signaling pathway, and MAPK signaling pathway.
Moreover, by constructing the PPI, 6 candidate genes were
identified, which exerted a momentous effect on the T2DM
initiation, progression, and intervention strategy from differ-
ent sides, including PIK3R1, RAC1, GNG3, GNAI1, CDC42,
and ITGB1. The regulatory network consisting of micro-
RNAs (miRNAs), long noncoding RNA (lncRNA), and
mRNAs has attracted increasing attention to elucidate the
mechanism of action in various diseases. In this study, mir-
DIP and starBase were used to analyze and predict the
upstream miRNA interacting with candidate genes and the
upstream lncRNA interacting with miRNA. A total of 22
miRNAs and 5 lncRNA were screened, which may play cru-
cial parts in the development of T2DM.

PIK3R1 encodes the p85α regulatory subunit of the
phosphatidylinositol-3-kinase (PI3K), which connects firmly
with the p110 catalytic subunit, and together, they form the
PI3K protein. PI3K plays a key role in insulin signaling by
binding to phosphorylated insulin receptor substrates (IRS),
producing phosphatidylinositol-4,5-trisphosphate (PIP3),
which then activates several downstream targets such as
AKT serine-threonine kinase [7]. AKT regulates cell survival,
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Figure 3: KEGG pathway analysis of differentially expressed genes. KEGG: Kyoto Encyclopedia of Genes and Genomes.
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growth, differentiation, glucose transporter type 4 (GLUT-4)
trafficking, and glucose utilization [8]. Mouse studies have
shown that mice lacking PIK3R1 display enhanced insulin
sensitivity and glucose tolerance, due to an improved stoi-
chiometry of the p85α/p110 complex for binding to IRS
and enhanced insulin-stimulated Akt activity [9, 10]. The
overexpression of p85α weakens signal transmission and
causes insulin resistance by disrupting the activity of the
p85α/p110 complex and the connection between PI3K and
IRS [11, 12], which indicates that p85α subunits play a nega-
tive role in PI3K signaling downstream of the insulin recep-
tor. Thus, PIK3R1 is a logical candidate gene involved in

the development of T2DM. Regulation of p85α expression
in insulin-sensitive tissues may be a new strategy to increase
insulin sensitivity and may also become a new target for the
treatment of T2DM.

CDC42 and RAC1 are members of the Rho GTPase fam-
ily, which regulate signaling pathways that control a variety
of cellular functions, including cell morphology, migration,
endocytosis, and cell cycle progression. Both CDC42 and
RAC1 regulate the second phase of glucose-stimulated insulin
secretion (GSIS), and the circulation of these proteins between
the activated state (GTP-bound) and the inactive state (GDP-
bound) is important for insulin secretion [13, 14].
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Figure 4: Protein-protein interaction (PPI) networks constructed by STRING and modular analysis.
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CDC42 plays critical roles in the process of insulin syn-
thesis by regulating granule fusion and cytoskeletal rear-
rangement [15, 16] and also regulates mobilization and cell
membrane exocytosis and endocytosis of insulin granules
via activating a series of downstream factors [17–20]. One
study showed that upregulation of miR-330-3p reduces the
expression of CDC42 and E2F1 in patients with gestational
diabetes (GDM), resulting in impaired β-cell proliferation
[21]. P21-activated kinase 1 (PAK1) is a downstream factor
of CDC42 and an important promoter of cell proliferation.
Another study showed an 80% reduction in PAK1 in
patients with T2DM [2]. Thus, CDC42 is an important
member in the progress of T2DM, and targeted therapy for
CDC42 may be one of the effective methods for treating
T2DM and related diseases.

RAC1, which can stimulate actin cytoskeleton reorgani-
zation [22], is required for insulin-stimulated translocation
of glucose transporter 4 (GLUT-4) in muscle cells [23].
RAC1 also can activate PAK [24]. The study indicated that
RAC1 and its downstream target protein PAK were reduced
in insulin-resistant mice and human skeletal muscle [25]. In
addition, RAC1 can activate NADPH oxygenase (NOX),

which produces reactive oxygen species (ROS) and activates
p38MAPK under high glucose conditions, leading to mito-
chondrial disorders and islet β-cell apoptosis [26, 27]. This
mechanism also plays a crucial role in diabetes-induced vas-
cular injuries, such as diabetic retinopathy [28] and diabetic
cardiomyopathy [29]. Thus, RAC1 can be a novel molecular
candidate of T2DM and provide new insight to improve ther-
apeutic strategies for T2DM and diabetic complications.

GNG3, a member of signal-transducing molecules, a sig-
nal transduction molecule encoding the G protein gamma 3
subunit, plays a variety of roles during signal transduction,
from membrane targeting of the α subunit [30] to receptor
recognition [31], to activation of effectors [32], and then to
effect signaling regulation of various proteins of intensity or
duration [33]. The research found that inhibition of G-
protein βγ signaling produces the changes in the cytokine
mRNA levels, which can benefit the autoimmune diseases
[34]. In addition, the mice lacking the G protein γ3 subtype
show decreased weight gain, reduced fat intake, and defective
Oprm1 signaling [35], when maintained on a high-fat diet.
These results suggest that GNG3 may be involved in the
pathogenesis of T2DM, and further research on GNG3 may
provide new targets for the development of drugs to treat
obesity and relevant diseases.

GNAI1, also known as Gi, an adenylate cyclase inhibitor
that inhibits the conversion of ATP to cAMP [36], can inter-
act with other proteins. T cell differentiation may change its
structure [37]. Studies showed that altered expression of
GNAI1 was associated with the progression of inflammation
and immune disease [38, 39]. Thus, GNAII may be consid-
ered to be a novel biomarker for T2DM.

ITGB1, a member of the integrin family, consists of 18
α and 8 β transmembrane subunits that form at least 24
different heterodimeric receptors allowing cells to adhere
to extracellular matrix (ECM) proteins [40]. Integrins play
an important role in mediating cell-to-cell and cell-to-
ECM adhesion [41], especially between the extracellular
environment and platelets, inflammatory cells, and the

Table 1: The candidate genes selected from the protein-protein interaction network.

Core genes
Gene IDs

Cluster Nodes Edges

1 15 104
AVPR1B CYSLTR2 EDN3 GHSR GNG3 GRM5 KALRN LTB4R2 MLN NMBR NPFFR2

PIK3R1 PTGFR SAA1 TBXA2R

2 13 78 ASB11 FBXL18 FBXL7 FBXO17 FBXO7 GLMN KLHL41 RNF7 UBE2H UBE2L6 UBE2V1 ZNF645 ZNRF1

3 8 28 CCL20 CXCL3 DRD2 GNAI1 HRH4 NPY2R PTGER3 TAS2R46

4 8 28 ARMC8 CYFIP1 DEFA4 DNASE1L1 HP LTF OLFM4 VCL

5 8 28 CEACAM5 GP2 LY6G6C LY6H LY6K LYPD4 LYPD5 PRSS21

6 6 14 COL19A1 COL25A1 COL4A6 COL9A1 PLOD2 PPIB

7 5 10 CGA FSHB GLP2R GPR45 HTR4

8 10 22 APOA2 BCAR1 BMP4 EVA1A ITGB1 ITGB3 MEN1 MET TMEM132A TNC

9 17 35
ARF6 BDNF CDC42 CFTR FZD4 GBP6 GNAZ HLA-C HLA-DRB1 HLA-DRB5 ITSN2 NGFR

NTRK2 RAC1 SNX9 SYT9 TRIM62
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RFC2 UBE2L6 UBE2V1

Candidate genes are shown in bold.
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Figure 5: Venn diagram analysis of candidate genes. The blue circle
represents core genes, the red circle represents hub genes, and the
green circle represents bottleneck genes.
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vasculature [42]. The previous study has confirmed that
integrin-mediated adhesion was preferentially mediated by
ITGB1. Integrins have been shown to be involved in angio-
genesis [43], which is a key pathological characteristic of
diabetic microvascular complications and also is essential
for homeostasis of adipose tissues. ITGB1 may be a thera-
peutic target for obesity [44]. Consistently, as a significant
membrane gene identified in our study, ITGB1 was expressed
differentially between T2DM and normal groups. ITGB1
may play central roles in all DEGs and have a close relation-
ship with the development of obesity, T2DM, and its
complications.

5. Conclusion

Our study tried to identify some candidate genes and path-
way regulatory network closely related to T2DM by a series
of bioinformatics analysis on DEGs between T2DM samples
and normal samples. The findings in the current work may
help us understand the underlying molecular mechanisms
of T2DM. DEGs such as PIK3R1, RAC1, GNG3, GNAI1,
CDC42, and ITGB1 have the potential to be used as targets
for T2DM diagnosis and treatments. However, the lack of
experimental validation is a limitation of this study. In the
future, these prediction results obtained through bioinfor-
matics analysis can be verified by further experimental stud-
ies such as qRT-PCR and Western blot.
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