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Abstract: An objective method to detect muscle fatigue-related kinematic changes may reduce
workplace injuries. However, heterogeneous responses to muscle fatigue suggest that subject-specific
analyses are necessary. The objectives of this study were to: (1) determine if wearable inertial
measurement units (IMUs) could be used in conjunction with a spine motion composite index (SMCI)
to quantify subject-specific changes in spine kinematics during a repetitive spine flexion-extension
(FE) task; and (2) determine if the SMCI was correlated with measures of global trunk muscle
fatigue. Spine kinematics were measured using wearable IMUs in 10 healthy adults during a baseline
set followed by 10 sets of 50 spine FE repetitions. After each set, two fatigue measures were
collected: perceived level of fatigue using a visual analogue scale (VAS), and maximal lift strength.
SMCIs incorporating 10 kinematic variables from 2 IMUs (pelvis and T8 vertebrae) were calculated
and used to quantify subject-specific changes in movement. A main effect of set was observed
(F (1.7, 15.32) = 10.42, p = 0.002), where the SMCI became significantly greater than set 1 starting at
set 4. Significant correlations were observed between the SMCI and both fatigue VAS and maximal
lift strength at the individual and study level. These findings support the use of wearable IMUs to
detect subject-specific changes in spine motion associated with muscle fatigue.

Keywords: muscle fatigue; inertial measurement units; composite index; subject-specific; spine

1. Introduction

Muscle fatigue is known to reduce the force generation capacity of a muscle [1,2], alter movement
coordination [3–6], and increase an individual’s risk for musculoskeletal (MSK) injury [6–8]. Despite this
knowledge, fatigue-related injuries are still common in workplace and sport settings [8–11], with lower
back disorders (LBDs) being the most common and costly MSK injury [12–14]. This suggests that
a reliable, objective method for tracking fatigue may be beneficial to reduce fatigue-related injuries
in work and sport settings. However, tracking fatigue is difficult, as current methods are limited to
individual subjective appraisals, such as the visual analogue scale (VAS) [15,16], or traditional objective
laboratory-based measures like strength assessments [17] and electromyography [18]. With the advent
of wearable inertial measurement units (IMUs), human movement (kinematic) data can now be
gathered in greater quantities and in a variety of environments with acceptable spatial and temporal
resolutions. These kinematic data may provide insight into fatigue status; however, individuals
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have been shown to demonstrate heterogeneous kinematic responses to fatigue [19,20] warranting
subject-specific methods of analysis [21,22]. The ability of wearable IMUs to detect subject-specific
alterations in movement patterns have been explored in walking and running gait and show promise
in their ability to detect kinematic changes that are associated with fatigue [21,22].

A proposed method to track subject-specific alterations in movement kinematics involves the
implementation and tracking of a composite index that incorporates multiple relevant kinematic
variables [21,23]. Individuals’ “typical” movement patterns during an activity or task of interest are
quantified during an unfatigued (i.e., baseline) set using selected variables; then, composite indices can
be computed for subsequent repetitions/sets by comparing these repetitions/sets to the individuals’
own typical movement patterns. This allows changes in an individual’s movements to be quantified in
terms of standard deviations (SD) away from their typical movement. If changes in muscle fatigue are
found to be correlated with changes in the composite index, then tracking the changes in composite
indices may be a promising method for objectively identifying when fatigue occurs. Variables that
comprise the composite index should be selected as being relevant to the phenomenon of interest
(e.g., muscle fatigue) while also being available at a reasonable computational cost [23].

An example of a relevant variable that can be quantified with low computational cost for use
in a movement composite index is continuous relative phase (CRP). CRP is used to investigate
movement coordination and is quantified as the difference in phase angle between two adjacent
segments in oscillation, derived from the phase plane of the segments [24]. CRP has been employed
extensively in spine control research because it can differentiate between normal and abnormal
spine movement [25–27], detect individual spine movement subtypes [28], reflect changes in muscle
fatigue status [29,30], and be measured reliably using wearable IMUs [31]. In this study, 10 variables
in the sagittal plane were selected to comprise a spine motion composite index (SMCI) for their
known association with muscle fatigue and/or low computational processing cost: peak value of the
thoraco-pelvic CRP waveform; repetition time; and IMU (pelvis and T8 vertebrae) orientation range,
peak orientation, angular velocity, and angular acceleration.

The primary objective of this study was to determine if wearable IMUs used with an SMCI could
quantify subject-specific changes in spine kinematics during a repetitive flexion-extension (FE) task.
The secondary objective of this study was to determine if the observed changes in SMCI are correlated
to changes in global trunk muscle fatigue, quantified using fatigue VAS and maximal lift strength
assessments. It was hypothesized that subject-specific changes in spine kinematics throughout the
sets could be quantified using wearable IMUs and an SMCI, and that changes in the SMCI would be
significantly correlated to fatigue measures.

2. Methods

2.1. Participants

Ten volunteer participants (5 male and 5 female) were recruited from the Ottawa area if they met
the following inclusion criteria: aged 19 years or older; no history of low back pain in the past six months;
and no history of MSK injuries in the past six months. The study procedure was approved by the
institutional Research Ethics Board, which required all participants to provide informed consent prior
to data collection. Participants were also asked to complete a Baecke Questionnaire for Measurement
of a Person’s Habitual Physical Activity [32].

2.2. Instrumentation

Data were collected using the Xsens MVN Link inertial motion capture system (Xsens Technologies
B.V., Enschede, Netherlands). Seventeen IMUs were secured to participants using an Xsens MVN Link
Lycra Suit in the following positions: one on the head, T8 vertebrae, and pelvis; and bilaterally on
the shoulders, upper arms, forearms, hands, thighs, shanks, and feet [33]. Three-dimensional (3D)
gyroscope, accelerometer, and magnetometer data were sampled at 240 Hz and transmitted via
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Xsens MVN Link Access Point to Xsens MVN Analyze software (Xsens Technologies B.V., Enschede,
Netherlands). Sensor fusion algorithms that estimate body segment position and orientation from raw
sensor data are implemented in the software [33,34], which have been previously validated against
optoelectronic motion capture systems [34–36].

The maximal isometric lift strength assessments (described in Section 2.3) were conducted using
an s-type load cell with a handle attached and adjusted to participants’ knee-level (Figure 1c). These data
were sampled at 100 Hz and collected using custom LabVIEW software (National Instruments, Austin,
TX, USA).

Sensors 2020, 20, x FOR PEER REVIEW 3 of 15 

 

transmitted via Xsens MVN Link Access Point to Xsens MVN Analyze software (Xsens Technologies 
B.V., Enschede, Netherlands). Sensor fusion algorithms that estimate body segment position and 
orientation from raw sensor data are implemented in the software [33,34], which have been 
previously validated against optoelectronic motion capture systems [34–36]. 

The maximal isometric lift strength assessments (described in Section 2.3) were conducted using 
an s-type load cell with a handle attached and adjusted to participants’ knee-level (Figure 1c). These 
data were sampled at 100 Hz and collected using custom LabVIEW software (National Instruments, 
Austin, United States). 

2.3. Fatiguing Protocol 

Emulating previous movement protocols [31,37–39], participants were constrained at the hip and 
instructed to touch two targets with their arms outstretched in synchrony with a metronome set at 0.5 
Hz (i.e., 4 seconds per FE repetition) for the spine FE task. Both targets were placed directly anterior to 
the participants: the first target at shoulder-level and at arms-length away (Figure 1a), and the second 
target at knee-level, 50 cm anterior to the knees (Figure 1b). One FE repetition was defined as movement 
from the upright position (Figure 1a) into the flexed position (Figure 1b) and back to the upright 
position (Figure 1a).  

Participants performed one baseline set of 50 spine FE repetitions followed by an eight-minute rest. 
Then, participants performed ten fatiguing sets of 50 spine FE repetitions with no rest between sets. 
Immediately after each set (including baseline), participants’ global trunk muscle fatigue was assessed 
using two methods: a self-report of their perceived level of fatigue using a ten-centimeter VAS 
(measured in millimeters; mm) [15,16]; and a maximal isometric lift strength assessment of the maximal 
tensile force that could be exerted on the load cell (by pulling upwards on the handle; Figure 1c) [17]. 
This assessment was based off a similar protocol described in [17]. Participants were instructed to grasp 
the handle using both arms and to perform three consecutive maximal exertions per assessment. 
Participants were constrained at the hip and instructed to keep their legs straight while extending their 
spine to “ramp up” the amount of force they exerted until their maximum force was reached. 
Participants were asked to complete all FE sets and fatigue assessments unless they were too fatigued 
to continue, or their maximal lift strength fell below 70% of their baseline value [40]. 

Figure 1. Participants were constrained at the hip for the spine flexion-extension task. To begin, (a) 
participants touched the first target placed at shoulder-level, then (b) flexed their spine to touch the 
second target placed at knee-level, before (a) returning to the initial position. For the maximal lift 
strength assessment, (c) participants exerted maximal effort to pull upwards on the load cell handle 
that was set at knee-level. 

2.4. Data Processing 

(a) (b) (c) 

Figure 1. Participants were constrained at the hip for the spine flexion-extension task. To begin,
(a) participants touched the first target placed at shoulder-level, then (b) flexed their spine to touch
the second target placed at knee-level, before (a) returning to the initial position. For the maximal lift
strength assessment, (c) participants exerted maximal effort to pull upwards on the load cell handle
that was set at knee-level.

2.3. Fatiguing Protocol

Emulating previous movement protocols [31,37–39], participants were constrained at the hip and
instructed to touch two targets with their arms outstretched in synchrony with a metronome set at
0.5 Hz (i.e., 4 s per FE repetition) for the spine FE task. Both targets were placed directly anterior
to the participants: the first target at shoulder-level and at arms-length away (Figure 1a), and the
second target at knee-level, 50 cm anterior to the knees (Figure 1b). One FE repetition was defined as
movement from the upright position (Figure 1a) into the flexed position (Figure 1b) and back to the
upright position (Figure 1a).

Participants performed one baseline set of 50 spine FE repetitions followed by an eight-minute
rest. Then, participants performed ten fatiguing sets of 50 spine FE repetitions with no rest between
sets. Immediately after each set (including baseline), participants’ global trunk muscle fatigue was
assessed using two methods: a self-report of their perceived level of fatigue using a ten-centimeter VAS
(measured in millimeters; mm) [15,16]; and a maximal isometric lift strength assessment of the maximal
tensile force that could be exerted on the load cell (by pulling upwards on the handle; Figure 1c) [17].
This assessment was based off a similar protocol described in [17]. Participants were instructed to
grasp the handle using both arms and to perform three consecutive maximal exertions per assessment.
Participants were constrained at the hip and instructed to keep their legs straight while extending
their spine to “ramp up” the amount of force they exerted until their maximum force was reached.
Participants were asked to complete all FE sets and fatigue assessments unless they were too fatigued
to continue, or their maximal lift strength fell below 70% of their baseline value [40].
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2.4. Data Processing

Fused sensor orientation data (in quaternions) from the 17 IMU sensors were extracted using the
Xsens MVN Analyze data collection software. However, only the sensor orientation quaternions from
the pelvis and T8 vertebrae were used in this study. These data were exported to MATLAB R2019b
(MathWorks, Natick, MA, USA), where they were converted to Euler angles and smoothed using
a zero-lag (effective 4th order) Butterworth low-pass filter [41] with a cut-off frequency of 3Hz.

Sensor orientations were used to calculate the relative motion between the pelvis and thorax
segments (i.e., spine motion) using a flexion-extension/lateral-bend/axial-twist rotation sequence.
Angular velocities and accelerations of the individual pelvis and T8 sensors were also calculated using
the techniques described in [41]. The troughs of the sagittal component of the spine motion signal
(corresponding to the position shown in Figure 1a) were used to locate the start and end of the FE
repetitions. The first ten FE repetitions of each set were excluded from analyses to ensure a steady-state
motion was achieved [31,38,42].

Fatigue VAS was quantified to the nearest 0.1 mm by a researcher who measured the distance
between the zero-line and the mark made by participants on the paper using a ruler. The average of
the three peak values obtained during each maximal lift strength assessment was calculated, resulting
in one value/set (i.e., eleven values/participant).

2.5. Data Analysis

Ten variables in the sagittal plane were selected to comprise an SMCI: peak value of the
thoraco-pelvic CRP waveform, repetition time, and IMU (pelvis and T8 vertebrae) orientation range,
peak orientation, angular velocity, and angular acceleration. These variables were selected to fulfill
the following criteria: (1) known association with muscle fatigue and/or LBD injury risk [29,43–45];
and (2) low computational demand. Variables are described below.

2.5.1. Continuous Relative Phase

To produce the thoraco-pelvic CRP waveform, the sagittal orientations and angular velocities
of the pelvis and thorax segments were divided into separate FE repetitions and time-normalized
to 101 samples to represent 0–100% of the FE repetition. The sagittal orientations (θ) and angular
velocities (ω) of all repetitions and sets were then independently phase-normalized from −1 to +1
using Equation (1) [46,47]:

θi,norm = 2×
θi −min(θ)

max(θ) −min(θ)
− 1 (1)

Phase portraits of normalized orientation plotted against normalized angular velocities were
created [31,46,48]. Phase angles (PAs) were then calculated using a four-quadrant inverse tangent
function, producing values that range from−180◦ to +180◦ (with respect to the positive X-axis) [25,31,49].
The CRP waveform was then determined using Equation (2) [31,47–49]:

CRPi =
∣∣∣ϕi,pelvis −ϕi,thorax

∣∣∣ (2)

where ϕpelvis is the pelvis PA, and ϕthorax is the thorax PA. The peak value of the CRP waveform was
identified for each repetition and was used in the SMCI over other relevant variables derived from
CRP (e.g., deviation phase) because it can be quantified for each repetition. Mean and SD of peak CRP
were calculated for the baseline set of each participant. The peak CRP of each FE repetition during the
10 fatiguing sets was recorded and used to calculate the SMCI.

2.5.2. Repetition Time

The time between the start and end of each FE repetition was used to represent repetition
time. Although this was constrained using a metronome, individuals may have still shown
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repetition-to-repetition variability due to fatigue [45]. Mean and SD of FE repetition time were
calculated for the baseline set of each participant. The repetition time of each FE repetition during the
10 fatiguing sets was recorded and used to calculate the SMCI.

2.5.3. Orientation Range, Peak Orientation, Angular Velocity, and Angular Acceleration

The peak orientation, angular velocity, and angular acceleration of the pelvis and T8 sensors in
the sagittal plane (i.e., rotation about the mediolateral axis) were identified for every FE repetition.
The troughs of the sagittal orientation signal of the pelvis and T8 sensors were also identified for every
FE repetition; this minimum value was subtracted from the corresponding peak value to produce the
orientation range for every FE repetition. Mean and SD of pelvis and T8 sensor orientation range, peak
orientation, peak angular velocity, and peak angular acceleration in each set were calculated for the
baseline set of each participant; then, these 8 variables were quantified for each FE repetition during
the 10 fatiguing sets and used to calculate the SMCI.

2.5.4. Spine Motion Composite Index

The mean (µTypical) and SD (σTypical) for each of the 10 variables from participants’ baseline set were
used to establish their “typical” movement. Then, the SMCI (z) was calculated for each FE repetition
using the value of each variable in the FE repetition (x) with the following equation [21]:

zi =
1

10

∑10

j=1

∣∣∣∣∣xi j −
(
µTypical

)
j

∣∣∣∣∣(
σTypical

)
j

, i = each FE repetition, j = each variable (3)

Forty SMCIs per fatiguing set (one per FE repetition) per participant were calculated using
Equation (3). The average of the 40 SMCIs was calculated to obtain one SMCI per fatiguing set,
per participant. The SMCI represents the SDs above/below the mean of the participants typical,
unfatigued spine movement measured during their baseline set.

2.5.5. Statistical Analyses

All statistical analyses were performed using R version 3.6.1 (R Core Team, Vienna, Austria) with
the significance level for all tests set to α = 0.05. The dependent variables (DV) of the study were
the SMCI, fatigue VAS, and maximal lift strength. Normality for each DV was assessed using the
Shapiro-Wilk test [50]. To address the primary purpose, a one-way, repeated-measures analysis of
variance (ANOVA) was performed to determine the effect of fatiguing set on the SMCI. F-ratio degrees
of freedom (DF) were corrected using the Greenhouse-Geisser єvalue if sphericity (assessed using
Mauchly’s test of sphericity) was violated. If a main effect of set existed, post hoc analyses using
Bonferroni-corrected paired, one-tailed Student’s t-tests were conducted for the SMCI between the
first set and sets 2–10 (Bonferroni αadjusted = 0.05/9 = 0.006). These comparisons would indicate which
sets participants’ SMCI were significantly greater than their first set (baseline comparisons were not
possible as the SMCI is available at starting at set 1).

To address the secondary purpose, correlations between the SMCI and the fatigue measures
(fatigue VAS and maximal lift strength) were calculated using three methods: (1) Pearson’s correlation
coefficient (r) for each participant; (2) repeated-measures correlation coefficient (rrm) for all participants;
and (3) Pearson’s correlation coefficient (r) for the DVs averaged across all participants. Method (1)
was employed to investigate the subject-specific correlations between the SMCI and fatigue measures;
method (2) was employed to determine if intra-individual correlations between DVs are homogenous
between individuals [51]; and method (3) was performed to determine the association between the
SMCI and the fatigue measures overall (i.e., across all participants). For all methods, a correlation of
0.10–0.29, 0.30–0.49, and 0.5+ were interpreted as weak, moderate, and strong, respectively [51,52].
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3. Results

3.1. Participants

Participant demographic characteristics are presented in Table 1. No participants withdrew from
the fatiguing protocol nor were any asked to stop before the completion of the study. From baseline to
set 10, an average increase of 39.4 mm (348.7%) in fatigue VAS and an average decrease of 129.9 N
(19.7%) in maximal lift strength were observed.

Table 1. Mean (standard deviation) for participant age, mass, and height.

Demographic Male Female

N 5 5
Age (years) 29.6 (10.8) 27 (3.3)
Mass (kg) 78.46 (18.55) 59.86 (9.20)

Height (cm) 178.1 (11.3) 173.3 (10.2)

3.2. Influence of Fatiguing Set on Spine Motion Composite Index

The results of the Shapiro-Wilk tests revealed that the distribution for the SMCI, fatigue VAS,
and maximal lift strength were not significantly different from a normal distribution (p ≥ 0.08).
Mauchly’s test revealed that SMCI had violated sphericity; thus, F-ratio DF were corrected using
Greenhouse-Geisser є. For the SMCI, a significant main effect of set was observed (F (1.7, 15.32) = 10.42,
p = 0.002). Post hoc analyses revealed that the SMCI was significantly greater in sets 4–10 compared to
set 1 (p ≤ 0.003), but not in sets 2 and 3 (p ≥ 0.013). The results are presented in Figure 2.

3.3. Correlation Between Spine Motion Composite Index and Fatigue Measures

The subject-specific Pearson’s correlation coefficients are presented in Table 2 and Figure 3.
A significant correlation was observed between the SMCI and at least one fatigue measure for 8 of
10 participants. Specifically, a strong correlation between the SMCI and fatigue VAS was observed for
7 participants (6 positive and 1 negative correlation), and between the SMCI and maximal lift strength
for 5 participants (4 negative and 1 positive correlation).

Table 2. The subject-specific Pearson’s correlation coefficients (r) between the spine motion composite
index (SMCI) and fatigue visual analogue scale (VAS), and between the SMCI and maximal lift strength.
The degrees of freedom (DF) = 8 for all correlations.

Participant Fatigue VAS (mm) Maximal Lift Strength (N)
r p Value r p Value

S01 −0.84 < 0.001 * −0.06 0.863
S02 −0.61 0.061 −0.43 0.210
S03 0.74 0.014 * −0.77 0.009 *
S04 0.87 0.001 * −0.68 0.029 *
S05 0.77 0.009 * −0.48 0.156
S06 0.91 < 0.001 * −0.89 < 0.001 *
S07 0.59 0.072 0.69 0.027 *
S08 0.91 < 0.001 * −0.27 0.445
S09 0.83 0.003 * −0.77 0.009 *
S10 −0.15 0.671 0.15 0.677

* indicates significance with α = 0.05.
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Figure 2. The spine motion composite index (SMCI; bars) plotted with (a) fatigue visual analogue
scale (VAS; dashed line) and (b) and maximal lift strength (dashed line). These data were averaged
across participants for fatiguing sets 1–10. Error bars indicate the SMCI standard deviation (SD),
and asterisks indicate that the SMCI of that set is significantly greater than set 1. When averaged across
participants, strong Pearson’s correlation coefficients (r) were observed between the SMCI and fatigue
VAS (r(8) = 0.92, p < 0.001) and between the SMCI and maximal lift strength (r(8) = −0.91, p < 0.001).

The results of the repeated measures correlation showed a moderate, positive correlation
(rrm(89) = 0.45, p < 0.001) between the SMCI and fatigue VAS. A moderate, negative correlation
(rrm(89) = −0.49, p < 0.001) was observed between the SMCI and maximal lift strength.

When DVs were averaged across participants, a strong, positive correlation was observed between
the SMCI and fatigue VAS (r(8) = 0.92, p < 0.001) and a strong, negative correlation was observed
between the SMCI and maximal lift strength (r(8) = −0.91, p < 0.001).
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Figure 3. The subject-specific correlations between (a) the spine motion composite index (SMCI) and
fatigue visual analogue scale (VAS) and between (b) the SMCI and maximal lift strength. Participants
are identified as S01 to S10. Pearson’s correlation coefficients (r) are presented with the subject-specific
trendlines for statistically significant correlations (α = 0.05).

4. Discussion

The primary objective of this study was to determine if wearable IMUs used in conjunction
with an SMCI could quantify subject-specific changes in spine kinematics during a repetitive FE
task. The current findings showed that this instrumentation and an SMCI comprised of 10 spine
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kinematic variables were sensitive to subject-specific changes that occurred throughout a fatiguing
protocol. Beginning at fatiguing set 4, participants (on average) performed the repetitive FE task in a
significantly different manner compared to their first fatiguing set. The secondary objective was to
determine if observed changes in the SMCI were correlated to changes in fatigue VAS and maximal
isometric lift strength. At the individual level, a strong correlation between the SMCI and one or more
fatigue measures existed for 8 of 10 participants. Repeated measures correlation analyses showed
moderate correlations between the SMCI and the fatigue measures and suggest that the intra-individual
associations were moderately heterogeneous between individuals. When overall changes across
all participants were considered, the SMCI was strongly correlated to both fatigue measures. Thus,
the results support an association between the SMCI measured using wearable IMUs and changes in
fatigue VAS and maximal lift strength.

This novel method of using wearable IMUs and a composite index to quantify subject-specific
typical movement was developed for the purpose of tracking running biomechanics [21]. A major
strength of this approach is the ability to normalize observations to participants’ own baseline
kinematics. To the authors’ knowledge, this was the first study to implement this subject-specific
approach to quantify “typical” spine kinematics, and the findings provide support for the use of
wearable IMUs and composite indices to detect fatigue-related changes in spine kinematics. As data
were collected from two IMUs (i.e., pelvis and T8 vertebrae) and required low computational cost to
calculate the SMCI for individual repetitions, this method of detecting muscle fatigue has potential to
be more objective and practical for quantifying fatigue level in work and sport settings compared to
traditional subjective appraisals, strength assessments, or electromyography. The affordability and
ease of use of wearable IMUs also allow for the development of an inexpensive, real-time monitoring
system that incorporates the use of these devices with mobile applications and cloud computing [53].
Such systems can alert workers, athletes, supervisors, or coaches when their movement is becoming
significantly atypical and indicative of muscle fatigue. Thus, wearable IMUs used with subject-specific
composite indices have potential to help mitigate fatigue-related MSK injuries in work and sport by
optimizing subject-specific work-rest ratios [8].

The current findings show that the SMCI changes throughout the fatiguing protocol and that
this method was able to detect significantly atypical spine motion beginning at set 4 (compared to
the first fatiguing set). At set 4, fatigue VAS had increased by 21.8 mm (192.9%) and maximal lift
strength had decreased by 55.6 N (8.8%) on average compared to baseline. It is unlikely that such
small decrements in strength can indicate the occurrence of muscle fatigue [40]; these results show that
a subject-specific method may be sensitive enough to detect early stages of muscle fatigue development
by observing changes in spine motion alone. Being able to objectively detect fatigue-related changes
in spine kinematics before an individual is fully fatigued is important to attenuate the related MSK
injury risk [8]. That is, this method may not be practical if it is only able to detect changes in spine
kinematics after individuals were fully fatigued. The early detection of subject-specific kinematic
changes is helpful to monitor muscle fatigue status if these kinematic changes are correlated to their
perceived muscle fatigue or changes in maximal force production.

Strong correlations were found between the changes in SMCI and the fatigue measures at the
individual and study levels. The presence of these associations may be attributable to the fact that some
variables in the SMCI were significantly correlated to the fatigue measures on their own (correlation
heat maps for each variable are presented in Appendix A; Figure A1), and that these variables have
been previously linked to muscle fatigue. For example, research has shown that global trunk muscle
fatigue was associated with an increase in peak spine flexion angle during a FE task [29]. Furthermore,
Hu and Ning (2015) demonstrated that after a trunk muscle fatiguing protocol, spine coordination
and variability (derived using CRP) significantly decreased during a lifting task [30]. Aside from their
computational simplicity, some of the kinematic variables included in the SMCI (e.g., T8 vertebrae
sensor peak orientation) may have contributed to the association with the fatigue measures because
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these variables are used in the calculation of other complex features that have been associated with
global trunk muscle fatigue (e.g., spine local dynamic stability) [5,54].

Changes in the SMCI were not associated with either muscle fatigue measure for 2 individuals.
A possible explanation is that these individuals may have only experienced low levels of fatigue:
S02 reported less subjective fatigue at the end of the protocol compared to baseline; whereas S10
showed a 17.5% decrease in maximal lift strength (individual responses presented in Appendix A;
Figure A2). This may suggest that when changes in fatigue status are minimal, a composite index may
not reflect subject-specific changes in kinematics. Furthermore, some heterogeneity in the direction of
correlation between the SMCI and fatigue measures was observed amongst individuals. This may
be a result of diverse kinematic responses to fatigue. For example, research has reported increased
and decreased movement variability, coordination, and spine local dynamic stability in response to
fatigue [19,55,56]. Future efforts should be directed at determining which kinematic variables are best
for inclusion in a composite index on a subject-by-subject basis. Previous work has shown that machine
learning algorithms may perform better if feature selection is performed for each individual [57],
suggesting that composite indices could also be better tailored to each individual if feature selection
(e.g., correlation-based feature selection) [58] was performed. Still, the correlations found in the current
study between the SMCI and fatigue measures are significant, supporting its potential to be used for
monitoring of muscle fatigue development.

The results of this study should be considered with some limitations. First, the FE movements
were simple, repetitive, and constrained to the sagittal plane because the proposed method of
quantifying subject-specific typical movement requires the motion to be repetitive and/or cyclical in
nature (e.g., running) [21]. Although this method may still be effective for more complex, repetitive
movements, a preliminary attempt with a simple, uniplanar movement was warranted to support the
use of this novel method to quantify spine kinematics. Future efforts should be directed at implementing
this method with more complex tasks, such as repetitive asymmetrical lifting. Second, there were
relatively few fatiguing sets in this study, limiting the statistical power available for the subject-specific
and overall correlations. As such, it was imperative that individual-level correlations were strong to
be detected in this study. Lastly, the sample size for this study was relatively small. Although the
10 variables used in the SMCI revealed subject-specific changes in spine motion and were significantly
correlated to participants’ fatigue measures, future efforts should be directed at determining if this
remains applicable for a wider variety of participants. Nonetheless, the current findings support the
potential of this approach to detect global trunk muscle fatigue as the variables used in a composite
index can be tailored to individuals, and because the baseline movement characteristics are defined
using subject-specific data (rather than study sample data).

5. Conclusions

Wearable IMUs are becoming an accessible tool for collecting kinematic data in various
environments and can enable subject-specific analyses. The results of this study show that a novel
method employing wearable IMUs with a composite index can be used to detect subject-specific
changes in spine motion, and these changes are correlated with subjective and objective measures of
global trunk muscle fatigue. Thus, the use of wearable IMUs with composite indices have the potential
to detect the onset of muscle fatigue in real-time and mitigate fatigue-related injury risk in workplace
and sport settings.
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Figure A1. Correlation heat maps for each participant (S01–S10) and across all participants (averaged). 
The dependent variables are spine motion composite index (SMCI), fatigue visual analogue scale 
(VAS), maximal lift strength (MLS), and the kinematic variables used in the SMCI: T8 peak orientation 
(V1); T8 peak angular velocity (V2); T8 peak angular acceleration (V3); T8 orientation range (V4); 
pelvis peak orientation (V5); pelvis peak angular velocity (V6); pelvis peak angular acceleration (V7); 
pelvis orientation range (V8); repetition time (V9); and peak thoraco-pelvic continuous relative phase 
(V10). Correlations between dependent variables were calculated using Pearson’s correlation 
coefficients across fatiguing sets 1–10, andr values are indicated by the colour bar to the right of each 
plot. Insignificant correlations are indicated by × with significance set to α = 0.05. 

Figure A1. Correlation heat maps for each participant (S01–S10) and across all participants (averaged).
The dependent variables are spine motion composite index (SMCI), fatigue visual analogue scale (VAS),
maximal lift strength (MLS), and the kinematic variables used in the SMCI: T8 peak orientation (V1);
T8 peak angular velocity (V2); T8 peak angular acceleration (V3); T8 orientation range (V4);
pelvis peak orientation (V5); pelvis peak angular velocity (V6); pelvis peak angular acceleration
(V7); pelvis orientation range (V8); repetition time (V9); and peak thoraco-pelvic continuous relative
phase (V10). Correlations between dependent variables were calculated using Pearson’s correlation
coefficients across fatiguing sets 1–10, and r values are indicated by the colour bar to the right of each
plot. Insignificant correlations are indicated by ×with significance set to α = 0.05.
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Figure A2. Individual responses in (a) spine motion composite index (SMCI), (b) fatigue visual 
analogue scale (VAS), and (c) maximal lift strength to the global trunk muscle fatigue for sets 1–10. 
Participants are identified as S01–S10. The average response for each dependent variable is shown 
with a dashed line. 
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