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Abstract: Facing the complex marine environment, it is extremely challenging to conduct underwater
acoustic target feature extraction and recognition using ship-radiated noise. In this paper, firstly,
taking the one-dimensional time-domain raw signal of the ship as the input of the model, a new
deep neural network model for underwater target recognition is proposed. Depthwise separable
convolution and time-dilated convolution are used for passive underwater acoustic target recognition
for the first time. The proposed model realizes automatic feature extraction from the raw data
of ship radiated noise and temporal attention in the process of underwater target recognition.
Secondly, the measured data are used to evaluate the model, and cluster analysis and visualization
analysis are performed based on the features extracted from the model. The results show that the
features extracted from the model have good characteristics of intra-class aggregation and inter-class
separation. Furthermore, the cross-folding model is used to verify that there is no overfitting in the
model, which improves the generalization ability of the model. Finally, the model is compared with
traditional underwater acoustic target recognition, and its accuracy is significantly improved by 6.8%.

Keywords: underwater acoustic target; ship radiated noise; deep learning; depthwise separable
convolution; dilated convolution

1. Introduction

Underwater acoustic target recognition technology is used to analyze ship radiated
noise received by sonar and to judge the classification of the target [1,2], which has im-
portant economic and military value. Because of the complex marine environment and
application of acoustic stealth technology, underwater acoustic target recognition has al-
ways been an internationally recognized problem. Traditional underwater acoustic target
recognition methods based on ship radiated noise classify ship types by using artificially
designed features and shallow classifiers, focusing on feature extraction and the devel-
opment of nonlinear classifiers [3–8]. The features of artificially designed ship-radiated
noise include waveform [9], spectrum [10], and wavelet [11], etc., which are dependent
on expert knowledge and prior knowledge and have weak generalization ability. Shallow
classifiers such as support vector machine (SVM) [12] and the shallow neural network
classifier [13] have weak fitting and generalization abilities when dealing with complex and
large numbers of samples. Generally speaking, classifier design and feature extraction are
conducted independently, which may lead to the design of the feature not being suitable for
the classification task. For example, in the classification model based on auditory features,
auditory filter banks designed based on perceptual evidence tend to focus only on the
property of signal description rather than the purpose of classification [14,15].

The human brain has strong abilities in perception, reasoning, induction, learning,
etc. Inspired by the human neural structure and brain information processing mechanism,
researchers proposed deep neural networks (DNNs) which processed information and
decision-making in a similar way to brain [16,17]. Due to the emergence of deep learning
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technology, a complete deep learning model can not only realize the mathematical modeling
for the original signals but also predict targets. These findings of auditory system research
show that the acoustic signals of an auditory system in the time domain can be decomposed
into frequency components; different regions of the auditory system perceive information
of different frequency components; the brain uses information from all these regions
to analyze and classify acoustic signals. In addition, research on the plasticity of the
auditory cortex has demonstrated that the adult brain can be reshaped in appropriate
environments [18].

The language model method has been widely used in natural language processing [18–20].
Drossos et al. applied the language model to detect acoustic events and achieved good
effects [21]. The advantage of the language model method was that the input of the
recursive neural network (RNN) could be adjusted according to the previous prediction
of the classifier, and RNN could be used to process long-term dependencies in temporal
information and to model class activities in context so as to learn longer in-class and
inter-class time models. When the language model method was used for underwater
acoustic target recognition, the performance could be improved by modeling these class
dependencies [21].

Inspired by auditory perception and the language model, in this paper, a new depth-
wise separable convolutional neural network for underwater acoustic target recognition
is proposed, which consists of a series of depthwise separable convolutions, integration
layers, and time-dilated convolutions. The depthwise separable convolutions with vari-
able convolution kernel width are used to decompose original time-domain ship-radiated
noise signals into different frequency components, and extract signal features based on
auditory perception. Due to the use of a variety of convolution kernels of different sizes,
the model can achieve frequency decomposition and feature extraction with a variety of
frequency and time precision. Compared with the traditional method of feature extraction
based on frequency data, this method solves the contradiction between time precision and
frequency precision well, and preserves the phase information of the model input signal
to the maximum extent in the process of feature extraction. In the fusion layer, the one-
dimensional feature vectors extracted at several consecutive moments are fused to form
a two-dimensional feature matrix, which adds time information to the one-dimensional
feature vectors. Finally, we use the time-dilated convolution for the modeling of long
time attention, which can make full use of the intra-class and inter-class information for
underwater acoustic target recognition just like the language model.

The remainder of this paper is organized as follows. In Section 2, we introduce related
work in underwater acoustic target feature extraction and recognition. In Section 3, the
method is proposed in detail. We describe the evaluation process in Section 4. In Section 5,
experimental results are given and discussed. We give our conclusions in the last section.

2. Related Work

All existing studies on passive underwater acoustic target feature recognition with
deep learning were still in a preliminary stage and focused on theoretical exploration
and small-scale experiments. Generally speaking, applications of deep learning should
be combined with big data. However, due to the limitations of practical conditions, it
was often difficult to collect sufficient data for model training, which greatly limited
the performance of deep neural network. Nevertheless, urgent demands still promoted
continuous development of deep learning in passive underwater acoustic target recognition.
Convolutional Neural Network (CNN) had a variety of applications in passive underwater
target recognition because it was suitable for processing the original underwater acoustic
signals and could obtain the implicit correlation that is difficult to be found by conventional
feature analysis methods to a certain extent [22–25]. With internal feedback mechanism,
RNN can process time-series signals. The audio signal is a typical sequence signal, which
is provided with a memory function by RNN through circumferential joints of internal
neurons. Therefore, the correlation of acoustic signals in the time dimension can be utilized
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dynamically. In RNN, there is a typical structure called “Long Short Term Memory”
(LSTM) [20], which has been applied to passive underwater target recognition [26–28].

In a paper previously published on audio classification, CNN was replaced by depth-
wise separable (DWS) convolution [29,30]. DWS was a decomposition form of standard
convolution, which decomposed a standard convolution into one convolution and one
1 × 1 convolution (called pointwise convolution) [31]. It firstly learned spatial information
and then processed to cross-channel mode [32]. This convolutional decomposition for typi-
cal CNN resulted in less trainable parameters and memory occupation, and the reduction
in computation complexity was K−1

o + (Kh·Kw)
−1, where Kh and Kw were the height and

width of the CNN kernel, respectively, and Ko was the output channel of the CNN [27].
Dilated convolution was considered a method of improving the long-term learning capacity
of the CNN [33]. In short, the kernel of the dilated convolution was dilated and there was a
distance between two elements. As a result, the kernel of dilated convolution could be used
on elements of its input patch with interval N (dilation factor), increasing the receptive
field of the kernel instead of its parameters [34,35]. The kernel dilation could be used in
any combination (for example, dilation in time dimension or feature dimension only) or all
combinations of its dimensions. Li et al. provided a method to combine dilated convolution
with RNN in audio classification task [36], which clearly focused on the exploration and
learning of long-term patterns. Drossos et al. proposed an improved Convolutional Recur-
sive Neural Network (CRNN) structure [31] which used DWS and dilated convolution with
dilation in the time dimension only, i.e., time-dilated convolution. With discrete wavelet
and time-dilated convolution, this structure had 85% fewer parameters than CRNN, but
achieved better performance on typical audio classification datasets. The improvement of
the dilated convolution showed that these convolutions had similar functions with RNN
and could be used effectively for long-term contextual modeling.

For human beings, acoustic perception and recognition are accomplished through
the auditory system, including the auditory periphery and auditory center. Frequency
receptive fields in the auditory center, auditory cortex, auditory midbrain and other struc-
tures can adjust the frequency receptive fields and the optimal frequency to complete the
learning task [37,38]. These findings about the auditory system indicated that the acoustic
time-domain signals could be decomposed according to the frequency components in the
auditory system. The decomposition of frequency components could be explained as prod-
uct filtering for acoustic frequency-domain signals. Since the product of frequency domain
signals is equal to the convolution of the time-domain signal [39], the frequency-domain
component could be quickly realized by parallel computation of time-domain convolution;
different regions of the auditory system perceived different frequency components; the
brain collected information of all areas for analysis and for classifying acoustic signals. In
addition, studies on the shaping of auditory cortex have shown that the adult brain could
be reshaped in an appropriate environment. The auditory experience could change the
functions and even structure of the auditory system.

3. Deep Convolution Neural Networks
3.1. The Structure of the Model

We propose a new deep convolution neural network model for feature extraction
and classification of ship radiated noise, which includes a series of depthwise separable
convolution, fusion layer and time-dilated convolution. The structure of the proposed
model is shown in Figure 1.
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Figure 1. The structure of depthwise separable convolutional neural networks.

The model proposed in this paper takes a sequence X ∈ RT×N of vectors T as input,
and each vector T is composed of original underwater acoustic time-domain data with
length N. A learnable feature extractor composed of depthwise separable convolution
(DWS) and time-dilated convolution is used as a time pattern recognition The label vector
of C classes corresponding to X is Y = [y1, · · · , yC], where yc ∈ {0, 1}, represents whether
the input belongs to class c. The model output is a vector Ŷ = [ŷ1, · · · , ŷC], where ŷc ∈ [0, 1]
represents the prediction classification result of the model for underwater acoustic target
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when X is input. Inspired by the structure of extracting deep acoustic information of
auditory system, we design a series of depthwise separable convolutions, takes the original
underwater acoustic data as input and is completed by the one-dimensional depthwise
separable convolution neural network. In addition, DWS convolution realizes the frequency
decomposition for input signals and extract the features of decomposed signals.

The feature fusion layer realizes multi-channel feature information fusion by pointwise
convolution at every moment. In the feature fusion layer, all one-dimensional acoustic
features outputted by DWS filter at all T times are combined and analyzed comprehensively.
The combined acoustic features are two-dimensional time mode features at T moments,
which can be used as the input of the time-dilated convolution layer. The two-dimensional
frequency convolution layer is applied to preserve locality and reduce frequency spectrum
change ship-radiated noise. In the time-dilated convolution layer, in order to make use
of the intra-class and inter-class activity mode, we adopt a time-dilated convolution like
language modeling and use Softmax layer classifier to obtain a prediction probability for
each ship of each sample. The classification of ship is taken as the target function, then
driven by the original ship-radiated noise signal, and the learning and optimization are
carried out in the whole training process. This optimization mechanism reflects the shaping
neural mechanism of the auditory system.

This model can realize decomposition, feature extraction and classification for ship-
radiated noise and be used for underwater acoustic target recognition.

3.2. Depthwise Separable Convolution

CNN is an artificial neural network signal (ANN) convolution which carries out a
series of convolutions for input. The operation in CNN is equivalent to time-domain
convolution in a traditional filter [40]. In this paper, multi-layer CNN is designed in each
deep filter to realize filtering function, so we define it as a deep convolution filter. Through
repeating the above process layer by layer, the multi-layer CNN construct can extract more
abstract features from deep structure. However, deeper units may be indirectly connected
to all or most of the signals. The receptive field of deep units in a depthwise convolution
is larger than that of the shallow unit [41]. The parameters of the depthwise separable
convolution filter are randomly initialized and learnt from ship-radiated noise. Driven
by the time-domain signals of ship-radiated noise, the frequency decomposition ability of
the depthwise separable convolution filter is learnable and adjustable. In addition, larger
convolution kernels can contain longer wavelengths, which implies lower frequencies of
components and vice versa. Thus, the learned filter is more suitable for the underwater
acoustic target recognition task.

In order to learn spatial information and cross-channel information, we do not use
the convolution of a single kernel, but the convolution of two different kernels in a series
(that is, the output of the first is the input of the second). This decomposition technique
is called deep separation convolution (DWN) and has been used in a variety of image
processing structures (such as Exception, GoogleLeNet, Inception and MobileNets model).
It has been proven that DWS convolution can reduce the number of parameters and
improve performance [42–44]. DWS convolution consists of depthwise convolution and
pointwise convolution. In the deep convolution layer, only one filter is applied per input
channel. Pointise convolution is a simple 1 × 1 convolution that is then used to create
linear combinations of the depthwise layer outputs. The learnable feature extractor consists
of DWS convolution blocks. The lth DWS convolution block obtains output of the previous

block as input, i.e., Hl−1 ∈ RHc
l−1×Hh

l−1×Hw
l−1 , where Hc

l−1, Hh
l−1 and Hw

l−1 are the number,
height and width of channels output by the l−1th DWS convolution block, respectively.
H0 = X is the input time-domain signal of the ship-radiated noise, and Hc

0 = 1, Hh
0 = 1,

Hw
0 = N. The output of the lth DWS convolution block is Hl ∈ RHc

l×Hh
l ×Hw

l , where Hc
l , Hh

l
and Hw

l are the number, height and width of channel output by the lth DWS convolution
block, respectively. Each DWS convolution block includes one DWS convolution operation,
one normalization, one down-sampling and one non-linear function.
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The operation of DWS convolution itself includes two convolutions, one normaliza-
tion process and one rectified linear unit (ReLU). The first convolution on the lth DWS
convolution block uses Hc

l−1 number of kernels Kl ∈ RKdh
l ×Kdw

l and one bias deviation

al ∈ RHc
l−1 to learn spatial information input into Hl−1. Kdh

l and Kdw
l are the height and

width of the kernel Kl ; and sl is the stride of the convolution kernel Kl . The depthwise
convolution with a filter in each input channel (input depth) can be written as:

D
hc

l−1,dh
l ,dw

l
l =

(
H

hc
l−1

l−1 ⊗ K
hc

l−1
l

)(
dh

l , dw
l

)
,

= ∑Kdh

kdh=1 ∑Kdw

kdw=1 H
hc

l−1,sl ·dh
l +kdh ,sl ·dw

l +kdw

l K
hc

l−1,kdh ,kdw

l + a
hc

l−1
l ,

(1)

where Dl ∈ RHc
l−1×Dh

l ×Dw
l is the output of the first convolution on the lth DWS convolution

block. Dh
l and Dw

l are the height and width of Dl , respectively. Figure 2 shows the operation
process of the first convolution in DWS convolution.

Next, Dl is input into ReLU activation function after batch normalization (BN). The
process is described as below:

D′l = ReLU(BN(Dl)), (2)

where ReLU is the non-linear activation function of linear rectification; BN is the batch
normalization; D′l ∈ RHc

l−1,Dh
l ,Dw

l is the output of ReLU. The second input of DWS convolu-
tion is D′l .

Figure 2. The first step of the depthwise separable convolution: learning spatial information, using
Hc

l−1 different kernels Kl , applied to each Hl−1.

In addition, Hc
l number of 1 × 1 convolution kernels Zl ∈ RHc

l−1 and a bias vector
bl ∈ RHc

l are used to learn cross-channel information, with the process as follows:

S
hc

l ,dh
l ,dw

l
l =

(
D
′hc

l−1
l ⊗ Z

hc
l

l

)(
dh

l , dw
l

)
= ∑

Hc
l−1

hc
l−1=1 D

′hc
l−1,dh

l ,dw
l

l Z
hc

l ,hc
l−1

l + b
hc

l
l ,

(3)

where Sl ∈ RHc
l ,Dh

l ,Dw
l is the output of the second convolution block on the lth DWS

convolution. Figure 3 shows the operation process of the second convolution in DWS
convolution.

The down-sampling is used on the application feature dimension after each Hl of
the DWS convolution block, for example, maximum pooling. In Equations (1) and (3),
O(Hc

l−1·K
dh
l ·K

dw
l ·D

h
l ·D

w
l + Hc

l ·H
c
l−1·D

h
l ·D

w
l ) and Hc

l−1·K
dh
l ·K

dw
l + Hc

l−1·H
c
l are the compu-

tation complexity and the number of parameters (neglecting deviation), respectively. There-

fore, the computational complexity and the number of parameters are (Hc
l )
−1 + (Kdh

l ·K
dw
l )
−1

times lower than a standard convolution operation with the same functions. The final out-
put of the DWS convolution block HL ∈ RHc

L×Hh
L×Hw

L is compressed into one-dimensional
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vector H′ ∈ RF, where H′ is a one-dimensional feature vector that is extracted by learnable
feature extractor inspired by auditory perception and F is the length of the feature vector.

Figure 3. The second step of depthwise separable convolution: learning cross-channel information
using Hc

l different kernels Zl .

3.3. Time-Dilated Convolution

Dilated convolutions introduce a new parameter called “dilation rate” to the convolu-
tional layer, which defines the spacing of values when the convolutional kernel processes
data. The purpose of this structure is to provide a larger receptive field without the pooling
layer (pooling layer will lead to information loss) and with the same amount of compu-
tation. Since the dilated convolutions can cluster and learn multi-scale information, they
are widely used in the visual field of deep learning now and have achieved outstanding
performances in target detection and image segmentation [35]. In addition, the feature
extractor obtains the one-dimensional underwater acoustic feature vector H′ ∈ RF at
continuous T times, then these H′ into the two-dimensional matrix I ∈ RT×F in the fusion
layer, where T and F respectively represent the height and width of the matrix, and I is
the input of the two-dimensional time-dilated convolution. We use the two-dimensional
time-dilated convolution to create a language model of the input, and the classifier is the
linear layer of the Softmax activation function.

The time-dilated convolution network here used for long-term mode consists of J
time-dilated convolution blocks. The jth time dilated convolution block obtains the output

of the previous block as input, i.e., Oj−1 ∈ ROc
j−1×Oh

j−1×Ow
j−1 , where Oc

j−1, Oh
j−1 and Ow

j−1

are channel number, height and width output by the j − 1th time-dilated convolution
block, respectively. O0 = I is the feature matrix of the input ship-radiated noise, and
Oc

0 = 1, Oh
0 = T, Ow

0 = F. The output of the jth time-dilated convolution block is

Oj ∈ ROc
j×Oh

j ×Ow
j , where Oc

j , Oh
j and Ow

j are channel number, height and width of the jth
time-dilated convolution block, respectively. The jth time-dilated convolution consists of

Oc
j kernels K′j ∈ ROc

j−1×K′hj ×K′wj and bias vector b′j ∈ ROc
j , where Kdh

l and Kdw
l are the height

and width of the kernel K′j, respectively. Thus we have:

Q
oc

j ,oh
l ,ow

l
j =

(
O

oc
l−1

j−1 ⊗ K
′oc

l−1
j

)(
oh

l , ow
l

)
= ∑

Oc
j−1

oc
j−1=1 ∑Kdh

kdh=1 ∑Kdw

kdw=1 O
oc

j ,oh
l +ξh ·kdh ,ow

l +kdw

j−1 K
′oc

j ,oc
j−1,kdh ,kdw

j + b
′oc

j
j ,

(4)

where ξh is the dilation rate of K′j at K′hj dimension. It should be noted that dilation is

conducted only in the time dimension in this paper. The dilation rate ξh multiplied by kdh

is used for visiting the element of Oj−1.This allows context information to be clustered in
proportion at the output of the operation [35]. In fact, this means that the feature result
calculated with the time-dilated convolution is calculated from a larger area. Consequently,
a longer time context can be used to create the recognition model. The process described in
Equation (4) is shown in Figure 4.
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Figure 4. The illustration of the process described in Equation (4) using ξh = 2 and processing
two consecutive patches of O. Squares coloured with cyan signify the elements participating at the
processing of Ooh

l ,ow
l , and coloured with grey are the elements of Ooh

l ,ow
l +1. (a) Processing of Ooh

l ,ow
l ;

(b) Processing of Ooh
l ,ow

l +1.

Next, Qj is input into the ReLU activation function after batch normalization (BN).
The process is described as below:

Oj = ReLU
(

BN
(
Qj

))
. (5)

In the last formula, ReLU is the non-linear activation function of the linear rectification;
BN is branch normalization; Oj ∈ ROc

j ,Oh
j ,Ow

j is the output of ReLU. The output of final

time-dilated convolution block OJ ∈ ROc
J ,Oh

J ,Ow
J is compressed into a one-dimensional vector

O′ ∈ ROc
J×Oh

J×Ow
J , then O′ is input into the subsequent classifier Cls(·). The classification

recognition for the underwater acoustic target is conducted as follows:

Ŷ = Cls
(
O′

)
. (6)

In Equation (6), Ŷ = [ŷ1, · · · , ŷC] is the classification result predicted by the model for the
underwater acoustic target. We use time-dilated convolution networks instead of RNN,
which can effectively model long-term context, intra-class and inter-class activities for
underwater acoustic target recognition. The model parameters are optimized through
minimizing the cross-entropy loss between Ŷ and Y.

4. Model Evaluation

In order to evaluate the proposed method, we used data samples from real civil ships,
and used F1 score and precision as evaluation indexes. The artificially designed features,
including waveform, wavelet, Mel-frequency cepstral coefficients (MFCC), Hilbert-Huang
Transform (HHT), Mel frequency, non-linear auditory feature, spectral and cepstrum fea-
tures are compared with those automatically extracted by the deep separable convolutional
neural network. In addition, the histogram and (t-distributed stochastic neighbor embed-
ding) t-SNE [45] are visualized the clustering performance of the proposed method.

4.1. Dataset and Data Pre-Processing

The dataset contains small ship, big ship, and ferry. The data are sampled at anchorage
ground, and the frequency is 48,000 Hz. In the experiment, 80% of samples of each class
are used as a training set, while the remaining 20% of samples are used as a testing set.
Figure 5 shows a frequency domain diagram of underwater noise. Figure 6 shows a time
domain diagram of underwater noise.



Sensors 2021, 21, 1429 9 of 20

Figure 5. A frequency domain diagram of underwater noise.

Figure 6. A time domain diagram of underwater noise.

Each record is generated by a WAV (Waveform Audio File Format) audio file. The
records include training dataset and testing dataset; 80% of samples of each class are used
as the training set and the remaining 20% of samples of each class are used as the testing
set. Each record is divided into an audio segment of 10 s, the sampling time of the training
samples and test samples are 45 ms and the sampling interval is 12.5 ms. The network
training and testing are performed on the raw time domain data without any preprocessing.
The total time and number of each type of samples in the training data set and the test data
set are shown in Table 1.

Table 1. The experimental data description.

Data Set Class No. Segments Total Time (Hour) No. Samples Percentage

Training
small ship 326 0.91 260,736 25.9%

ferry 560 1.55 447,744 44.6%
big ship 119 0.33 95,424 9.5%

Test
small ship 81 0.23 65,184 6.5%

ferry 140 0.39 111,936 11.1%
big ship 30 0.08 23,856 2.4%

It can be seen from Table 1 that the number of samples of each class is seriously
unbalanced. The sample number of small ships accounts for 55.7% of the total sample
number, more than half the total sample number, while the big ship samples only account
for 11.9% of the total sample number. From the sample distribution of each class, the
number of the category sample size is very uneven. For a different classification sample set,
the F1 score is a better index than accuracy. To evaluate the performance of this model, we
should not only look at the precision index but also look at the performance of classification
and recognition. In this paper, F1 score and accuracy are adopted as the evaluation indexes.
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4.2. Hyper-Parameters, Indexes and Evaluation Process

In order to evaluate the proposed method, this paper uses the dataset of real time-
domain radiated noise, including three classes (C = 3), i.e., “small ship”, “big ship” and
“ferry”. The sound fragments are divided into T = 800 vector sequences X of length
N = 2176, and using a hamming window function with 75% overlap in the successive
windows of 45 ms: first of all, doing the normalize to all of the input vectors of X sequence,
then inputting X into the learnable feature extractor which outputs a radiated noise feature
inspired by auditory perception; the length of feature vector is F = 100.

Table 2 lists the structure of the learnable feature extractor. The learnable feature
extractor is built based on the above-mentioned one-dimensional DWS convolution, but
the first layer is the standard one-dimensional convolution. All convolutions are followed
by BN and ReLU activation functions. Figure 7 shows the comparison results between
the standard convolution calculation process and the deep separation convolution calcula-
tion process.

Figure 7. The depthwise separable convolutions with depthwise and pointwise layers followed by
batch normalization (BN) and rectified linear unit (ReLU).

Table 2. The structure of the learnable feature extractor.

Type Stride Filter Shape Input Size

Conv1D 50 204 × 1 × 64 dw 2176 × 1

Conv1D dw 2 12 × 64 dw 40 × 64

Conv1D 1 1 × 1 × 64 × 128 15 × 64

Conv1D dw 1 15 × 128 dw 15 × 128

Conv1D 1 1 × 1 × 128 × 100 1 × 100

The feature extractor network ultimately reduces the spatial resolution to 1. Our model
structure puts a lot of computation into a 1 × 1 dense convolution, which can be achieved
with a highly optimized Generic Matrix Multiplication (GEMM) function. However, an initial
reordering called IM2COL is required in the memory to map it to GEMM. For example,
this method is used in the popular Caffe package [46]. One by one convolution does not
require reordering in memory; among all the deep separation convolution layers of the feature
extractor network, 91% of the calculation time is spent in the 1 × 1 convolution, while 88% of
the parameters are used; the computational complexity and number of parameters of each
layer of deep separation convolution are shown in Table 3.

Table 3. The resource per depthwise separable layer.

Type Mult-Adds Parameters

Conv1D dw 11,520 832

Conv1D 122,880 8320

Conv1D dw 1920 2048

Conv1D 12,800 12,900
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The structure of time-dilated convolutions inspired by the language model is shown
in Table 4. The feature vector of one-dimensional underwater acoustic H′ ∈ RF of T time is
combined to form the two-dimensional matrix I ∈ RT×F (where, T = 800 & F = 100) and I
is a time-dilated convolution network inspired by the language model. The convolution
layers are followed by BN and ReLU activation function, but the pooling layer is not
provided with non-linear activation function. The final pooling layer is input into softmax
layer for classification. There are five layers in the time-dilated convolution network.

Table 4. The structure of the time-dilated convolutions.

Type Stride Dilation Filter Shape Input Size

Conv2D Dilation 1 × 1 12 × 1 3 × 3 × 1 × 64 800 × 100 × 1

Max Pool 2 × 2 1 × 1 Pool 2 × 2 776 × 98 × 64

Conv2D Dilation 1 × 1 12 × 1 3 × 3 × 64 × 128 388 × 49 × 64

Max Pool 2 × 2 1 × 1 Pool 2 × 2 364 × 47 × 128

Conv2D Dilation 1 × 1 12 × 1 3 × 3 × 128 ×
256 182 × 23 × 128

Avg Pool 2 × 2 1 × 1 Pool 2 × 2 158 × 21 × 256

Conv2D Dilation 1 × 1 12 × 1 3 × 3 × 256 ×
512 79 × 10 × 256

Avg Pool 2 × 2 1 × 1 Pool 2 × 2 55 × 8 × 512

Conv2D Dilation 1 × 1 12 × 1 3 × 3 × 512 ×
512 27 × 4 × 512

Avg Pool 2 × 2 1 × 1 Pool 2 × 2 3 × 2 × 512

Softmax Classifier 1 × 1 × 3

In order to evaluate the performance of the proposed method, we use F1 score and
accuracy as the indexes of evaluation. We compare the recognition model of artificially
designed features, a one-dimensional depthwise convolution network [23] without time-
dilated convolution and the proposed depthwise separable convolutional neural networks.
These artificially designed features include waveform, wavelet, MFCC, HHT, Mel frequency,
non-linear auditory feature, spectrum and cepstrum. The deep separation convolutional
neural network model is implemented on the framework of MXNET, A flexible and efficient
library for deep learning [47]. The MXNET Python library runs on a nvidia RTX graphic
card, and an asynchronous gradient similar to Inception V3 [43] is used to decline the
optimizer RMSProp [48]. Table 5 lists the hyper-parameters of the proposed model.

Table 5. The hyper-parameters of the proposed model.

Parameters Values

Learning Rate 0.001
Batchsize 800
Epochs 100

Optimizer RMSprop

Some researchers of neurosciences found that the brain can change its structure and
functions to meet learning demands. In contrast to the large models of training, we use the
techniques of less regularization and data processing, because the small models are not
easy to overfit. Driven by the time domain signal of ship radiated noise, all parameters of
the depthwise separable convolutional neural network are learned from the actual data.
The frequency decomposition and perception ability of depthwise separable convolution
networks are also learnable and adjustable.
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5. Results and Discussion

The configuration of the server running the neural network is as follows: 64-bit
Ubuntu 16.04 operating system, 64 GB memory, 52 CPU kernels and equipped with a
TITAN RTX GPU accelerated computing card from NVIDIA (Computer systems design
services company).

In this paper, the original time-domain ship-radiated noise data are used to train and
test the model. The training parameters are 100 iterations, the size of the training batch is
800 and the training rate is 0.9. The detailed training process is shown in Figure 8:

As shown in Figure 8, in the process of model training, there is no over-fitting or
under-fitting phenomenon, and there is no gradient disappearance or gradient explosion.
By using the model with measured data, the final training result is that the recognition
accuracy of the training data and the test data is 95.9% and 90.9%, respectively, which
shows that the model has a high recognition accuracy.

Figure 8. The training process of the model.

With 90.9% recognition accuracy, the model works well for underwater acoustic data
with strong noise. Since the number of samples of each class varies greatly, we provide a
confusion matrix for the recognition result of the proposed model, as shown in Figure 9.
Each row of the confusion matrix corresponds to the real label and each column corresponds
to the predicted label.

Figure 9 shows that the recognition results are very stable among the classes, indicating
that the model has good recognition stability.

In order to more comprehensively evaluate the recognition performance of this
method, on the basis of reflecting the recognition accuracy of the overall classification
performance index of the model, the F1-score index reflecting the recognition performance
of each class of the model is added. The F1-score for each class is calculated from a har-
monic average of the accuracy and recall rates for that class, which is a better measure
than accuracy for unbalanced datasets because both accuracy and recall rates are taken into
account. The F1-scores for each class are “weighted” average and “micro” average. The
accuracy rate, recall rate and F1-score of each category calculated by the recognition results
in this paper are shown in Table 6:
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Figure 9. The confusion matrix of the proposed model obtained from testing data.

As shown in Table 6, the F1 score of this model is very good, indicating that this model
has good classification accuracy and stability. The results of small boat class and ferry class
are better, with F1 score of 0.91 and 0.93 respectively. The worst results are for the big ship
class, with an accuracy of 0.76, a recall rate of 0.83, and an F1 score of 0.80. It could be
that the mechanical systems of the boats are similar to those of ferries, or some boats were
passing by during the collection of ferry samples.

Table 6. The precision, recall and F1 score for each class.

Class Precision Recall F1 Score Support

small ship 0.91 0.91 0.91 65,184
ferry 0.94 0.92 0.93 111,936

big ship 0.76 0.83 0.80 23,856

Accuracy 0.91
Macro avg 0.87 0.89 0.88
Weighted 0.91 0.91 0.91

In order to verify the non-unfitting and non-overfitting of the model, the k-fold
cross-validation method is used. Cross validation is a statistical method to evaluate the
generalization performance, which is more stable and comprehensive than the method of
single partition of training set and test set. The data are divided many times and many
models need to be trained. The most common cross validation is k-fold cross validation,
where k is the number specified by the user. In this paper, we set k = 5. When we perform
a 5-fold cross validation, the data are first divided into five equal parts, each of which
is called a fold. The first fold is used as the test set, and the other folds are used as the
training set to train the first model. The model is constructed with 2~5 trade-off data,
then the accuracy is evaluated on 1 trade-off. Then another model is built, where we use
2-fold as the test set and others folds as the training set. For the five times of dividing the
data into training set and test set, the accuracy should be calculated each time. Finally,
we get five accuracy values. The whole process is shown in Figure 10, and the confusion
matrix of 5-fold cross validation is shown in Figure 11. The validation results of 5-fold
cross validation are listed in Table 7.

Figure 10. The whole process of 5-fold cross validation.
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Figure 11. The confusion matrix of 5-fold cross validation: (a) fold 1; (b) fold 2; (c) fold 3; (d) fold 4; (e) fold 5.

Table 7. The results of 5-fold cross validation.

Fold Weighted Average F1 Value

1 0.90
2 0.91
3 0.91
4 0.92
5 0.90
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From the experimental results of Table 7, the proposed model has good generalization
performance, and there is no serious unfitting and overfitting. In order to simulate practical
applications of recognition for ship-radiated noise, the classification accuracy of each
acoustic event is used to measure the classification performance of the model, which is
defined as the percentage of all acoustic events that are correctly classified. The classification
accuracy of the proposed model and the comparison model is shown in Table 8.

Table 8. The classification results of proposed model and compared models.

Input Methods Accuracy

HOS [49] Support vector machine (SVM) 85.1%
Waveform [9,50] SVM 78.9%

Wavelet [11] SVM 84.3%
MFCC [51] SVM 79.1%

Mel-frequency SVM 84.6
Nolinear auditory SVM 86.7

Spectral [27,52] Deep neural network (DNN) [53] 87.0%
Cepstral [10,54] DNN [44] 86.9%

Raw time domain data Convoluted neural network (CNN)
model [25] 88.4%

Raw time domain data Convolution recursive neural network
(CRNN) model [28] 89.2%

Raw time domain data Proposed model 90.1%

HOS is high order statistics feature. MFCC is Mel-frequency cepstral coefficients.
As shown in Table 8, compared with traditional underwater acoustic target recognition
methods, the proposed model effectively improves the classification accuracy of the un-
derwater acoustic target. Due to the complexity of the marine environment, it is also
very important to improve the generalization performance and reduce the complexity
of the model. Therefore, the regularization term of the first-order norm is added in the
training process of the model to ensure good generalization performance of the model at
the appropriate sacrifice of training classification accuracy. When the regularization term
of the first-order norm is added, the classification accuracy of this model is 90.9%, which is
6.8% higher than that of the traditional recognition model, which is 85.1%, indicating that
the classification recognition model significantly improves the classification accuracy of
the traditional recognition method.

Next, the distribution of features extracted by the model is analyzed by visualization
method. Here, a histogram is created for each extracted dimension feature, and the
occurrence frequency (called bin) of the data points of a one-dimension feature in each
class is calculated. This allows us to understand the distribution of each dimension’s
features in each class and how the eigenvalues are different between classes. In this paper,
100-dimensional features are extracted from underwater acoustic targets. Figure 12 is part
of the histogram of feature results extracted from the model. As shown in Figure 11, the
feature vectors extracted by the proposed model for all training samples have obvious
distribution differences among different classes, while the feature distributions within the
same class are stable and consistent, which indicates that the method of feature extraction
by the proposed model is effective for classification.
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Figure 12. The histogram of features learned from the proposed model: 0 is small ship, 1 is big ship,
2 is ferry.
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The manifold learning algorithm is used to carry out complex mapping of 100-dimensional
feature vectors extracted from all samples, and a good visual 2-dimensional vector is
obtained. We use the t-SNE algorithm to visualize the feature vectors of underwater
acoustic targets. Figure 13 shows the scatter plot of the two-dimensional vector obtained
from the complex mapping of 100 feature vectors. Here, we use the corresponding number
of each class as a symbol to show the position of each class. It can be seen that each class is
relatively well separated, indicating that the feature results extracted by the model have a
good clustering effect, and visually proving that the feature extracted by the underwater
acoustic target has good separability and stability.

Figure 13. The scatter plot of features learned from proposed model using two components found by
t-distributed stochastic neighbor embedding (t-SNE).

6. Conclusions

In this paper, a new depthwise separable convolutional neural network is proposed to
identify ship radiated noise from original time-domain waveforms in an end-to-end mode.
The deep features containing the internal information of the target are extracted by a DWS
convolution network, which reflects the deep acoustic information extraction structure of
the auditory system. By convolution decomposition of different frequency components of
ship-radiated noise, the frequency distribution characteristics of ship radiated noise are
revealed. The time-dilated convolution is used for modeling long time contexts, which can
make full use of the intra-class and inter-class information for underwater acoustic target
recognition just like the language model. Inspired by the plasticity neural mechanism, all
the parameters in the model are learned and optimized under the drive of the time-domain
ship radiated noise, so as to accomplish the underwater acoustic target recognition task.
The average classification recognition rate reaches 90.9% when tested on a real civil ship
acoustic signal set. Although the recognition rate is high, there is still a certain gap between
it and the practical application, and the recognition rate needs to be further improved. The
experimental results also show that the extracted 100-dimensional features of underwater
acoustic target have good separability and stability, and the deep learning method based
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on auditory perception has great potential in improving the classification performance of
underwater acoustic target recognition.
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