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Introduction

Breast cancer is the most prevalent female cancer; 
it is the most frequent cause of cancer death in females 
in low and middle-resource countries and the second 
leading cause of cancer-related deaths in the developed 
world (Desantis et al., 2013; Ferlay et al., 2013; Jemal 
et al., 2011; Lauby-Secretan et al., 2015). Survival rates 
have improved due to improvement in early detection 
and treatment strategies (Njor et al., 2012). Early 
detection of the disease can be achieved through breast 
self-examination and clinical examination; however, 
some breast lesions are non-palpable and require visual 
assessment through imaging (Hou et al., 2002; Rosen et 
al., 1999; Tartter et al., 1999). Screening mammography 
is the frontline imaging tool for early detection and has 
been credited with 30% to 40% reduction in mortality 
from breast cancer (Lauby-Secretan et al., 2015; Njor 
et al., 2012; Paci, 2012). However, mammography may 
have some drawbacks such as false positive (FP) and 
false negative (FN) screening outcomes. Normal breast 
parenchymal perturbations on mammograms or benign 
lesions may mimic breast cancer, and may lead to wrong 
diagnosis of cancer when none is present (FP errors) 
(Castells et al., 2016). FP errors result in low positive 
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predictive value (PPV) (10%), psychological effects 
(Molina et al., 2016), and recall for further assessment 
(Vernacchia and Pena, 2009). On the other hand, cancer 
may be present in a mammogram but missed by breast 
readers and constitute a FN error (Evans et al., 2013). Some 
of the cancers missed on screening may be clinically and 
mammographically occult (Buchberger et al., 2000; Tartter 
et al., 1999) or demonstrate subtle radiographic features 
that are difficult to perceive (Banik et al., 2011). However, 
some of the missed cancers are visible on mammograms 
but are either not identified or are disregarded by breast 
readers (Evans et al., 2013; Maxwell, 1999). Such FN 
errors account for 1.3% to 45% of missed cancers, with 
error rates determined by the subtype and characteristics 
of the cancer (Banik et al., 2011; Evans et al., 2013; 
Maxwell, 1999). The literature demonstrates considerable 
variation in the error levels (Evans et al., 2013; Maxwell, 
1999), which result from differences in the physical 
characteristics of the population being screened (Ekpo 
et al., 2015; Mandelson et al., 2000), technological and 
technical factors during image acquisition (Holland et al., 
2016; Popli et al., 2014), the subtypes and radiographic 
features of breast lesions (Bird et al., 1992; Burrell et al., 
2001;Suleiman et al., 2016a), and the characteristics of 
breast imaging readers and reading conditions (Brady et 
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al., 2012; Kerlikowske et al., 1998). 
The basis of detection and interpretative errors 

appears to be a combination of human and technological 
limitations, however this is not well understood. We 
urgently need to address this gap in knowledge so 
that reliable and accurate screening strategies can be 
developed using more effective technology and education. 
An understanding of how patient, technical, lesion, and 
reader-related factors impact upon mammography errors 
and ways of mitigating them may be the key to improved 
early cancer detection and further reduction in mortality 
from breast cancer. Therefore, this paper explores 
factors responsible for mammography errors including 
characteristics of the screening population, types and 
radiographic features of breast lesions, technological 
and technical factors, characteristics of breast imaging 
readers, and reading environment. It also examines the 
types of errors made and potential solutions to mitigate 
these errors. 

1. Factors influencing mammographic performance
This section examines factors affecting the outcome 

of mammographic image interpretation. These include 
characteristics of the screening population, lesion 
characteristics as well as technological, technical and 
reader related factors and reading conditions. 

1.1 Characteristics of the screening population 
Patients’ physical characteristics such as body habitus, 

breast density (Ekpo et al., 2015; Freer, 2015), use of 
hormone replacement therapy (HRT) (Banks et al., 
2006; Carney et al., 2003; Kavanagh et al., 2005), breast 
augmentation and implant, as well as disease prevalence 
(Fajardo et al., 1995; Handel, 2007; Miglioretti et al., 
2004) may impact upon the detection of breast cancer 
using mammography. 

Patients’ body habitus such as body mass index (BMI) 
and breast size have been shown to affect the performance 
of mammography (Bassett et al., 2000; Elmore et al., 
2004; Hunt and Sickles, 2000; Njor et al., 2016; Popli 
et al., 2014). These two characteristics are inter-related, 
with overweight (BMI: 25 – 29.9), and obese (BMI: ≥30) 
women demonstrating larger breasts (Brown et al., 2012). 
A 3.0% to 38% increase in mammographic sensitivity 
has been reported for overweight women (BMI: ≥24.9) 
compared with those who have normal BMI (Banks 
et al., 2004; Njor et al., 2016), however, no significant 
differences in recall rates and specificity between these 
categories of women have been reported (Banks et al., 
2004; Elmore et al., 2004; Njor et al., 2016). There are 
various potential causal agents with regards to breast size 
which may affect cancer detection; the small-sized imaging 
plates used in mammography systems has been shown to 
pose difficulties in positioning large floppy breasts, and 
often negatively affect compression, compromise image 
sharpness, and increase blur (Bassett et al., 2000; Popli 
et al., 2014). Inadequate positioning and compression of 
large breasts increases tissue superimposition and non-
uniformity, and imaging large breasts on small-sized 
imaging plates may result to incomplete coverage of breast 
regions such as the posterior portions and pectoral muscles 

(Bassett et al., 2000; Popli et al., 2014). Together, these 
negative confounders may increase the chances of errors 
during mammography interpretation. 

Breast composition also influences the difficulty of 
cancer detection in mammography. Breast density (the 
proportion of the breast composed of fibroglandular 
tissue) and solid breast cancers are mammographically 
radiodense (Ekpo et al., 2015). Dense tissue produces 
a masking effect, which reduces the ability to visualize 
cancer in mammograms (Ekpo et al., 2015; Mandelson et 
al., 2000; Pisano et al., 2008). Studies have consistently 
demonstrated lower sensitivity in dense breasts, ranging 
from 27% to 70.1% compared to 90% in fatty breasts 
(Carney et al., 2003; Mandelson et al., 2000; Pisano, 
et al., 2008; Rosenberg et al., 1998). A recent study has 
reported an association between breast density and recall 
for additional examination (Ekpo et al. 2016a). It has 
also been shown to account for 16% higher incidence of 
interval breast cancer relative to fatty breasts (Boyd et al., 
2014). Breast density is inversely related to BMI (Ekpo, 
2016a), therefore it is unsurprising that women with low 
BMI demonstrate 3.0% to 38% reduced sensitivity with 
mammography as discussed previously (Banks et al., 
2004; Njor et al., 2016). 

Age is another factor that affects cancer detection in 
mammography. Mammography is performed with women 
standing erect, a position that is difficult to maintain 
by frail elderly women especially with the pain from 
compression. This can cause inadequate positioning and 
motion blur, reducing the visibility of image details and 
reader ability to detect microcalcifications (Abdullah 
et al., 2017; Popli et al., 2014; Rosen et al., 2002). The 
composition of the breast changes with age, with women 
younger than 50 years demonstrating high breast densities 
compared to older women (McCormack and dos Santos, 
2006). This age-related difference in breast composition 
has been shown to be concomitant with mammography 
performance (Carney et al., 2003; Rosenberg et al., 1998). 
The reported sensitivity of mammography for women 
younger than 50 years varies from 54.0% to 78.0% 
compared with 78% to 85% in women aged 70 years and 
older (Carney et al., 2003; Houssami et al., 2003; Keen 
and Keen, 2008). This is reasonable given that the breast 
undergoes atrophic changes with ageing and becomes 
replaced by fat, which appears radiolucent relative to 
cancer lesions thereby enhancing the visibility of these 
lesions on mammograms. On the other hand, masking 
effect produced by dense tissue reduces the visibility of 
cancer in mammograms of younger women (Boyd et al., 
2007). The limitation of mammography in younger women 
has given rise to recommendations for use of other imaging 
modalities such as ultrasound for imaging this category of 
women (Devolli-Disha et al., 2009; Houssami et al., 2003). 

Exogenous hormonal agents play a critical role in 
breast tissue changes as demonstrated by the variations 
in the mammographic appearance of breast parenchyma 
between users and non-users of hormonal substances 
(Buist et al., 2004). HRT use has been shown to lower 
mammography performance by increasing FP recall 
(Banks et al., 2006). The literature shows that HRT use 
is associated with 7%-22% and 12%-50% reductions in 
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prevalence may increase FP errors and recall rates in a 
screening scenario.

1.2 Types and radiographic features of breast lesions
The variability in lesion morphology and its effect 

on the heterogeneity of the breast parenchyma makes 
cancer detection and characterization challenging (Bird 
et al., 1992; Popli, 2001). Lesion characteristics and 
mammographic appearances that have been shown to 
impact upon radiographic detection and characterization 
include size, shape, density, margins and subtlety (Bird 
et al., 1992; Burrell et al., 2001; Mello-Thoms et al., 
2014). Lesion location and its impression on adjacent 
breast tissues is also an important factor affecting 
cancer detection (Bird et al., 1992; Burrell et al., 2001; 
Mello-Thoms et al., 2014). 

Small-sized lesions have been shown to be more 
difficult to detect than larger ones (Malich et al., 2003; 
Mello-Thoms et al., 2014). Even when lesions are clearly 
visible, their shape, margins and density would determine 
their classification as benign or malignant (Popli, 2001). 
Radiologically, round and oval masses with fatty or low-fat 
content and well-defined borders are associated with 
benign conditions (Popli, 2001). Isodense masses with 
lobulated, obscured and ill-defined or indistinct margins 
are classified as suspicious (James et al., 2010; Lee et al., 
2014; Popli, 2001). Highly suspicious lesions are of high 
density, irregular in shape, with spiculated, ill-defined or 
indistinct margins (James et al., 2010; Lee et al., 2014; 
Popli, 2001). Masses demonstrating these characteristics 
are easily detected (Bird et al., 1992), however, about 
10% of malignant lesions demonstrate benign features 
(round, oval, well-defined), and sometimes spiculations 
and parenchymal changes induced by malignant masses 
may be subtle and difficult to perceive (Bird et al., 1992; 
Roberts-Klein et al., 2011). These scenarios may lead 
to potentially malignant lesions being overlooked or 
misinterpreted, with wrong interpretation accounting for 
52% of errors in mammography (James et al., 2010; Lee 
et al., 2014).

Previous works showed that cancer subtype and 
characteristics influence the difficulty of detection and 
characterization with mammography, with triple-negative 
breast cancers and invasive lobar carcinoma more 
difficult to detect on screening, yet constituting the most 
common subtype of interval cancer (Caldarella et al., 
2013; Domingo et al., 2010; Hoff et al., 2012; Johnson 
et al., 2015; Lowery et al., 2011; Raposo et al., 2012; 
Rayson et al., 2011; Sung et al., 2016). Lesion subtlety 
is also a determinant of cancer detection, and contributes 
to 43% of mammographically missed cancers (Bird et 
al., 1992). Subtle masses such as architectural distortion 
(AD) are particularly difficult to detect (Gaur et al., 2013; 
Suleimanet al., 2016a) or characterize, which can be due to 
the plethora of conditions associated with its radiographic 
features. In mammograms, AD features may be due to 
malignancies such as invasive lobar carcinoma and ductal 
carcinoma in-situ or benign conditions such as radial scars, 
previous surgery, trauma, sclerosing adenosis, infection, 
and fat necrosis (Gaur et al., 2013). Lesion features 
such as non-specific or asymmetric densities, isodensity 

mammographic sensitivity and specificity respectively 
(Banks et al., 2006; Carney et al., 2003; Kavanagh et al., 
2005). Reduced mammography performance has been 
shown to be particularly pronounced in users of HRT 
regimens containing estrogen and progesterone (Banks 
et al., 2006), which can be attributed to their effect on 
increasing breast density (Buist et al., 2004). This is 
further supported by the fact that hormonal agents such 
as tibolone, which do not increase breast density (Ekpo, 
2016b), also do not affect mammography performance 
(Banks et al., 2006). HRT use is also associated with a 
higher risk of benign breast disease (Rohan and Miller, 
1999), a determinant of FP mammography outcome 
and risk of subsequent cancer (Castells et al., 2013). 
Thus, the impact of hormonal agents on mammography 
performance should be considered when referring patients 
for screening and when interpreting their mammograms 
in order to minimise FP recall.

Breast implants and augmentation materials such 
as silicon have been shown to affect mammographic 
performance and can lead to omission errors, mainly 
because of their high X-ray attenuation coefficient and 
opaque appearance on mammograms (Handel, 2007). 
It has been reported that breast augmentation and 
implants produce capsular contraction that obscure the 
visualization of breast tissue by 15% to 88% depending on 
the size and opacity of the material (Handel et al., 1992; 
Silverstein et al., 1991). They have been shown to limit the 
detection of breast cancer in mammograms by about 22% 
(Handel 2007; Miglioretti et al., 2007). Augmentation 
mammoplasty is also associated with scarring and 
distortion of the breast parenchyma (Handel 2007; Hayes 
et al., 1988), and the opacities created by these scars may 
mimic malignant calcifications and subtle cancer types 
such as architectural distortion (AD) mammographically 
(Handel 2007; Silverstein et al., 1991). Previous breast 
conservative surgery alters breast architecture (Piroth et 
al., 2014), and has been shown to reduce mammography 
sensitivity by 9.1 – 10% (van Breest et al., 2012a; van 
Breest et al., 2012b). Such surgical procedures are also 
associated with FP errors (Holli et al., 1998), with FP 
rates doubling in women who have had post-surgical 
radiotherapy (Holli et al., 1998). Together, patients’ 
physical characteristics discussed above have the potential 
to limit adequate visualization of breast parenchyma 
for features of cancer. They can also cause parenchyma 
perturbations that may increase the likelihood of FP errors.

The prevalence of disease in the population may also 
impact upon interpretive performance by affecting reader 
expectation and influencing their search, perceptual and 
decision-making behavior and confidence (Evans et al., 
2013; Gur et al., 2007; Reed et al., 2011). Studies have 
shown that low disease prevalence lowers readers’ level 
of concentration, and that normal images tend to attract 
more scrutiny and fixations at higher disease prevalence 
(Evans et al., 2013; Gur et al., 2007; Reed et al., 2011). 
Evidence shows that with increased prevalence, visual 
search increases and confidence that a normal image 
is in fact normal decreases, however confidence for 
abnormals remains unchanged (Fanshawe et al., 2016; Gur 
et al., 2007; Reed et al., 2011). Therefore, high disease 
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to fibroglandular breast tissue, indistinct margins, and 
absence of calcifications and ductal dilatations have 
also been shown to account for missed cancers (Hoff et 
al., 2012; Majid et al., 2003). Although the visibility of 
these features has improved in the digital era, they have 
low PPV and may be overlooked (Hoff et al., 2012). 
Thus, cancer subtype and subtlety, as well as the low 
PPV associated with the features described above may 
limit perception or reporting of perturbations produced 
by malignancy. This emphasises the need for human and 
technological interventions to ensure early detection of 
these missed signs.

1.3 Impact of technical factors, image quality, and 
mammography technology on image interpretation

The conspicuity of lesions in their background 
depends on the technical and radiographic quality of the 
images produced (Ekpo et al., 2014). Technical factors 
such as positioning, compression and exposure conditions 
affect the amount of breast tissues imaged, tissue spread 
and the visibility of lesion features (Holland et al., 2016). 
The difficulty of positioning large floppy breasts and 
older women and their impact on the accuracy of image 
interpretation have been discussed in section 1.1 (Bassett 
et al., 2000; Popli et al., 2014). Inadequate positioning is 
26% more common in women with BMI ≥30 compared 
to those having normal BMI (Guertin et al., 2014), and 
mammograms with inadequate positioning, image quality 
and compression have been shown to demonstrate 18% 
lower sensitivity compared to those of good overall quality 
(Taplin et al., 2002). A study has also reported varying 
PPV at different degrees of compression, with highest 
compression demonstrating reduced lesion detection 
(Holland et al., 2016). All these indicate that technical 
factors contributing to missed cancers must be addressed. 

Advances in imaging technology have led to the 
transition from screen-film mammography (SFM) to DM. 
Although SFM has better spatial resolution compared 
to DM, it has lower contrast resolution (Faridah, 2008). 
Whilst spatial resolution is relevant to the detection of 
high spatial frequency lesions such as microcalcifications, 
the higher contrast resolution of digital systems allows 
better differentiation of densities as well as normal 
and diseased tissues on an image (Faridah, 2008). In 
addition, post-processing capabilities of DM offers 
opportunities to manipulate image contrast to suit a 
particular detection task. However, studies comparing the 
diagnostic performance of SFM and DM have generated 
conflicting results (Bluekens et al., 2012; Hambly et al., 
2009; Pisano et al., 2005; Pisano et al., 2008; Skaane, 
2009), with many demonstrating comparable or slightly 
better cancer detection performance of DM in all breast 
compositions (Bluekens et al., 2012; Hambly et al., 2009; 
Pisano et al., 2005; Skaane, 2009), albeit with higher FP 
recalls (Hambly et al., 2009; Skaane and Skjennald, 2004). 
Despite important advances in mammography technology, 
the sensitivity of DM is still below optimal levels and 
varies between readers (Clauser et al., 2016; Pisano et al., 
2005; Pisano et al., 2008). It is clear that improvement in 
imaging technology is not the only solution for removing 
detection errors, and instead we must identify and remedy 

human errors limiting breast cancer detection, if early 
breast cancer diagnosis is to be transformed.  

1.4 Reader characteristics and interpretative performance
Evidence shows wide inter-reader differences in cancer 

detection with mammography, suggesting that humans 
are a major determinant of mammography performance 
(Evans et al., 2013; Jackson et al., 2015; Maxwell, 
1999). It also suggests that reader characteristics such 
as experience, specialization, number of mammograms 
read per year, and other factors may influence error rates. 
Of these, number of years reading mammograms and the 
number of cases read per year are the most widely studied 
observer characteristics (Suleiman, 2016b). Experience is 
quantified using parameters such as specialization in breast 
radiology, number of years of reading mammograms, and 
number of mammograms read per year (Rawashdehet 
al., 2013). These factors considered in isolation have 
generated contradictory outcomes. For example, Sickles 
et al (Sickles et al., 2002) reported a two-fold higher 
cancer detection rate for specialist radiologists compared 
to general radiologists, but this was not always consistent 
in other studies comparing radiologists and radiographers 
(Debono et al., 2015; Torres-Mejía et al., 2015). Whilst 
number of years of reading mammograms has been shown 
to improve performance in some studies (Rawashdehet 
et al., 2013; Suleiman, 2016b), it has demonstrated no 
significant effect on observer performance in other studies 
(Jackson et al., 2015; Suleiman et al., 2014a). 

The number of mammograms read per year has been 
reported as a good indicator of observer performance, and 
a potential optimisation tool for breast screening programs 
(Rawashdeh et al., 2013; Suleiman, 2016b). However, 
other studies have reported either no relationship or an 
inverse relationship between number of cases read per 
year and performance (Beam et al., 2003; Molins et al., 
2008). It has also been shown that beyond a threshold 
annual volume read, performance stagnates (Rawashdehet 
et al., 2013) or begins to decline (Kan et al., 2000), 
suggesting that the impact of volume read per year on 
performance may be threshold dependant. Evidence 
suggests that the contradictory evidence for the impact of 
volume read on performance may be due to differences 
in other reader characteristics such as experience, hours 
spent reading mammograms per week, and importantly, 
the ability to identify normal image features (specificity) 
(Rawashdeh et al., 2013). Other confounding factors are 
practice-related and include double reading practices 
and number of diagnostic and interventional procedures 
performed (Beam et al., 2003), with radiologists who 
participate in their own diagnostic mammography 
and have higher volumes of work-ups demonstrating 
better outcomes compared to those who do not (Buist 
et al., 2014). Despite the conflicting evidence for the 
number of mammogram cases read per year on reader 
performance, it is used as a criterion for certification in 
many countries (Rawashdeh et al., 2013). For example, 
certification for mammography reporting in the USA 
requires 960 cases read biannually, whilst in Australia 
and European countries, it is 2000 and 5000 cases read 
per year respectively (Suleiman, 2016b). However, these 
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differences do not reflect inter-country variations in cancer 
detection performance by radiologists (Suleiman et al., 
2014b; Suleiman, 2016b). In fact, a recent study showed 
no difference in performance between Australian and USA 
radiologists for breast cancer detection (Suleiman et al., 
2014a), suggesting that parameters other than volume read 
per year may also be key determinants of performance. 

The findings above demonstrate the complexity of using 
volume read and number of years of reading mammograms 
to quantify experience. Although radiologists receive 
training in breast image interpretation, they are exposed 
to different levels of mentorship, disease prevalence, and 
working conditions during the course of practice (Beam 
et al., 2003). These differences may impact differently on 
expertise and consequently mammography interpretation 
performance (Beam et al., 2003). Available evidence 
emphasise the need for programs and interventions that 
expose readers to continuous training and mentorship. 
It also underscores the need for platforms to identify 
errors, provide immediate feedback, and identify ways 
of mitigating these errors.

1.5 Impact of reading environment and workload on 
accuracy of image interpretation

Image interpretation requires both perceptual and 
cognitive processes, which can be affected by ambient 
lighting and distractions in the reading environment. 
Ambient light increases reflection (diffuse and specular) 
and glare, however no study has reported a significant 
difference in observer performance between low and 
moderate ambient light conditions (Chawla and Samei, 
2007; Pollard et al., 2009; Pollard et al., 2012). Studies 
have shown that distractions may lead to attentional deficit 
and affect radiologist’s perceptual and cognitive functions. 
For example, distractions due to phone call has been 
reported to account for a 12% discrepancy error among 
radiology residents (Balint et al., 2014), and negatively 
affects task completion time (Williams and Drew, 2017). 

The number of patients undergoing screening 
mammography daily has increased exponentially, 
resulting in increased workload for radiologists. This 
condition is exacerbated by the increasing volume of 
radiological data generated with the advent of 3D imaging 
modalities. The number of hours spent reading these 
images may cause fatigue and occulomotor strain and 
reduce image interpretation accuracy (Krupinski et al., 
2010a). Studies have reported a significant reduction in 
image interpretation accuracy after prolonged periods 
of reporting (Krupinski, 2010a; Krupinski et al., 2010b; 
Krupinski et al., 2012), for example a recent study reported 
that fatigue contributed to satisfaction of search (Krupinski 
et al. 2012). Thus, reading conditions contribute to 
radiological errors and need to be optimised to mitigate 
missed cancers. 

1.6 Impact of patient’s clinical history on accuracy of 
image interpretation

There are contentions that the availability of clinical 
history at the time of image interpretation may lead 
to biases and cognitive heuristics such as anchoring 
(locking on to salient evidence early in the interpretation 

process), availability (making biased judgments based 
on what frequently comes to mind), confirmation 
(looking for evidence to confirm a particular disease), 
representativeness (decision-making based on similarity 
to mental prototype), and search satisficing (abrupt 
termination of search after identification of irrelevant 
features) (Crowley et al., 2013). However to date, 
studies have reported at least better (Berbaum et al., 
1988; Doubilet and Herman, 1981; Leslie et al., 2000; 
Loy and Irwig, 2004) or at worst no effect on diagnostic 
performance when good clinical information is provided 
(Cooperstein et al., 1990; Good et al., 1990). 

2. Common human errors limiting mammography 
interpretation

Radiographic image interpretation involves evaluation 
and organisation of image information to make a 
diagnostic decision. These processes can be challenging, 
particularly with mammography, due to the heterogeneity 
of the breast parenchyma, anatomical noise arising from 
dense tissue masking (Ekpo et al., 2015), and the subtlety 
of some breast cancer types (Gaur et al., 2013). In other 
situations, the characterization of detected lesions can be 
difficult and depends on the presenting features of the 
lesion and the knowledge of the image reader as discussed 
earlier (Bird et al., 1992; Roberts-Klein et al., 2011). 
These factors may either cause lesions to be concealed or 
conspicuous and fixated cancer lesions to be ignored (Bird 
et al., 1992; Roberts-Klein et al., 2011). The interpretation 
process involves search, perception and decision-making 
(Berlin, 2014; Brady et al., 2012; Brunoet al., 2015; Pinto 
and Brunese, 2010). Faults in any of these processes 
results in an interpretative error. 

2.1 Search errors 
Search errors ensue from inadequate scanning of 

the image, resulting in non-fixation (no visual attention 
or dwell) on the perturbations produced by cancer 
(Brady  et al., 2012). Search errors may also arise from 
premature termination of search due to identification of 
stimuli elicited by another disease condition, which may 
be irrelevant and unconnected to the disease of concern, 
a situation referred to as “satisfaction of search (SOS)” 
(Fleck et al., 2010). Search errors have been estimated 
to account for 42% of error in DM (Palazzetti et al., 
2016; Pinto and Brunese, 2010), and vary with readers’ 
experience, workload and fatigue (Berbaum, 2010; Berlin, 
2014; Nodine et al., 1996). 

2.2 Perceptual errors 
Sometimes malignant lesions briefly (<0.48 seconds) 

fixated by radiologists go unreported and constitutes a 
perceptual error (Bruno et al., 2015; Krupinski, 2010c). 
Perceptual errors account for 31% of errors in DM 
(Krupinski, 2010; Palazzetti et al., 2016; Samei, 2010.) 
and may be caused by insufficient stimuli by the lesion(s) 
and the nature of its background (Mello-Thoms, 2006). 
Perceptual error rates vary between radiologists and are 
inversely related to experience and availability of adequate 
clinical information. A report suggests that perceptual 
errors may be due to poor pattern recognition skills 
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(Krupinski, 2010c).

2.3 Decision-making errors
Decision-making errors occur when the region 

containing the lesion is fixated for a prolonged period 
(>0.48 seconds), but the lesion is misidentified (Bruno, 
et al., 2015). Decision-making errors account for 37% 
of errors in DM (Krupinski, 2010c; Nodine et al., 2002; 
Samei, 2010.), and may be due to poor reader’s knowledge 
of the radiographic features of the disease and poor reader 
judgment (Mello-Thoms, 2006; Samei, 2010.). Other 
causal factors include fatigue, absence of prior images 
and inadequate clinical history (Krupinski, 2010c; Nodine 
et al., 2002). Decision-making errors are also influenced 
by recall rate recommendations, with lower recall rates 
associated with higher specificity and lower sensitivity 
values and vice versa (Norsuddin et al., 2016). A recent 
study showed that non-specific densities and AD lesions 
classified as malignant at free recall were dismissed at 
policy-driven fixed (target) recall rates (Norsuddin et al., 
2016). It is therefore important that factors contributing 
to these errors are redressed.

3. Possible strategies to reduce errors in mammography 
interpretation  

Despite advances in mammography technology and 
image quality improvement in the digital era, limitations 
remain around diagnostic efficacy. Therefore human 
factors affecting the accuracy of image interpretation must 
be remedied to improve the detection of missed cancers. 
Potential solutions include optimisation of technical and 
display parameters, adoption of double reading strategy, 
and technological and educational interventions.

3.1 Optimisation of technical and display parameters
Technical parameters that affect cancer detection such 

as positioning and compression need to be optimised to 
ensure adequate visibility of breast tissue. It is important 
that radiographers adopt correct positioning to ensure 
nipple alignment and inclusion of pectoral muscles 
(Taplin et al., 2002). Appropriate compression force 
should be applied to uniformly spread breast tissue and 
enhance the visibility of breast parenchyma and subtle 
cancers (Holland et al., 2016). Display tools and reading 
environment should be optimised to reduce reflection, 
glare, and reader fatigue (Krupinski et al., 2010b; Waite 
et al., 2016). Also, population-based mammography-
screening programs must carefully monitor the technical 
quality of mammograms on a regular basis to ensure that 
they are adequate for purpose. 

3.2 Double reading strategy
Many screening programs including the Dutch 

Nationwide Breast Cancer Screening Program and 
BreastScreen Australia employ an independent double 
reading strategy with arbitration to improve cancer 
detection rates. This strategy accounts for the differences 
in human perceptual and cognitive abilities and has 
been shown to improve cancer detection by between 
5.6 – 15% (Duijm et al., 2007; Duijm et al., 2008). Studies 

have explored changing the order of reading, where the 
second reader interprets a batch of mammograms in 
an order opposite that of the first reader to overcome 
vigilance diminution, however this has not been shown 
to improve the effectiveness of double reading strategy 
(Taylor-Phillips et al., 2016; Taylor-Phillips et al., 2014). 
It should be acknowledged however that double reading 
increases financial cost (Posso et al., 2016), has wide 
inter-reader disagreement, and is time consuming (Ekpo 
et al., 2016c; Redondo et al., 2012) and therefore to reduce 
the limitations of cost and time, computer systems have 
been designed to act as a second reader (Taylor and Potts, 
2008).

3.3 Use of computer-aided devices (CAD)
Technological innovations such as computer-aided 

detection (CAD) have been explored to mitigate perceptual 
errors. These devices use computerized algorithms to 
highlight perturbations in the image (CADe) or perform 
diagnostic assessment (CADx). Whilst CAD has been 
shown to increases sensitivity (Georgian-Smith et al., 
2007; Gromet, 2008; Karssemeijer et al., 2003; Skaane 
et al., 2007; Taylor and Potts, 2008) there is contrasting 
evidence for the relative impact of double reading versus 
single reading with CAD (Georgian-Smith et al., 2007; 
Gromet, 2008; Karssemeijer et al., 2003; Skaane et al., 
2007). The literature generally supports double reading 
to outperform single reading with CAD (Taylor and 
Potts, 2008) A major limitation of CAD is its high FP 
rates (Philpotts, 2009), which increases at lower dose 
levels (Wittenberg et al., 2011). As a result, some of the 
malignant lesions marked by CAD may be dismissed 
by readers. This suggests that such technology is not 
necessarily the complete solution for removing detection 
errors, and emphasises the need for educational and 
practical interventions to improve human perceptual and 
decision-making skills. 

3.4 Audit and immediate feedback mechanisms
Clinical audits are used to evaluate the performance of 

Figure 1. Breast Software Display Showing Reader’s 
Mark and Lesion Classification (Yellow) against the 
Actual Lesion Location and Type (Red). The BREAST 
tool provides immediate feedback to readers on cancers 
that present perceptual difficulties and describes their 
features such as stellate, discrete, architectural distortion 
and nonspecific density. Radiologists from any part 
of the world can log unto the system, undertake self-
assessment and obtain immediate feedback.
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any program and aim to identify errors in order to tailor 
interventions to improve performance. However, clinical 
audits often take a longer period to complete, delaying 
feedback. Also, feedback from audits is often provided 
to the screening program and not the individual breast 
reader, making it difficult for individuals to identify their 
errors and take corrective actions. Perceptual feedback 
has been shown to improve reader performance (Buist et 
al., 2011; Donovan et al., 2008; Krupinski et al., 1993). 
Therefore, platforms that audit and provide immediate 
perceptual feedback to readers should be explored to 
enhance interpretative accuracy. Examples of platforms 
that have been established for this purpose include 
Breast Reader Assessment Strategy (BREAST) and 
PERsonal perFORmance in Mammographic Screening 
(PERFORMS) (Scott and Gale, 2006; Suleimanet al., 
2016c). These platforms generate mammographic test-sets 
containing various cancer types and radiographic features 
that have been missed by at least one radiologist during 
clinical reporting. These test-sets are hosted online 
enabling radiologists to evaluate and receive immediate 
feedback on location and type (stellate, mass, non-specific 
density, and AD) of lesion present in the mammogram. 

In so doing, they examine reader performance, identify 
errors, and provide immediate feedback and continuous 
professional development opportunities. A recent study 
reported improvement in cancer detection performance of 
radiologists undertaking BREAST intervention over time 
regardless of their levels of experience (Suleimanet et al., 
2016c). However, more studies comparing radiologist test 
reading performance versus their clinical performance 
are needed to confirm the clinical impact of these 
interventions. If successful, such platforms can provide 
e-Learning opportunities and allow personalized learning 
and self-assessment, identify common mammography 
errors, and provide feedback to mitigate these errors. 

In conclusion, errors in mammography interpretation 
arise from patient, lesion, technical, and reader factors 
as well as other extraneous variables such as distraction 
and fatigue. Evidence shows that, despite improvement in 
imaging technology, the accuracy of image interpretation 
still suffers from intrinsic human limitations. Therefore, 
technology alone cannot mitigate radiological errors, 
suggesting that if the benefits of breast screening are to be 
maximized, human errors limiting early cancer detection 
need to be identified and remedied. Double reading and 
immediate feedback loops may facilitate discussions and 
learning opportunities to improve diagnostic efficacy.
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