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ABSTRACT

We define a new category of candidate tumor
drivers in cancer genome evolution: ‘selected ex-
pression regulators’ (SERs)––genes driving dysreg-
ulated transcriptional programs in cancer evolution.
The SERs are identified from genome-wide tumor ex-
pression data with a novel method, namely SPAR-
ROW (SPARse selected expRessiOn regulators iden-
tified With penalized regression). SPARROW uncov-
ers a previously unknown connection between can-
cer expression variation and driver events, by us-
ing a novel sparse regression technique. Our results
indicate that SPARROW is a powerful complemen-
tary approach to identify candidate genes contain-
ing driver events that are hard to detect from se-
quence data, due to a large number of passenger mu-
tations and lack of comprehensive sequence infor-
mation from a sufficiently large number of samples.
SERs identified by SPARROW reveal known driver
mutations in multiple human cancers, along with
known cancer-associated processes and survival-
associated genes, better than popular methods for
inferring gene expression networks. We demonstrate
that when applied to acute myeloid leukemia ex-
pression data, SPARROW identifies an apoptotic
biomarker (PYCARD) for an investigational drug oba-
toclax. The PYCARD and obatoclax association is
validated in 30 AML patient samples.

INTRODUCTION

Cancer genome evolution is characterized by the emergence
of driver mutational events, successful mutations that are
swept to high frequencies within the tumor cell population

(1). Selection often favors driver events that alter expres-
sion levels of entire pathways, such as inhibition of apopto-
sis (2), increased cell proliferation (3), acquisition of stem-
cell phenotypes (4), evolved resistance to therapy (5) and
adaptation to local microenvironments (6), among others.
Tumors that evolve under similar selective pressures in dif-
ferent patients can experience similar changes in transcrip-
tomic output (7). These selective events induce across pa-
tient dependencies between recurrent driver events shared
across patients and selected changes in gene expression
(Figure 1a). One can classify driver events into a variety
of molecular aberrations, including mutation drivers (m-
drivers), copy number aberrant drivers (c-drivers), fusion
drivers (f-drivers), epigenetic drivers (epi-drivers), among
others (8). We define selected expression regulators (SERs)
as genes with an underlying molecular aberration which af-
fect transcriptomic activity, where the change in transcrip-
tion has a marked effect on the fitness of the tumor cell
population. However, shared expression profiles across pa-
tients do not indicate which gene’s expression is driving the
cancer’s transcriptomic state because the expression of the
genes in a pathway and their driver gene(s) may all be mutu-
ally correlated (Figure 1a). We propose a method to decon-
volve this mutual correlation and prioritize the genes most
likely to contain the underlying driver events. To do this, we
take advantage of a statistical property shared by SERs as
shown in Figure 1a. If the expression of a gene is driving the
expression of other genes under selection, then the correla-
tion among those genes should be explained away once one
conditions on the expression of the true driver gene. These
genes under selection become ‘conditionally independent’
with respect to one another, given the SER (Figure 1a).

In this paper, we present a novel computational method,
called SPARROW (SPARse selected expRessiOn regula-
tors identified With penalized regression), to identify these
SERs based purely on expression data from multiple tumor
samples. Cancer genomes contain multiple pathways under
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Figure 1. (a) Driver mutational event in a subset of patients caused by se-
lection, with a selected expression regulator (SER) mediating the effect of
the driver mutant. The SER is correlated with genes under similar selec-
tion across patients. After conditioning on the SER, the correlation among
the genes disappears. (b) There are many driver events across patients that
target different pathways, depending on the selection pressure in different
patients. The goal is to identify which SER best explains these patterns of
expression.

selection across patients with many possible driver events
(Figure 1b). To address this, we model the multifactorial na-
ture of the transcriptomic response to selection. We assume
that driver events that lead to similar outcomes in transcrip-
tomic response for a subset of patients can be compactly
represented in terms of a combined effect of a small sub-
set of SERs (Figure 2). To identify these SERs, we use a
sparse statistical model in which each gene’s expression level
is modeled as a linear combination of a small set of SERs.
Due to high dimensionality, we consider a set of SERs con-
sisting of expression levels of ∼3000 genes that can regulate
other genes, including transcription factors, chromatin re-
modelers and signal transduction genes (Figure 2a). Even
if the driver event is not in the same genomic location, if
it has a similar effect on the expression of the SER(s) then
the sparse basis will capture its transcriptomic effect. We
fit a sparse basis for every gene with the SERs and deter-

Figure 2. (a) We model each gene’s expression as a sparse combination of
a set of selected expression regulators. (b) We then identify which selected
expression regulator is most frequently chosen, and prioritize those to ex-
plain the pattern of selection for the pathway or gene in question.

mine how often an SER is chosen in the sparse basis for
each gene (Figure 2b). If an SER is chosen for many genes,
this increases our confidence that this SER contains (or is
closely linked to) a driver event, such as a DNA mutation
or epigenetic modification that is under selective pressure.

To fit these basis models, SPARROW uses a novel sparse
regression technique. The most widely used sparse regres-
sion method is the least absolute shrinkage and selection op-
erator (LASSO) (9). A number of authors applied LASSO
to gene expression data to identify association among gene
expression levels, genetic variation or complex traits (10–
13). SPARROW uses a non-convex penalty with important
advantages when compared to the popular convex LASSO
penalty for analysis of cancer expression data. Specifically
the LASSO penalty is known to choose false positives if
there exist pathological correlations among variables (the ir-
representability condition (14)), whereas non-convex penal-
ties can produce cleaner solutions, even in the presence
of pathological correlations (15). We compare SPARROW
with the LASSO and other methods that identify depen-
dencies among expression variables, including two meth-
ods based on correlation, and popular network building ap-
proaches such as the algorithm for the reconstruction of
accurate cellular networks (ARACNE (16)) and weighted
graph correlation network analysis (WGCNA) algorithms
(17).

We show that SPARROW identifies SERs with known
tumor-specific cancer driver mutations in acute myeloid
leukemia (AML) and glioblastoma multiforme (GBM), as
compared to alternative methods to identify SERs. At-
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tempts to identify driver genes have been extensively fo-
cused on analyzing DNA sequence data (18–22). These ap-
proaches have several major limitations: (i) there are a large
number of passenger mutations; (ii) driver events may be
caused by epigenetic modifications, which are not captured
by DNA sequencing; and (iii) due to a large number of pas-
senger mutations, large sample sizes are required to have
sufficient power to detect driver events. SPARROW pro-
vides a complementary criterion for revealing tumor reg-
ulators under selection, which takes downstream effects of
drivers on genome-wide expression into account. We also
show in AML that SERs are enriched for association with
survival, apoptotic regulation and myeloid differentiation
regulators. Finally, we determine that the gene PYCARD is
the most highly ranked apoptotic SER in AML, and show
that PYCARD expression is predictive of response to obato-
clax, a pan-inhibitor of antiapoptotic BCL2 family, in tissue
cultured from patients.

The resulting SERs for each gene in AML and GBM,
the implementation of SPARROW and the data used in
the study are freely available on our website http://sparrow-
leelab.cs.washington.edu/.

MATERIALS AND METHODS

Microarray data processing

Raw cell intensity files (CEL) for Affymetrix U133 Plus
2.0 and U133A arrays (Affymetrix, Santa Clara, CA,
USA) for gene expression data collected from patient bone
marrow were retrieved from Gene Expression Omnibus
(23) for accessions: GSE12417 (24) (AML), GSE14468
(25) (AML), GSE10358 (26) (AML) and GSE13159 (27)
(AML, chronic lymphoblastic leukemia (CLL), childhood
acute lymphoblastic leukemia (cALL), myelodysplastic
syndrome (MDS)). Expression data were then processed
using MAS5.0 normalization with the ‘Affy’ bioconduc-
tor package (28) and mapped to Entrez gene annotations
(29) using custom chip definition files (CDF) (30). After
the initial normalization and mapping to gene level ex-
pression levels, arrays were organized into groups based
on the date the array was processed, which is encoded
within the raw CEL data file for each sample. This tem-
poral grouping was treated as a proxy for possible sys-
tematic biases in expression variation driven by batch ef-
fects. The ComBat batch effect correction algorithm (31)
was then applied to each data set treating each group-
ing as a batch to correct for these possible batch effects.
Dates where there was only one array processed were
dropped from all data sets. MAS5.0 normalized intensities
were natural log transformed prior to batch effect correc-
tion. For the GBM data from The Cancer Genome Atlas,
Agilent g4502a gene expression data were accessed from
Firehose for the 02–15 run (http://gdac.broadinstitute.org/
runs/stddata 2014 02 15/data/GBM/20140215/). All nor-
mal samples were removed, and plate level batch effects
were corrected with ComBat.

Learning SERs

Prior to combining the data across studies, all genes in each
individual data set were scaled to have mean zero and vari-

ance one. After combining all patients with normal kary-
otype AML there were 682 patients with gene expression
data for 17778 genes on the Affymetrix U133 Plus 2.0 plat-
form (Affymetrix, Santa Clara, CA, USA). Similarly, there
are 447, 235 and 206 patients for CLL, cALL and MDS,
respectively. For the GBM data there are 502 patients and
17814 gene expression variables. We focused on a set of 3460
SERs, out of which 3052 are present in the Affymetrix U133
Plus 2.0 data. These SERs included transcription factors,
chromatin modifiers and other regulatory factors similar to
the list proposed by Gentles et al. (32), 2993 of which are
in the GBM data set. The full lists of SERs are provided in
Supplementary Note 1.

SPARROW SERs

Cancer expression data contain complex correlation pat-
terns due to the effect of selection on many different path-
ways in many different patients (1) (Figure 1b). In order to
identify SERs, we developed a new method to filter out false
positives in a sparse linear regression model. Specifically,
we used the variational Bayesian spike regression (VBSR)
model (33) as a baseline model and developed new methods
to filter out false positives, by incorporating a data adap-
tive method for choosing the penalty parameter that does
not require cross validation. The spike regression model is
a Bayesian approximation of best subset selection. In this
case, the best subset selection would be the choice of a sub-
set of a fixed number of SERs, out of all possible SERs,
that best explain the observed gene expression pattern of
a given gene across patients. This is a difficult combinato-
rial problem, therefore we approach it with a variational
Bayes approximation that treats the inclusion of any given
SER in the regression model probabilistically. The varia-
tional Bayes approximation introduces additional proba-
bilistic constraints that make inference extremely efficient
(34).

The main novelty of our approach is the choice of the
size of the subset of SERs to be used in the model. Previ-
ous work on the spike regression model suggested not only
a posterior probability of inclusion in the model for each
SER but also a statistic that measures the significance of
a given SER in a given subset regression model (33). Yet
the previous work also required a computationally expen-
sive path search to determine an optimal best subset size
to ensure that the null distribution of the test statistic for
each feature was well calibrated (i.e. normally distributed).
If the best subset size is too large, then there are too many
features in the model given the sample size, and the test-
statistics becomes inflated. Alternatively if the best subset
size is too small, then there is the possibility of missing out
on true associations. In this new version, we derive a fast
analytical method to determine the best subset size to en-
sure that the test statistic is well calibrated without losing
too many associations. This is a non-trivial problem, where
many previous authors use ad hoc methods such as cross
validation to choose the analog of this model complexity
parameter (35).

For each of the 17 788 genes we fit the following model

yik =
m∑
j

xi jβ jk + eik, where yik is the expression level of the
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kth gene for the ith patient for i = 1, . . . , n patients and
k = 1, . . . , r genes, eik is a normally distributed error term
(assuming independent and identically distributed errors),
xi j is the expression level of the jth SER for the ith patient
and β jk is the additive effect of the expression of the jth SER
on the expression of the kth gene.

In addition, we implement the spike regression algo-
rithm proposed by Logsdon et al. (33), where β jk ∼
I
[
β jk = 0

] (
1 − pβ

) + I
[
β jk �= 0

]
pβ . The spike penalty is

an improper prior, with a hyper-parameter, pβ , determin-
ing the prior probability that each β jk is non-zero. We
define an alternative parametrization of pβ with support
−∞ < l0 < ∞, l0 = 2 log

(
pβ

) − 2 log
(
1 − pβ

) + log (2π ),
This alternative parametrization motivates a new method
for choosing pβ as a function of the number of SERs (m)
and patients (n).

We propose to choose the penalty parameter for
a given data set that is computationally efficient,
l0 = −(F−1

(
1 − 0.05

m

) − log(n) + 2 log (1 − p) − 2log(p)).

This corresponds to pβ = exp(l0)−
√

2πexp(l0)
exp(l0)−2π

. The speed up of
the algorithm is significant, with a single run taking 10–100
times faster than the approach of Logsdon et al. (29). This
makes the algorithm very computationally efficient, and
scales approximately as O(nm). The most computationally
expensive step is the choice of the number of restarts,
but empirically there did not seem to be much gained by
looking at more than 12 restarts. This choice of penalty
parameter has F as the cumulative distribution function
of a χ2

1 random variable, with n patients, m SERs and
p = 0.95. In the variational Bayes spike regression model
each β jk coefficient has both a posterior probability of
association and a Z-statistic. The posterior probability of
a coefficient bounds the influence of the variable within
the model, e.g. if the posterior probability is zero, then
the SER will have no effect on the gene in question, and
if the posterior probability is one, then the SER will have
a full un-penalized effect. The Z-statistic is a measure
of the significance of the β jk parameter given the rest of
the fitted model. The above choice of prior probability
pβ corresponds to calibrating the posterior probability
for any given β jk to be 0.95 when its Z-statistic passes a
Bonferroni correction for the total number of features––in
this case a family-wise error rate of 0.05. This choice of
penalty parameter allows us to still use the feature level
Z-statistic proposed by Logsdon et al. (29), but without the
computationally expensive path search over l0, by having
SERs whose association passes a Bonferroni correction
contribute at least 95% of their maximal possible effect to
the model. We found empirically that this choice of penalty
parameter led to maximum power in the model with little
to none inflation of the test statistic.

Accordingly, we define the sparse basis for each gene
given the SERs in each individual regression model with
z2

jk > F−1
( 0.05

m∗r

)
, with z2

jk being the Z-statistic for the ef-
fect of the jth SER on the kth target gene from the fitted
spike model. For the SPARROW method, the driver sets are
constructed after applying a Bonferroni correction across
the driver genes of all models (0.05/(3052 × 17788) = 9.2
× 10−10) to fix the family-wise error rate to 0.05 across

every SER basis. The SPARROW and VBSR algorithms
are freely available from CRAN (http://cran.r-project.org),
and our project website (http://leelab-data.cs.washington.
edu/sparrow.R).

LASSO SERs

As with SPARROW, for the LASSO we use a penalized re-
gression methodology that identifies SERs for each gene.
We solve the following lasso optimization (8) problem β̂k =

argminβk

∑
i

(
yik − ∑

j
xi jβ jk

)2

− λk
∑

j
|β jk| with two dif-

ferent strategies for the choice of the penalty parameter λk
for each gene’s SER basis. The first strategy chooses the λk
that minimizes the 10-fold cross validation mean-squared
error. The second strategy chooses the λk that produces a
cross validation mean-squared error one standard deviation
from the minimum mean-squared error, where the standard
deviation is estimated across cross validation folds. All mod-
els are fit using the glmnet R-package (36). The lasso bases
are defined as Sk = I

[
β̂ jk �= 0

]
, where the SER scores com-

puted based on how often each SER has a non-zero coeffi-
cient.

Correlation and WGCNA SERs

Correlation SERs are inferred using a correlation network
approach. In general, we use the number of edges an SER
has in an inferred network as its SER score. A correla-
tion network is constructed similarly to the hard thresh-
olding WGCNA method of Langfelder and Hovarth (16),
where we test for the marginal dependence between each
SER and each target gene using an additive linear model
assuming independent and identically normally distributed
errors eik ∼ N(0, σ 2), yik = μk + xi jβ jk + eik. The additive
effect β jk is estimated using the maximum likelihood esti-

mator, μ̂k, β̂ jk, σ̂
2
k = argmaxμk,β jk,σ

2
k
L(μk, β jk, σ

2
k ), and the

null hypothesis H0 : β jk = 0 is tested using the standard
Wald test to produce a t-statistic tjk for each β jk. We then
construct the network using two different strategies. For the
Correlation1 strategy, we construct a network by applying a
Bonferroni correction for m ∗ r tests to each pairwise test.
The Correlation1 SERs for the kth gene are defined as Sk =∣∣tjk

∣∣ > G−1
(
1 − 0.025

m∗r , n − 2
)
, with G being the cumulative

density function of a tn−2 distributed random variable. For
the second method of building the network (Correlation2),
we choose a threshold for tjk such that the sparsity of the en-
tire correlation network is equivalent to the sparsity identi-
fied by the SPARROW bases across all genes. All estimates
and test statistics are produced using the ‘lm’ function in
R. We also construct a soft thresholded network similar to
WGCNA with the scale free rule (16), where the absolute
value of the correlation coefficients between SERs and each
gene are raised to a power. The power is chosen to make the
network as scale free as possible.

ARACNE SERs

We estimated a network using the ARACNE algorithm
to generate ARACNE SER scores (16). The ARACNE

http://cran.r-project.org
http://leelab-data.cs.washington.edu/sparrow.R
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network first estimates a non-parametric joint probabil-
ity density using a Gaussian kernel between each pair
of genes in the data set, (�z) = 1/n

∑
i

h−2 Q
(
h−1

∣∣�z − −→zi
∣∣),

where Q (. . .) indicates a standard bivariate normal density
function. The mutual information defined by this estimated

density is I (x, y) = 1
n

∑
i

log
(

f (xi ,yi )
f (xi ) f (yi )

)
. The ARACNE al-

gorithm then tests whether each pairwise mutual informa-
tion is significant, and defines an edge between two genes
when the mutual information is significant. Finally, for all
triplets of genes with significant pairwise mutual informa-
tion, the data processing inequality is used to prune away
edges where a gene d-separates two other genes. The net-
work that is produced after applying the data processing in-
equality to all triplets of genes is then the final ARACNE
network. We used the adaptive partitioning option to speed
up the run-time of the algorithm, and we set a significance
cutoff based on a Bonferroni correction as with the SPAR-
ROW and correlation methods for 0.05/(m ∗ r ). We treated
the SERs as transcription factors in the ARACNE method,
where edges between two non-transcription factor genes
will not be removed by the data processing inequality un-
less the third gene is a transcription factor. This allows a
fair comparison to the regression methods that focus only
on the edges for SERs.

SER definitions

For the ith SER, the SER score Hk
i was computed

as Hk
i =

m∑
j

I[θk
ji �= 0], where θk

ji is a parameter indi-

cating whether the ith SER is used in the bases for
the jth gene, for k (SPARROW, LASSO1, LASSO2,
Correlation1, Correlation2, ARACNE). For the soft thresh-
olding WGCNA method, the SER score was defined as
m∑
j

|Cor
(
yi , xj

) |β, with yi being the ith SER, xj the jth gene

and β the soft-thresholding parameter chosen to make the
network as scale free as possible. SER scores define a rank-
ing of SERs, where there is no absolute cutoff.

Sparse SER simulation

To test the performance of the SPARROW methods com-
pared to the LASSO methods we simulated genes under
selection using the expression data from 682 patients for
the 3052 SERs in AML. Genes were simulated by inde-
pendently selecting SERs with either a probability 3.9 ×
10−3 or 1.6 × 10−2, such that the expected number of SERs
(p) was either E[p] = 12 or E[p] = 50. The effects of the
selected drivers were sampled from an independent and
identically distributed (i.i.d.) standard normal distribution.
The expected pattern of expression for the simulated gene
was computed as the linear combination of sampled drivers
weighted by the sampled effects, with an i.i.d. error standard
normal error term added. This process was replicated 100
times. Additionally, for the result shown in Figure 3 we also
simulated a model with E[p] = 50, and the percentage vari-
ation explained by the regression model constrained to 80%
to compare the performance of SPARROW and LASSO.

Figure 3. Using the 3052 candidate SERs, we ran a simulation where 53
of the 3052 SERs had true effects sampled from a standard normal distri-
bution. (a) True regression coefficients plotted against estimated regression
coefficients with the SPARROW algorithm. True positives (TP), false posi-
tives (FP), false negatives (FN) and true negatives (TN) are also shown. (b)
True regression coefficients plotted against the estimated coefficients with
the LASSO1 algorithm. (c) True regression coefficients plotted against the
estimated coefficients with the LASSO2 algorithm.

Survival analyses

We ran all survival analyses by fitting a Cox propor-
tional hazards model (37). The log partial likelihood for
a Cox proportional hazards function is defined as l (β) =∑
i :Ci =1

βT Xi − log
∑

j :Yj ≥Yi

exp
(
βT Xj

)
, where Yi is the ob-

served time for observation i, Ci = 1 indicates that an event
occurred at time Yi , Ci = 0 indicates censoring at time Y,
Xi is the vector of covariates for observation i , and β as the
log hazard ratios for the vector of covariates. The log par-
tial likelihood is maximized using the ‘coxph’ function from
the survival package in R (38). The reported test statistic
for each covariate’s log hazard ratio β j is generated using a
Wald test based on the fitted model.

Random effects model

We tested the aggregate association between the variation in
the top 100 SERs and the expression of each gene with the
following probabilistic model yik = ∑

j :Hl
j =1

xi jγ j + eik, where

Hl
j = 1 indicates that SER j is in the top 100 SERs for

all methods. The null hypothesis γHl
1
, . . . , γHl

m
= 0, . . . , 0 is

tested using a random effects score test as implemented in
the Sequence Kernel Association Test R package (39) using
uniform weights and a linear kernel matrix.

Enrichment tests

All enrichments for gene sets are computed with Fisher’s ex-
act test. The enrichments are calculated relative to the en-
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tire set of SERs. All receiver operating characteristic (ROC)
curves and area under the curves (AUCs) are calculated us-
ing the ROCR R-package (40). We used the Malacards and
Genecards database (41) to generate disease-specific gene
lists for AML, cALL, CLL and MDS (see Supplementary
Note 1). The Malacards and Genecards database contains
aggregated gene annotations from 59 sources (41). For the
cancer driver gene list we used the genes annotated by the
Cancer Gene Census (CGC) (42), which are identified as
having evidence from multiple independent sources as be-
ing cancer drivers. For the tumor-specific drivers, we use
the 23 genes identified as AML drivers (43) and 67 genes
identified as GBM drivers (8). For SERS from AML (43)
we also looked at the 260 genes with tier 1 mutations in
at least two patients, 68 genes with tier 1 mutations in at
least three patients and 37 genes with tier 1 mutations in at
least four patients. Apoptosis and myeloid regulator gene
sets are shown in the Supplementary Note 1. For the sur-
vival enrichments we calculated a one-sided Kolmogorov–
Smirnov (KS) test for the top m = (1, . . . , 5) × 100 SERs
for each method based on the distribution of marginal P-
values from a survival analysis compared to the distribu-
tion of survival P-values of all SERs. To correct for the in-
flation in the KS test due to correlation between genes we
generated an empirical null distribution of P-values for all
17 788 genes for 10 000 permutations of survival time and
censoring. We then re-computed the KS test statistic using
the null permutations to determine the corrected survival
enrichment for the hubs from each network reconstruction
method. Additionally, for the ROC curve for the survival
enrichment, the set of genes nominally associated with sur-
vival based on a Cox proportional hazards model (P-value
<0.01) was used among all 3052 candidate SERs.

Leukemic stem cell score

We computed the leukemic stem cell (LSC) score using the
weights provided by Gentles et al. (44), for 28 of the 31
genes. These weights were applied to the training data after
each gene was standardized to have mean zero and variance
one.

Expression and drug sensitivity profiling of 30 AML patient
samples

We profiled drug-induced cytotoxicity of an initial sample
set of 30 viably cryopreserved primary AML specimens for
which detailed clinical information on patients was avail-
able, including age, gender, cytogenetics, mutation status,
antecedent hematologic disorder, initial blast count, ini-
tial platelet count, treatment regimen, response and sur-
vival. Screens of the drug sensitivity of primary AML sam-
ples was performed after thawing samples in the presence
of DNAase followed by short-term culture (48 h) in me-
dia containing horse serum and fetal calf serum and low
level hSCF (10 ng/ml), followed by density gradient cen-
trifugation to prepare blast-enriched fractions with high
(80–90%) viability and high blast fraction, ≥80–90. Blast-
enriched cell fractions were plated in 384 well plates coated
with matrix peptide at a density of 5000 cells/well. Once
plated cells were treated with obatoclax at eight different

concentrations ranging from the nanomolar to low micro-
molar range (3.3 × 10−9, 1.0 × 10−8, 3.3 × 10−8, 1.0 ×
10−7, 3.3 × 10−7, 1.0 × 10−6, 3.3 × 10−6, 1.0 × 10−5). Via-
bility was assessed after 4 days in culture using CellTiter-
Glo. These screens were performed, at the Quellos HTS
Core (http://depts.washington.edu/uwhts/) at the UW’s In-
stitute for Stem Cell and Regenerative Medicine (ISCRM).
RNA expression profiles of primary AML samples were
performed in parallel at the UW Center for Ecogenetics and
Environmental Health using the Affymetrix HU133 Plus
2.0 platform.

Microarray data processing for AML patients with drug sen-
sitivity

Gene expression data were collected on the Affymetrix
U133 Plus 2.0 platform (Affymetrix, Santa Clara, CA,
USA) for bone marrow samples from these 30 patients. As
with the public AML data, expression data were first pro-
cessed using a MAS5.0 normalization (28), and then probes
were mapped to Entrez gene annotations (25) with the help
of custom CDF (30). Potential batch effects were corrected
using the ComBat algorithm (31) based on the three batches
the arrays were run in. Signal intensities were natural log
transformed prior to batch effect correction.

Curve fitting to estimate drug sensitivity profiles

Nonlinear curve fitting was performed using MATLAB’s
‘nlinfit’ function. After curve fitting, summary statistics
were extracted based on the curve fits similar to the Cancer
Cell Line Encyclopedia (CCLE) (45), including the activity
area (AA), AUC, IC50, EC50 and Amax. Batch effects were
corrected using ComBat (31) for each drug sensitivity sum-
mary based on the five batches that experiments were run
in for the 30 patients. Curve fits for 30 patients are shown in
Supplementary Figure S1.

PYCARD and obatoclax association tests

Associations between PYCARD expression and obatoclax
sensitivity in patients were tested with either a standard lin-
ear regression model (with the ‘lm’ function in R) or a ro-
bust regression model (using the ‘rlm’ function from the
MASS package in R (46)) for the five drug sensitivity sum-
maries. Both expression data and drug sensitivity data were
Winsorized at the 95% percentiles of the distributions. The
robust regression method uses an M-estimator to decrease
the influence of outliers on the test-statistic for the additive
effect in a regression model (46). To control for a possi-
ble confounding factor, whether or not a patient achieved
a complete response (CR) from the therapy they were given
(not obatoclax) was included in the model.

RESULTS

Methods overview

To identify SERs, we fit our sparse learning algorithm
(SPARROW) using ∼3000 SERs in expression data from
AML, GBM, cALL, CLL and MDS patients. Candidate
SERs were chosen from transcription factors, chromatin

http://depts.washington.edu/uwhts/
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modifiers or regulators and signal transduction genes (32),
since regulatory genes are attractive targets of selection for
modulating expression of entire pathways (32,47). We prior-
itize SERs that are most frequently chosen in the sparse rep-
resentations across all genes as more likely to drive tumor-
specific evolution. To test the performance of our method,
we compare highly ranked SERs of SPARROW with those
of alternative statistical models that fall into four categories.
These categories include models that leverage sparse con-
ditional dependence relationships (SPARROW, LASSO1,2),
conditional dependence (ARACNE), marginal dependence
(Correlation1) and sparse marginal dependence (WGCNA,
Correlation2). For the LASSO we implement two versions
where the second version is sparser than the first. Details
are presented in the Materials and Methods section.

Superior sparse estimation from SPARROW algorithm com-
pared to LASSO

Similar to previous work (33,48,49), the SPARROW algo-
rithm outperforms the LASSO algorithm with two different
metrics for choosing the sparsity of the LASSO regression
model. The two tuning parameter selection approaches for
the LASSO include minimum 10-fold cross validation error
and the 1 standard deviation rule (36). We see in Figure 3a
that the SPARROW estimates for a simulated test case with
53 true SERs among 3052 candidates using the gene ex-
pression data from AML show improved performance com-
pared to the LASSO estimates (Figure 3b and c), in terms of
both the number of false positives (2 versus 158 and 62) and
the bias in the regression coefficients. The LASSO method
is known to produce biased estimates of the non-zero coef-
ficients, especially those with large effects (14). Hence why
the slope of the line is less than unity for the LASSO (where
a slope of unity is the expectation in the case of an unbiased
estimator).

AML mutation drivers
Recently, 23 genes with driver mutations were identified in
AML within The Cancer Genome Atlas (43) (Supplemen-
tary Note 1). Driver mutations were defined as genes with
a mutation frequency that was greater than the background
mutation rate, as determined with the MuSiC suite of tools
(50). Sixteen of these 23 genes were in our candidate SERs
of 3052 genes in AML, and we see significant enrichment
of these 16 AML drivers among the top 500 ranked SERs
from the SPARROW method (P-value: 4.1 × 10−6, enrich-
ment fold: 3.8) (Figure 4a), as well as the best classification
performance (AUC = 0.82). The only other method with
comparable performance is LASSO2 (P-value: 8.9 × 10−3,
enrichment fold: 2.3) while the other approaches performed
poorly at prioritizing genes with driver mutations. To test a
larger gene set of candidate SERs in AML, we also tested
for enrichment of genes mutated in at least two, three or
four patients in the TCGA data set (Figure 4b–d). The en-
richments and significance of the tests increase with the fre-
quency of recurrent mutation. This supports our hypothesis
that SERs are more likely to be genes that are under similar
shared selection across patients, and therefore more likely
to be recurrently mutated in their DNA.

Figure 4. (a) Enrichment of 23 genes with driver mutation in AML in SERs
estimated with seven different methods, along with receiver operating char-
acteristic (ROC) curves. (b) Enrichment of 260 genes mutated in at least
two patients in TCGA AML study. (c) Enrichment of 68 genes mutated in
at least three patients in TCGA AML study. (d) Enrichment of 37 genes
mutated in at least four patients in TCGA AML study. (e) Enrichment of
67 genes with driver mutation in TCGA GBM study for SERs inferred in
TCGA GBM.

GBM mutation drivers

To verify the enrichment for driver genes in another can-
cer, we investigated the TCGA GBM expression data. Over
65 genes with driver mutations were identified in GBM by
Frattini et al., with the MutComFocal algorithm (8). Of
these genes, 16 were in the candidate SER list (Supplemen-
tary Note 1). We similarly tested for enrichment of these 16
known drivers among the inferred SERs, and found signifi-
cant enrichment for SPARROW in the top 100 (P-value: 1.6
× 10−3, enrichment fold: 5.6) (Figure 4e). In this scenario,
LASSO2 was more competitive with SPARROW, though
only the sparse conditional methods (LASSO, SPARROW)
were able to efficiently identify SERs enriched for known
driver mutations.

Leukemic SERs

To further investigate the SERs in leukemia, we applied
SPARROW to two other leukemias (cALL, CLL) and MDS
(which frequently progresses to AML) using data from
the Microarray Innovations in LEukemia (MILE) study
(27). Leukemias and lymphomas are aggressive malignan-
cies, characterized by the accumulation of immature blasts
that fail to differentiate into the appropriate effector cells
of erythropoiesis, lymphopoiesis and myelopoiesis. Many
leukemia driver genes are also known regulators of normal
hematopoiesis or myeloid regulators (43). To test the hy-
pothesis that leukemia SERs were more likely to be myeloid
regulators, we tested for enrichment of 17 myeloid regula-
tors in the top SERs (Supplementary Note 1). There is sig-
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Table 1. Association between expression of PYCARD and response to obatoclax therapy for the log10 IC50 estimated from obatoclax dosage response
curves

log10 IC50 Patients (n = 30)

Model Variable � (95% CI) P-value

Univariate OLS PYCARD −0.37 (−0.71, −0.032) 0.033
Bivariate OLS PYCARD −0.45 (−0.73, −0.17) 0.0025

CR 0.52 (0.25, 0.79) 0.00051
Univariate robust PYCARD −0.38 (−0.74, −0.019) 0.04
Bivariate robust PYCARD −0.43 (−0.7, −0.16) 0.0029

CR 0.59 (0.33,0.85) 0.000077

We used two regression methods, ordinary least squares (OLS) and robust regression, to test for an association between PYCARD expression and obatoclax
sensitivity. To control for potential, a potential confounder in terms of good versus poor responders, whether or not the patient experienced a complete
response (CR) from the therapy they were given (in this case not obatoclax) was also included in the model.

nificant enrichment across AML, cALL, CLL and MDS
for these myeloid regulators, especially for the SPARROW
methods. For example, the SPARROW enrichments for the
top 500 SERs in AML, cALL, CLL and MDS had P-values
of 1.4 × 10−10, 9.3 × 10−7, 3 × 10−3, 1.4 × 10−10 and enrich-
ment folds: 5, 3.9, 2.5 and 5, respectively (Supplementary
Figure S2A–D). We tested for enrichment of gene sets spe-
cific to each leukemia based on Malacards and Genecards
(41), and also saw statistically significant but modest enrich-
ments, especially with SPARROW SERs (Supplementary
Figure S3A–D), with P-values: 3.1 × 10−10, 2.3 × 10−2, 4 ×
10−5, 6.2 × 10−3 and enrichment folds: 1.7, 1.4, 1.5 and 1.4
for AML, cALL, CLL and MDS, respectively, among top
500 SPARROW SERs. Finally there is a nominal associa-
tion for enrichment of genes identified in the CGC (42,51),
a gold standard of general cancer driver genes, though these
genes are not necessarily specific to the leukemias in ques-
tion (Supplementary Figure S4A–D), P-values: 3.4 × 10−4,
3.4 × 10−3, 3.4 × 10−3, 6.3 × 10−4 enrichment folds: 1.5, 1.4,
1.4 and 1.5 for AML, cALL, CLL and MDS, respectively,
among top 500 SPARROW SERs.

Comparison of methods for identifying SERs in AML

We have shown that the SERs identified by SPARROW out-
perform standard correlation or convex penalized regres-
sion (LASSO) approaches in identifying genes with known
or potential driver roles (Figure 4 and Supplementary Fig-
ures S2–S4). In addition we also show the AUC for all of
these results in Supplementary Table S1. All methods have
different orderings of SERs, as shown in pairwise plots of
SER scores (Supplementary Figure S5). We predict that
genes whose expression is driving the underlying tumor dis-
ease processes will be highly associated with the entire can-
cer transcriptome. To test this hypothesis, we took the top
100 SERs for each method in AML and tested whether their
joint variation was significantly associated with variation
for all genes (see the Materials and Methods section for fur-
ther details). The distribution of P-values across all genes
from this test is shown in Supplementary Figure S6. The
SPARROW methods produce the most significant associa-
tions between top SERs and genome-wide gene expression
(paired Mann–Whitney test P-value <2.2 × 10−16 for all
pairwise comparisons between SPARROW and other meth-
ods).

We predict that selection will favor fundamentally sparse
bases. The summary statistics for the SER inference are
shown in Supplementary Table S2. The SPARROW meth-
ods have both the sparsest median bases size (4) and me-
dian frequency that a given SER is used in a basis (24).
To test whether SPARROW is under-powered or the data
support sparse SER bases, we simulated 100 replicates of
gene expression data using 12 or 50 randomly SERs in
the AML data (Supplementary Table S3). We find that the
SPARROW method is well powered to identify denser bases
given the data (power 86% and 82%, respectively). This sug-
gests that the number of SERs for any given gene is quite
sparse and that the sparsity assumption leveraged by SPAR-
ROW is the key to identifying the SERs. The other spar-
sity methods (LASSO) have similar power to SPARROW
but with higher false discovery rates (0.65–0.86) as com-
pared to SPARROW (0.005–0.03). The genes downstream
of each SER identified by SPARROW were tested for en-
richment among canonical signaling pathways (52), and a
diverse range of processes was identified (Supplementary
Note 2). Enriched processes were not shared across SERs,
suggesting that each SER is a unique indicator of sets of
genes under selection in a subset of patients.

AML SERs are associated with patient prognosis

Next, we tested whether the expression levels of the iden-
tified SERs were more likely to be significantly associated
with overall survival using Cox proportional hazards regres-
sion. For the GBM data we did not observe a significant en-
richment for association with survival (results not shown),
though the variation in survival for the TCGA GBM is
much smaller (with patients doing uniformly poorly) than
in AML, so there may be less signal to detect. In AML we
modeled overall survival in several independent patient co-
horts (24,26,53) using expression of each SERs as predic-
tors with age, NPM1 mutation status and FLT3 mutation
status as covariates. We then computed a KS test statistic
to test for an inflation in the top univariate P-values from
the top ranked SERs with respect to the empirical distri-
bution of P-values (see the Materials and Methods section
for further details). This method of testing for survival en-
richment was performed to test if there was still enrichment
for association with survival after correcting for correlation
among the top ranked SERs for each method. Figure 5a
shows the permutation P-values from this KS enrichment
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Figure 5. (a) Association with overall survival in AML for top SERs across
the seven methods. Permutation P-value computed over 10 000 permuta-
tions. (b) Receiver operating characteristic (ROC) curves for survival asso-
ciated genes (Cox proportional hazards P-value <0.01) and SER scores.

test as a function of the SER ranking for the alternative
methods. Only the SPARROW method passes the empiri-
cal P-value threshold of 0.05. In Figure 5b the ROC curves
are shown for the prediction of survival associated genes
(P-value <0.01) based on the SER scores, where the highly
ranked SPARROW SERs are most likely to be associated
with survival. This method shows that even when not cor-
recting for correlation among genes, SPARROW still out-
performs the other methods for survival enrichment. The
AUC for these ROC curves along with the AUC excluding
known m-drivers and candidate c-drivers in AML is shown
in Supplementary Figure S7. We see that the SPARROW
method has the best AUC, and none of the methods are
greatly affected by the exclusion of genes with known AML
driver mutations or copy number aberrations. This result
implies that SERs selected by SPARROW tend to be im-
portant in determining the aggressiveness of tumor.

Gentles et al. (44) identified a strongly prognostic LSC
gene expression signature in patients with AML. Out of
the top 400 SPARROW SERs, 36% (143) were significantly
positively correlated with the LSC signature (after a Bon-
ferroni correction for 400 tests). In contrast, genome-wide
only 21% of genes were positively associated with the LSC
signature at the same significance threshold. The correla-
tion with the LSC signature was also significantly correlated
with the Z-scores from the Cox proportional hazards mod-
els (P-value: 1.1 × 10−5). In addition, the mean –log10(P-
value) from the Cox proportional hazards model for the top
400 SPARROW SERs is 0.87 ± 0.086, whereas genome-
wide the mean –log10(P-value) is 0.62 ± 9.6 × 10−3, also
indicating that the top SERs are enriched for genes associ-
ated with processes relevant to survival, including leukemic
stemness. Out of the top 400 SPARROW SERs, 31 were sig-
nificantly marginally associated with overall survival at an
False Discovery Rate (FDR) of 0.05, as shown in Supple-
mentary Table S4. This is a 21.5-fold increase over the pro-
portion of significant associations among all 3052 candidate
SERs (11 at an FDR of 0.05).

Top scoring AML SERs

The list of top scoring SERs included several genes with
known regulatory roles in AML. These included FLT3
(Fms-like tyrosine kinase 3), activating mutations of which

a significant fraction of AMLs, usually by internal tan-
dem duplications. It is believed to play a key role in early
hematopoiesis. IRF8, PTPN22, CEBPA and RUNX3 have
been identified as targets of the AML-ETO fusion protein
generated by the common t (8;21) (q22;q22) translocation
(54), and CEBPA has recently been used to define a clini-
cally relevant subgroup of AML wherein double mutations
in CEBPA confer better patient survival (53). Five genes
(IRF8, ELF4, RUNX3, FLT3, RAB37) are bound by the
PML-RARA (55) t(15;17) translocation that characterizes
the M3 subtype of AML (acute promyelocytic leukemia),
and fuses the retinoic acid receptor (RARA) to the promye-
locytic leukemia gene PML.

Notably, the first and third highest scoring SERs (RAB37
and RAB27A) are both Rab GTPases and members of the
Ras superfamily. Their specific role in the context of AML
is unknown. However Rab GTPases regulate nitric oxide
signaling through their effect on soluble guanylate cyclase
(56). The gene GUCY1A3 (encoding Guanylate cyclase sol-
uble subunit alpha-3) is one of the most highly expressed
on LSC versus LPC, and high expression is significantly as-
sociated with poor outcomes. The selection of RAB37 and
RAB27A as drivers together with the apparent importance
of GUCY1A3 to LSC biology suggests further study. The
fourth and fifth most highly scoring genes encode for zinc
finger proteins. ZNF521 (also known as early hematopoi-
etic zinc finger protein, EZHF) is highly expressed in early
hematopoietic cell types and is significantly expressed in
many AMLs (57). Its deregulation has been postulated to
play a role in hematopoietic cancers. Less is known about
ZNF185, but roles have been suggested for it in cellular dif-
ferentiation and regulation of proliferation of chronic myel-
ogenous leukemia cells.

Apoptotic SERs in AML

Dysregulation and inhibition of apoptosis is a critical fea-
ture of cancer, and in leukemias in particular. BCL-2 family
genes with anti-apoptotic functions are commonly mutated
or overexpressed in leukemias (58). Of 84 known apoptosis
genes (59), 30 were SERs. We found that these 30 apoptosis
regulators were more likely to be SERs in AML by SPAR-
ROW than those identified by other methods, especially in
the top 500 SPARROW SERs (P-value: 5.7 × 10−3, enrich-
ment fold: 2) (Supplementary Figure S8). The gene-set sizes
and enrichments for this result and for the other main gene-
sets tested in AML are shown in Supplementary Table S5.
The top three ranked apoptosis SERs based on SPARROW
are PYCARD, CASP1 and DAPK1. Since PYCARD is rel-
atively poorly characterized, particularly in the context of
AML, we focused on it in further analyses.

The apoptotic SER PYCARD is a potential biomarker for
obatoclax

PYCARD is known to play an important role in multi-
ple cellular processes, including inflammation through the
formation of the inflammasome (60), and mitochondrial
driven apoptosis (61). We functionally analyzed the genes
that selected PYCARD in their sparse SER basis. There
were four distinct clusters after clustering these genes based
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on expression (Mclust R package (62); Supplementary Fig-
ure S9). We tested the clusters for enrichment with Gene
Ontology (63) and found that the two largest clusters were
enriched for immune response (q-value: 2.5 × 10−15) and
mitochondria genes (q-value: 4.8 × 10−29), respectively; see
Supplementary Note S3.

The PYCARD protein is known to directly activate
CASP9 and BAX. In addition, BCL-2 genes are known
anti-apoptotic factors that inhibit normal BAX function
(58) (Supplementary Figure S10). We hypothesize that if
BCL-2 activity is reduced, PYCARD expression could be
a marker for apoptosis induced by BAX. Because of its high
ranking as an apoptotic SER in AML among the apoptotic
regulators, along with PYCARD’s role in BAX regulation,
we hypothesized that PYCARD expression is associated
with response to therapy for the anti-apoptosis BCL-2 in-
hibitor obatoclax in patients with AML. To test this hypoth-
esis, we assayed both genome-wide gene expression levels
of 30 patients with AML on the Affymetrix U133 Plus 2.0
platform (Affymetrix, Santa Clara, CA, USA) along with
in vitro drug sensitivity to obatoclax in leukemic tissue cul-
tured from these 30 patients. The AA (area above the dosage
response curve), AUC (area below the dosage response
curve), Amax (maximum inhibition response observed), IC50
(concentration that gives 50% inhibition) and EC50 (con-
centration that gives 50% inhibition between maximum and
minimum response) were estimated using a curve-fitting al-
gorithm for blast counts at varying concentrations of oba-
toclax (see the Materials and Methods section).

We tested for association between response to obatoclax
and PYCARD expression across 30 patients with both OLS
(ordinary least squares) and robust regression models (see
the Materials and Methods section). The drug sensitivity
measure of IC50 had the strongest evidence for an associ-
ation (Table 1 and Figure 6) with a negative effect −0.37
(95% CI: [−0.7,−0.032], P-value: 0.04) for the association
with PYCARD for the robust regression model. The neg-
ative effect suggests higher expression of PYCARD is in-
dicative of increased sensitivity to obatoclax. To control for
possible confounding in terms of patients who were good
responders to the therapy they were given (not the in vitro
response) versus poor responders, we controlled for CR in
the regression model and found that it increased the evi-
dence of association between PYCARD and obatoclax with
a conditional effect of −0.43 (95% CI: [−0.7,−0.16], P-
value: 0.0029). The good responders (CR = 1) tended to
have higher in vitro resistance to obatoclax with an effect
0.59 (95% CI: [0.33, 0.85], P-value: 0.000077) in the robust
regression model (Table 1 and Figure 6). While Amax has
little evidence of association (Supplementary Table S6 and
Supplementary Figure S11), the other drug sensitivity mea-
sures EC50, AA and AUC do have consistent evidence of as-
sociation (Supplementary Tables S7–S9 and Supplementary
Figures S12–S14). Additionally, to further test the robust-
ness of PYCARD as a good biomarker and SER, we per-
formed a joint test of association with survival and associ-
ation with Obatoclax, and meta-analyzed the results (Sup-
plementary Table S10) for the top 400 SPARROW SERs.
We can see that PYCARD has by far the strongest associa-
tion with both survival and response to Obatoclax therapy.
Among the set of 3052 candidate SERs, only 17 had more

Figure 6. Association between expression of PYCARD and response to
obatoclax therapy in terms of log10 IC50 estimated from obatoclax dosage
response curves. The linear best fit lines are shown for the good responders
(CR = 1) and the poor responders (CR = 0).

significant associations with Obatoclax than PYCARD, but
none of them showed as significant association with sur-
vival. Additionally, PYCARD had the highest SER score
among those genes as well. Finally, among all 17 788 genes,
70 had more significant associations with Obatoclax than
PYCARD, but none of these genes were as associated with
survival and PYCARD.

DISCUSSION

As the main contribution of this paper we provide new
criteria based on expression patterns to identify transcrip-
tional regulators under selection and driving tumor pro-
gression. We define the genes under selective pressure that
drive genome-wide expression changes as SERs, and pro-
pose a new statistical method, called SPARROW, to iden-
tify SERs based on gene expression data. SPARROW can
identify genes with known driver mutations more accurately
than similar methods based on the LASSO, and other popu-
lar approaches to learn gene association relationships from
expression data. These results are driven by a new sparse
regression technique we developed, which dramatically re-
duces false discovery rates compared to the LASSO.

The SPARROW method is designed to reveal vastly fewer
false positives when considering sparse regression mod-
els across multiple genes as compared to methods like the
LASSO, as shown in Figure 3. This reduction in the number
of false positive edges will illuminate which genes are truly
more conditionally dependent across all genes (i.e. the genes
that have high SPARROW SER scores). We posit that de-
pendencies among genes are generated by disease relevant
processes, such as the effect of driver events on gene expres-
sion (Figures 1 and 2). This makes SPARROW SERs much
more sensitive to genes that are driving some aspect of the
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disease process, and therefore may be more important when
considering patient outcomes, such as overall survival.

Selective pressure is an important criterion for under-
standing gene function, evolutionary processes and the ba-
sis of complex traits (64). There are many methods to es-
timate selection from DNA sequences in the field of evo-
lutionary biology, population genetics and cancer biology
(65). SPARROW is the first method to identify genes that
are enriched for driver mutations purely from expression
data. Existing approaches focus on the DNA sequence data,
where SPARROW improves on these approaches in mul-
tiple ways. First, the majority of somatic mutations iden-
tified in tumor genomes are passenger mutations. Second,
SPARROW can estimate the importance of a given gene on
genome-wide expression levels, which may be more func-
tionally relevant to the tumor biology (7). Finally, driver
events in cancer may occur at different levels such as with
epigenetic modifications, which are not detected by DNA
sequencing.

Based on the SPARROW analysis, we propose that PY-
CARD expression is a potential biomarker for in vitro re-
sponse to obatoclax. Obatoclax is a pan-inhibitor of anti-
apoptotic members of the BCL2 family of proteins, which
control the intrinsic or mitochondrial pathway of apopto-
sis (66). It is a BH3 mimetic with activity against all of the
antiapoptotic BCL2 family members (67), thus it is a ‘pan’
BCL2 antagonist. Obatoclax demonstrated activity against
AML cell lines and primary cells, causing cell cycle block-
ade at S-G2 at lower concentrations, and inducing apopto-
sis at higher concentrations (68). In contrast to other BCL2
inhibitors, it has activity against MCL1, and maintained ac-
tivity in the absence of BAK/BAX, implying other mecha-
nisms of action (68). Given we predict PYCARD is an SER
of overall apoptosis in AML, we expect that it would be ap-
plicable to a broadly acting anti-apoptotic drug like obato-
clax. Furthermore, obatoclax synergized with other agents,
including the BCL-2 inhibitor ABT737, the FLT3 inhibitor
sorafenib and the chemotherapy drug cytarabine to induce
apoptosis (69). In combination with sorafenib, it reduced
tumor formation in a xenograft mouse model with demon-
strated downregulation of MCL1 (68). Given obatoclax’s
potency in combination with orthogonal therapies, having a
biomarker for obatoclax efficacy could potentially improve
patient prognosis by informing patient selection for combi-
nation therapy involving obatoclax.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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