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MOCSS: Multi-omics data clustering
and cancer subtyping via shared
and specific representation learning

Yuxin Chen,1 Yuqi Wen,2 Chenyang Xie,1 Xinjian Chen,1 Song He,2,* Xiaochen Bo,2,* and Zhongnan Zhang1,3,*

SUMMARY

Cancer is an extremely complex disease and each type of cancer usually has
several different subtypes. Multi-omics data can provide more comprehensive
biological information for identifying and discovering cancer subtypes. However,
existing unsupervised cancer subtyping methods cannot effectively learn
comprehensive shared and specific information of multi-omics data. Therefore,
a novelmethod is proposed based on shared and specific representation learning.
For each omics data, two autoencoders are applied to extract shared and specific
information, respectively. To reduce redundancy and mutual interference,
orthogonality constraint is introduced to separate shared and specific informa-
tion. In addition, contrastive learning is applied to align the shared information
and strengthen their consistency. Finally, the obtained shared and specific infor-
mation for all samples are used for clustering tasks to achieve cancer subtyping.
Experimental results demonstrate that the proposed method can effectively
capture shared and specific information of multi-omics data and outperform
other state-of-the-art methods on cancer subtyping.

INTRODUCTION

Cancer is an extremely complex genomic disease. Each type of cancer will show changes in molecular

biology or genes at different stages of development which result in differences in invasion ability and

drug sensitivity. Due to the significant heterogeneity of cancer, it is necessary to formulate specific clinical

treatment options and prognosis for different patients. Therefore, it is of great significance to accurately

identify cancer subtypes, which can provide patients with precise treatment1 and develop new treatment

strategies.2

At present, the identification of cancer subtypes has shifted from traditional morphological subtyping to

molecular subtyping which is more precise. Most previous cancer subtyping methods only used single-

omics data, and studied a certain level of biomolecular changes. However, different levels of molecules

are related to each other in reprogramming cellular function.3–5 As a result, any research limited to a certain

molecular level is not enough to understand the complex pathogenesis of cancer and is difficult tomeet the

need for accurate molecular subtyping of cancer. With the rapid development of high-throughput biotech-

nology, it has become more and more feasible to obtain stable, reliable, and large-scale multi-omics data

from cancer patients. International collaborative projects, such as The Cancer Genome Atlas (TCGA)6 and

the International Cancer Genome Consortium (ICGC)7 have collected a large amount of multi-omics data

from different cancer patients. Multi-omics data can provide a more macro perspective for understanding,

recognizing, and identifying cancer subtypes. This is because biological data at different levels collectively

influence and modulate multiple biological processes, providing more comprehensive and reliable infor-

mation for cancer formation and development. Comprehensive and integrated molecular subtyping can

identify molecular relationships among multiple cancers, which provides a new direction for exploring

the clinical feasibility of cancer therapy.8

How to realize cancer molecular subtyping by integrating multi-omics data has become an appealing

research problem in recent years. Although the acquisition of multi-omics data has been relatively easy,

obtaining the ground-truth label of cancer subtypes is still difficult and costly. Therefore, multi-omics clus-

tering methods are often used in the study of cancer molecular subtyping. Currently, many multi-omics
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data clustering methods have been developed, which can be roughly divided into five categories: multi--

kernel learning, matrix factorization, dimensionality reduction, network-based methods and deep

learning.9–13

Methods based on multi-kernel learning aim to learn a convex combination of kernel functions for each

omics data, exploiting comprehensive multi-omics information for better clustering performance.14,15

However, these methods often have a large overhead in optimization and memory when facing a large-

size dataset. Matrix factorization methods perform joint matrix factorization of different omics data, with

the goal of finding a shared low-rank matrix in the latent space. Especially methods based on non-negative

matrix factorization, such as MultiNMF,16 iNMF,17 and jNMF,18 have attracted extensive attention due to

their flexible interpretability. However, since the objective function of non-negative matrix factorization

is not convex, it may lead to local optimal solutions. Methods based on dimensionality reduction include

CCA19 and MCCA.20 CCA linearly projects two omics data to a lower dimension and maximizes their cor-

relation, whileMCCA extends CCAwithmore than two omics. Such CCA-basedmethods can only calculate

linear correlations while multi-omics data may be non-linearly correlated. Network-based methods

construct a similarity network for each multi-omics data and then integrate them into a single one for clus-

tering. This category of methods is most widely used in cancer subtyping. Representative methods that use

this approach include SNF,21 ANF,22 NEMO,23 CIMLR,24 MCSM,25 DeFusion26 and MDICC.27 But network-

based methods have the problem of inaccurate similarity measurement when constructing the interaction

network, which easily leads to poor clustering performance. Deep learning methods utilize multiple neural

networks to train multi-omics data for obtaining latent representations, which are somehow integrated and

fed into downstream clustering tasks.28–34 It should be noted that the above-mentioned methods may

belong to more than one category at the same time.

Although some deep learning methods have been applied for cancer subtyping, they have not paid atten-

tion to the shared and specific information in multi-omics data at the same time, ignoring the complemen-

tarity and consistency. Multi-omics data, such as multi-view data and multi-modal data in other fields, are

multi-source data. They are descriptions of the same sample from different perspectives or levels. Multiple

different omics data could form a complete biological signal flow, and provide complementary and

common information. The information contained in multi-omics data can be divided into the following

two categories: consistent information (inter-omics shared information) and unique information (intra-

omics specific information). In order to fully mine and utilize the shared and specific information in multi-

omics data, we propose a novel method for multi-omics data clustering and cancer subtyping via shared

and specific representation learning (MOCSS). For each omics data, the method applies two autoencoders

(AEs) to extract shared and specific information, respectively. To reduce redundancy and mutual interfer-

ence, orthogonality constraint is introduced to separate shared and specific information. In addition,

contrastive learning is applied to align the shared information extracted from different omics data in sub-

space and strengthen their consistency. Through the above process, a unified form of representation is

learned for each sample, which contains inter-omics shared information and intra-omics specific informa-

tion. Finally, the representation matrix of all samples is fed into the downstream clustering task, and the

K-means clustering algorithm is applied to obtain the cluster label assigned to each sample, which repre-

sents its cancer subtype.

The key contributions of this study include the following three points:

The model proposed in this study can effectively obtain inter-omics shared information and intra-omics

specific information from multi-omics data, and reduce the redundancy and mutual interference among

them; The representations of shared information in multi-omics data are aligned in subspaces by using

contrastive learning to enforce consistency; Experimental results show that the proposed model has better

clustering performance and effectively achieves cancer subtyping, which is superior to other state-of-the-

art methods.

RESULTS

Datasets

To evaluate the performance of our proposed method, we choose five publicly available cancer multi-

omics datasets for experimental analysis, including BRCA, GBM, LUAD, SARC, and STAD. These datasets

all include the following three types of omics data: mRNA expression, miRNA expression, and DNA
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methylation. The above datasets are obtained fromMOGONET35 or downloaded from TCGA, and the data

are preprocessed using the method mentioned in.36 It should be noted that in SARC, because the number

of samples of the two subtypes (MPNST: 5, SS: 10) is far less than that of other subtypes, we only uses the

remaining four subtypes for experimental analysis. The details of five datasets are summarized in Table 1. In

order to eliminate the influence of different value ranges of multi-omics data, it is necessary to normalize

the original data first. We useMin-Max Normalization tomap the original data to the range of [0, 1], which is

defined as follows:

X� =
X � min

max � min

where X represents the original single omics data. max and min are the maximum and minimum values in

the original omics data, and X� denotes the normalized data.

Evaluation metrics and empirical setting

To evaluate the clustering performance of our method, we use three evaluation metrics: Normalized

Mutual Information (NMIÞ, Adjusted Rand Index (ARIÞ and Accuracy (ACCÞ. A larger value of them indicates

a better clustering result.

NMI is a typical metric to evaluate the consistency between the obtained cluster labels and ground-truth

labels of the sample. NMI is defined as:

NMIðY ; bY Þ =
23 IðY ; bY Þ
HðY Þ+Hð bY Þ

where Y and bY are the ground-truth labels and cluster labels, respectively. Ið$Þ is the mutual information,

and Hð$Þ represents the entropy. The value range of NMI is [0, 1].

ARI is a widely used metric to measure the concordance between two clustering results. ARI is defined as:

ARI =
23 ðTP$TN � FN$FPÞ

ðTP+FNÞðFN+TNÞ+ðTP+FPÞðFP+TNÞ
where TP represents the number of true positive samples, and TN represents the number of true negative

samples in the prediction. FN represents the number of false negative samples, and FP represents the num-

ber of false positive samples in the prediction. The value range of ARI is [0, 1].

ACC is used to compare the match between the obtained cluster labels and the ground-truth labels, which

is defined as:

ACC =

PN
i = 1d

�
yi;mapðby iÞ

�
N

where yi and by i denote the ground-truth labels and cluster labels, respectively.N is the number of samples,

and mapð$Þ denotes the permutation mapping function, which can generally be done by the Hungarian

Algorithm. dð$Þ represents an indicator function, which is defined as follows:

dðx; yÞ =

�
1 if x = y
0 otherwise

The hyperparameters in MOCSS include the layers of AE network l, the training batch sizeM, the represen-

tation dimension dz , and the temperature parameter t. The hyperparameter settings are shown in Table 2.

Table 1. Details of the datasets used in the experiments

Dataset mRNA expression miRNA expression DNA methylation Samples Subtypes

BRCA 1000 1000 503 875 5

GBM 6000 534 5000 272 4

LUAD 6000 554 6000 144 3

SARC 6000 820 5000 191 4

STAD 6000 519 6000 198 4
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Comparison with state-of-the-art clustering methods

To evaluate the clustering performance of our model, we compared MOCSS with the following six state-of-

the-art clustering methods for multi-omics data integration in comparative experiments.

SNF constructs a sample-sample similarity network for each omics data and updates them iteratively through a

message-passing process to make these networks become more and more similar. NEMO constructs a simi-

larity network between samples for each omics data, and then modifies the similarity to relative similarity

(RS), thus improving comparability between omics. It integrates different omics data by averaging relative sim-

ilarity in different similarity networks. DeFusion introduces a denoised network regularization to uncover a

consistent latent representation among multi-omics data by capturing noise and data-specific patterns in

the error term. MDICC constructs an affinity network for each omics data and uses a sparse subspace learning

framework to reduce noise interference and fusemulti-omics data. Subtype-GANproposes a deep adversarial

learning approach based on the multiple-input multiple-output neural network to model the complex omics

data accurately. Subtype-DCC proposes an end-to-end multi-omics clustering approach using decoupled

contrastive learning to identify cancer subtypes. The abovemethods perform clustering algorithms on the ob-

tained fusion network or latent representation matrix to realize cancer subtyping.

It is worth mentioning that all of the above methods except Subtype-DCC are two-stage multi-omics

clusteringmethods. The hyperparameter settings for thesemodels are chosen from the values recommended

in the relevant papers. In this part, we set the representation dimension dz = 128, the layers of network l = 9,

and the temperature parameter t = 0:4. The experimental results are shown in Figure 1. It can be seen that

our model achieves the best performance in most metrics of all datasets. This illustrates that MOCSS has

shown an excellent ability to identify cancer subtypes in multiple datasets. The above four comparison

methods all involve calculating the similarity between different samples, which has higher requirements on

the similaritymeasure function. Sincemulti-omics data are often high-dimensional and noisy, the similarity net-

works obtained in the above fourmethodsmay be difficult to accurately describe the real relationship between

samples, which greatly affects their performance. Since our proposed model takes advantage of the powerful

feature learning ability of neural networks, it can not only obtain high-quality representations, but also learn

complementary and consistent information from multi-omics data. Therefore, MOCSS can exploit and utilize

the information of multi-omics data more effectively than the network-based methods.

Parameters study

To illustrate the impact of hyperparameters on model performance, we conducted parameter-tuning ex-

periments. Since the sample size of the BRCA dataset is the largest, we conduct experiments on this

dataset.

Figure 2A shows the effect of different values of M on the model performance. In this part, the values ofM

are taken in the range of f32; 62; 128; 256g and the rest of the hyperparameters are set to dz = 128, l = 9,

t = 0:4. According to the results, the model’s performance increases and then decreases as the training

batch becomes larger, and all metrics achieves optimal values when M = 128. The reason may be that

when the training batch is appropriately increased, more negative samples are provided for the anchor

samples in contrastive learning, which is helpful for the learning of representations. However, when

continuing to increase the training batch, too many negative samples may cause some hard samples

that are originally of the same category as the anchor samples to be farther away in the latent space.

This will result in that these hard samples may be assigned wrong cluster labels.

Figure 2B demonstrates the impact of representations of different dimensions on clustering performance.

We set the representation dimension dz = f32;62;128;256g,M = 128, l = 9, t = 0:4 . When the dimension

Table 2. Hyperparameters of the MOCSS model

Hyperparameters Setting

Layers of autoencoder network(l) f5; 7; 9;11; 13g
Training batch size(M) f32; 64; 128;256g
Dimension(dz ) f32; 64; 128;256g
Temperature parameter(t) ½0;1�
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of representation increases in a certain range, the more adequate information it can express. When

dz = 128, the model reach the highest value among the three metrics, and the dimension size at this

time is enough to represent the comprehensive information of the sample. When the dimension continues

to increase, it may lead to noise and redundancy, resulting in a decrease in the clustering performance.

Figure 2C shows the impact of AEs with different numbers of layers on the clustering performance. In this

part, we set the layers l = f5;7;9;11;13g,M = 128, dz = 128, t = 0.4. When the number of layers l = 9, the

model performance reaches the optimal value among the three metrics. As the number of network layers

increases, the learning ability of the model and the quality of the representation gradually improve. How-

ever, when l continues to increase, the parameters that the model needs to train are also increasing.

Limited by the number of samples, model training may be difficult to converge, resulting in a significant

drop in clustering performance.

Figure 2D shows the effect of different t. We set t = f0:1;0:2;0:3;0:4;0:5;0:6;0:7;0:8;0:9;1:0g,M = 128;dz =

128, l = 9. When the temperature parameter t = 0.4, the model performs best. The temperature parameter

is able to adjust the attention to hard samples. As the value of t increases, the model can better retain the

learned latent semantic structure, which facilitates the performance of downstream clustering task.

However, when t continues to increase, the model ignores the learning of hard samples, and some hard

samples that are not in the same class as the anchor samples cannot be distinguished, which leads to

them being assigned the wrong cluster labels. Therefore, when t = 0:4, our model achieves a better bal-

ance in terms of attention to hard samples.

Ablation study

To verify the validity of each component inMOCSS, we conduct ablation study to illustrate the effect of AEs,

orthogonality loss, and nonlinear projection function in contrastive learning on model performance. The

results are illustrated in Table 3.

AEs are employed in MOCSS to obtain a robust initial representation for each sample. In the ablation ex-

periments, we use deep neural networks with the same number of layers as the encoder to complete the

representation extraction instead of the AEs. The performance of using AEs for feature extraction is obvi-

ously better than that using DNN network. This is due to the ability of the AE to reconstruct the original data

Figure 1. Clustering performance of different models on five datasets
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and learn a high-quality representation by minimizing the loss between the reconstructed data and the

original data.

We introduce orthogonality constraint in the model to separate the shared and specific information. We

compared the impact of using orthogonality constraint or not on the model’s clustering performance.

It’s clear that the model shows better performance when using orthogonality loss. This is because when

the orthogonality constraint is not used, the two types of information may be redundant and pollute

each other, which affects the performance of the model to a certain extent.

Furthermore, we apply a two-layer nonlinear projection function in instance-level contrastive learning. We

investigate the importance of non-linear projection function. It can be found that nonlinear projection func-

tion can improve the clustering performance. This is due to the loss of information caused by contrastive

learning, which removes information that may be useful for downstream clustering task. By using the

nonlinear projection function f ð$Þ, more useful information can be formed and maintained in the represen-

tation zvc;i.

Visualization

As shown in Figure 3, Umap37 is used to visualize the trained representations of the above five datasets in a

2-dimensional space. It can be observed that the labeled points from the same category are relatively

concentrated in the five datasets, and the clusters of different categories can be better distinguished.

This validates the representation capability and clustering performance of our model. For the GBM data-

set, there is one class (marked in red) that cannot be clearly distinguished from the other three classes. Ac-

cording to investigation, it is found that the subtype labels of GBM may have some errors. Recent studies

suggest that GBM should be classified into three subtypes instead of the four subtypes labeled by TCGA.38

Survival analysis

To validate the effect of prognostic prediction of the model on different cancer subtypes, five cancer data-

sets from TCGA6 are used for survival analysis experiments, including BRCA-sur, BLCA-sur, LUAD-sur,

LUSC-sur, and SKCM-sur. The reason for choosing these five datasets is that they have a large number

of samples and the experimental results could be more accurate. Since the original feature dimensions

of three omics in the five cancer datasets differ greatly, we also use the method in36 for data preprocessing.

The details of these datasets are shown in Table 4.

We applied MOCSS and the other four state-of-the-art methods on these five datasets and calculated Cox

proportional risk regression P-values. Specifically, we selected three different cluster numbers (3/4/5) for

each dataset, and calculated the P-value of each method under different clusters. Statistical significance

was determined using � log10 P-value from the log rank test. The results are shown in Table 5. It can be

seen that MOCSS has a relatively high � log10 P-value in most of the results, which means that MOCSS

shows a stronger ability to detect cancer subtypes than the other four methods. Although NEMO on the

SKCM-sur dataset (cluster = 4) had the most significant � log10 P-value (6.64) among the six comparing

methods, � log10 P-value obtained by MOCSS also reached a higher level (5.66). It is worth mentioning

that the number of cancer subtypes in both BRCA-sur and LUAD-sur datasets is generally considered to

be definitive (BRCA-sur: 5; LUAD-sur: 3).38 MOCSS achieved the highest � log10 P-value under these

Figure 2. The impact of hyperparameters on the performance of MOCSS

(A) The impact of the training batch size M on the clustering performance of MOCSS for the BRCA dataset.

(B) The impact of the dimension dz on the clustering performance of MOCSS for the BRCA dataset.

(C) The impact of the number of layers l on the clustering performance of MOCSS for the BRCA dataset.

(D) The impact of the temperature t on the clustering performance of MOCSS for the BRCA dataset.
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two subtype settings, which further confirms that MOCSS has a strong ability to detect cancer subtypes and

can be used as an effective tool for cancer molecular subtyping. In addition, using LUAD as an example, we

plot the survival curves of all methods. The results are shown in Figure 4. Obviously, the differentiation be-

tween different cancer subtypes identified by MOCSS is the highest, showing the best ability to identify

cancer subtypes. When the number of cancer subtypes is set to 3, there is a clear survival difference be-

tween subtype 0 (marked in blue) and the other two subtypes (marked in red and black). This means that

patients with this subtype face a higher risk and may need to be focused on in clinical treatment.

Case study

Since LUAD is one of themost common types of lung cancer, we use LUAD-sur dataset as an example in the

following analysis. In fact, each of omics data exhibits a distinct molecular pattern across the three different

molecular subtypes of LUAD. As shown in Figure 5A, we present a heatmap of features among these sub-

types. Specifically, we selected and demonstrated features whose Normalized Mutual Information (NMI)

values are ranked in the top 50 of all NMI values across all feature types. Notably, each subtype showed

distinct mRNA expression, miRNA expression, and DNA methylation profiles, with a particularly evident

signature difference observed between subtype 1 and subtype 3. The results indicate that these three sub-

types may involve distinct molecular mechanisms. Furthermore, these features have the potential to serve

as reliable biomarkers for distinguishing different LUAD subtypes.

To bolster the credibility of these putative molecular biomarkers, we studied the biological contextualiza-

tion in some cases. Among the top 5 important features of mRNA expression, four genes (SLC14A2, TTK,

KIAA1524 and CENPA) are shown as potential biomarkers in LUAD according to previous researches.39–44

As shown in Figures 5B–5E, the four genes also significantly affect the prognosis of patients with LUAD.

Furthermore, the contribution of deregulated miRNAs to the pathogenesis of LUAD has been studied in

recent years, and some miRNAs have been shown to carry potential diagnostic and prognostic values.

Among the top 5 important features of miRNA expression in this study, four miRNAs (hsa-miR-4746-5p,

hsa-miR-375-3p, hsa-miR-4709-3p and hsa-miR-196b-5p) were found associated with LUAD aggressiveness

and prognosis in LUAD according to previous researches.45,46 Collectively, these features may serve as

diagnostic and prognostic markers for LUAD.

Moreover, we also found associations between the subtypes and clinical variables. The pathologic stage

combines the results of both the clinical staging (physical exam, imaging test) with surgical results. It esti-

mates the extent of the cancer, where stage IV is themost serious condition. Tumors in subtype 3 tend to be

diagnosed at more advanced stages (IV) (Figure 5F). For the number of packs smoked each year, the pa-

tients with subtype 3 obviously have more smoking (Figure 5G). These results hint a correlation between

smoking and the severity of LUAD. It has been established that smoking plays a significant role in the initi-

ation and progression of LUAD.47–50

DISCUSSION

In this study, we propose a deep learning-based multi-omics clustering method for molecular subtyping of

cancer. The proposed MOCSS can effectively mine and utilize consistent information and unique informa-

tion in multi-omics data. We extract inter-omics shared information and intra-omics specific information

from each omics. Contrastive learning is applied to align the shared information between different omics

and reinforce their consistency. In addition, the orthogonality constraint can effectively separate the two

types of information and reduce their redundancy and mutual interference. MOCSS finally learns complete

representations for each sample, which contain more comprehensive information and can better distin-

guish different classes of samples.

Table 3. Ablation study results

AE

Orthogonality

Constraint Projection function NMI ARI ACC

3 U U 0.4094 0.3519 0.6229

U 3 U 0.4722 0.4770 0.6857

U U 3 0.4634 0.4679 0.6823

U U U 0.4737 0.4845 0.7017
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We conducted a series of experiments on 10 cancer datasets. Experimental results demonstrate that

MOCSS exhibits better clustering performance than the currently available state-of-the-art multi-omics

clustering methods. We show the representations learned by MOCSS in a low-dimensional space using

visualization technique. It is obviously that the representations learned on five datasets have a better dis-

tribution of clusters and the samples of each category are differentiable. At the same time, the results of

survival analysis also support our conclusions. MOCSS can distinguish biologically meaningful clusters.

In addition, we perform the case study to give the significant biomarkers of each subtype and found asso-

ciations between the subtypes and clinical variables.

Overall, our proposed MOCSS is able to adapt to a wide range of omics data and serve as an effective tool

for molecular subtyping of cancer.

Conclusion

Currently, deep learning (DL) has achieved impressive success in the field of bioinformatics due to its

excellent feature representation ability and high learning capability. DL-based clustering methods for

multi-omics data have emerged as a powerful tool for cancer subtyping. In this study, we propose a

novel method for multi-omics data clustering and cancer subtyping via shared and specific representa-

tion learning (MOCSS). It applies multiple AEs to extract inter-omics shared information and intra-

omics specific information, then uses instance-level contrastive learning to reinforce the consistency

of shared information across omics. In addition, to avoid redundancy and mutual contamination be-

tween the two types of information, we introduce an orthogonality constraint to separate shared and

specific information. MOCSS learns the effective clustering information of the samples and improves

the accuracy of unsupervised cancer subtyping. The superiority of the model was demonstrated by

Figure 3. Umap visualization of five cancer datasets

Table 4. Details of the datasets used in the survival analysis

Dataset

mRNA

expression

miRNA

expression DNA methylation Samples

BRCA� sur 6000 513 6000 506

BLCA� sur 6000 549 6000 333

LUAD� sur 6000 554 6000 310

LUSC� sur 6000 878 5000 343

SKCM� sur 6000 901 5000 438
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conducting several comparative experiments on five different cancer datasets. Meanwhile, we conduct-

ed the ablation study to demonstrate the effectiveness of introducing various constraints and compo-

nents. We also further validated the ability of the model to distinguish between different cancer sub-

types through visualization.

Although MOCSS has relatively good performance in cancer subtyping, our work still faces some

challenges. First, due to the lack of ground-truth labels for cancer subtypes in unsupervised learning,

we do not select appropriate negative samples or positive samples when applying contrastive

learning, which may limit the clustering performance. It would be beneficial to introduce high-quality

Table 5. Survival analysis on the five datasets using MOCSS and other methods

Dataset SNF NEMO DeFusion MDICC Subtype-GAN SubtypeDCC MOCSS

BRCA� sur (3) 1.08 1.04 1.79 0.08 1.72 0.33 0.25

(4) 1.03 1.23 1.19 0.03 1.23 0.72 1.31

(5) 0.26 0.57 1.33 0.02 0.84 1.36 1.83

BLCA� sur (3) 2.54 2.04 3.38 1.18 1.81 0.11 2.38

(4) 2.08 1.74 2.85 0.98 1.58 1.57 3.47

(5) 2.01 1.44 1.00 1.74 1.61 2.87 3.45

LUAD� sur (3) 0.28 0.83 0.48 0.37 0.05 0.86 2.76

(4) 1.16 1.76 0.07 0.28 0.21 0.45 2.56

(5) 0.06 0.74 0.38 0.20 0.31 0.19 1.90

LUSC� sur (3) 1.23 1.46 0.65 0.45 1.09 0.66 1.07

(4) 1.24 1.23 1.08 0.43 1.44 0.44 1.75

(5) 1.61 0.74 0.98 0.07 1.21 1.23 1.89

SKCM� sur (3) 1.55 1.33 2.17 0.61 2.12 0.32 2.18

(4) 1.06 6.64 2.35 0.48 3.64 0.77 5.66

(5) 2.56 4.07 3.25 0.72 3.98 0.22 4.30

Statistical significance was determined using �log10P-values from the log-rank test. Three different dataset clusters were formed; the cluster number is in pa-

rentheses. The best results are in boldface. Suboptimal results are underlined.

Figure 4. Survival curves obtained using MOCSS and four state-of-the-art methods on the LUAD-sur dataset
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Figure 5. Patterns across the three different molecular subtypes of LUAD

(A) Heatmap of features significantly differential among LUAD subtypes that are identified by using MOCSS.

(B–E) Survival analysis of the association between the expression levels of important features and overall survival time in LUAD. Patients were classified in

three different categories according to mRNA expression of important features.

(F) Distribution of stage at diagnosis across three subtype groups.

(G) Distribution of the number of packs smoked each year across three subtype groups.
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pseudo-labels to further improve the model performance. It is also important to mention that our

model is a two-stage clustering model. The downstream clustering information can be used to guide

the learning of the representation for end-to-end training, which may be beneficial to improve clus-

tering performance.

In conclusion, MOSCC based on DL effectively exploits the consistency and complementarity in multi-

omics data and can be used as an unsupervisedmodel for the identification of cancer subtypes. Performing

cancer subtyping on existing multi-omics data will facilitate precise diagnosis and prognostic stratification

of patients with cancer.

Limitations of the study

The sample size of different cancers from TCGA is different, as an example, the sample size of LUAD

is smaller than those of other cancer datasets, which may lead to statistical bias. In BRCA, based on

gene expression profiling criteria, there may be ambiguity in the classification of Luminal A and

Luminal B so that Luminal A and Luminal B subtypes are difficult to distinguish. In addition, the significant

prognostic markers identified by MOCSS need to be further investigated to further verify the impact

on LUAD.
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METHOD DETAILS

Problem definition

A cancer multi-omics dataset is denoted as X = fX1;X2;.;XVg, where V represents the number of omics.

Xv = fxv1 ; xv2 ;.; xvNg˛RN3dv represents the v-th omics data with N samples, each with dv -dimensional fea-

tures. Y = fy1; y2;.; yNg is denoted as the ground-truth label set of N samples, where yi represents the

ground-truth label of the i-th ð1 % i %NÞ sample xi, that is, the cancer subtype. There are K cancer sub-

types in allN samples, so yi ˛ f1; 2;.;Kg. Based on the given multi-omics data set X , a clustering algorithm

is applied to obtain the corresponding cluster label set bY = fby 1;by 2;.;byNg, where by i represents the cluster

label assigned to the i-th ð1 % i %NÞ sample, that is, the cancer subtype predicted by the proposed

model. Our goal is to predict the labels of all N samples as accurately as possible, so that the predicted

labels in bY are more consistent with the corresponding ground-truth labels in Y .

Method overview

The cancer subtyping method proposed in this study is a two-stage method. The first stage is based on

shared and specific representation learning, which aims to learn a unified form of representation for

each sample. First, we employ two AEs for each omics data to extract shared and specific information,

respectively, and then apply instance-level contrastive learning to enforce the consistency of shared infor-

mation among different omics data. At the same time, the orthogonality constraint is applied to separate

these two types of information, and finally the representation of each sample is output. The second stage is

to perform the K-means clustering algorithm on the learned representationmatrix of all samples and assign

cluster labels for each sample to realize cancer subtyping. The overview of MOCSS is shown in Figure S1.

REAGENT and RESOURCE SOURCE IDENTIFIER

Deposited data

TCGA cancer program The Cancer Genome Atlas Program

(TCGA) - NCI

https://github.com/ChenyuxinXMU/MOCSS/

dataset

Software and algorithms

Python 3.7.11 Python https://www.python.org

Numpy 1.21.2 Numpy https://numpy.org

Pytorch 1.10.1 Pytorch https://pytorch.org

Scikit-learn 1.0.2 scikit-learn: machine learning in Python https://scikit-learn.org

MOCSS MOCSS https://github.com/ChenyuxinXMU/MOCSS
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Shared and specific representation learning

Multi-omics data and multi-view data belong to multi-source data, and they are essentially descriptions of

the same sample from different perspectives. We learn from the shared and specific representation

learning in multi-view learning to achieve the multi-omics data fusion learning. Figure S2 shows the basic

idea of shared and specific representation learning based on two views.

The purpose of multi-view learning is to enable the model to achieve better performance in downstream

tasks by effectively exploiting the comprehensive information contained in multiple views. Previously, most

methods can be roughly divided into two categories: joint representation learning and aligned represen-

tation learning. The former method applies single-view learning method on each view for dimensionality

reduction, and then concatenates the representations learned from all views. This kind of methods only

learns complementary information from each view. In addition, simply concatenating all representations

is not interpretable and prone to the dimensional disaster. Aligned representation learning assumes

that there is a low-dimensional subspace shared by multiple views. This kind of methods only considers

the consistency of multi-view data, which may lose some specific information that are beneficial for recon-

structing each view. For multi-view data in the real world, it is not enough just to consider consistency or

complementarity. Therefore, neither of the above two kind of methods can learn comprehensive informa-

tion for samples.

To solve the above problem, shared and specific representation learning is proposed as a novel multi-view

learning architecture: Such method aims to effectively exploit and utilize complementary and consistent

information from different views. Complementary information is also named specific information, which

represents the unique information of each view itself. Consistent information is also named shared infor-

mation, which are some common properties among different views. In addition, the shared information

learned from different views should be consistent with each other. This kind of methods first utilizes

multiple networks to extract shared and specific information from each view, and then aligns all shared in-

formation of different views. Finally, the specific information of each views and the consistency information

they shared are fused into a complete representation of all samples.

Representation initialization

In order to extract shared and specific information frommulti-omics data, two AEs are employed to extract

corresponding features for each omics data. Each omics has its individual encoder so that to fit the specific

size of input data. Specifically, for the v-th omics dataset Xv , the encoders Ev
c and Ev

s learn the representa-

tions zvc;i and zvs;i of sample xvi ð1 % i %NÞ, respectively. zvc;i and zvs;i represent the shared information and the

specific information of xvi respectively, denoted as:

zvc;i = Ev
c

�
xvi
�

(Equation 1)

zvs;i = Ev
s

�
xvi
�

(Equation 2)

For the representations zvc;i and zvs;i , decoders Dv
c and Dv

s reconstruct the data sample respectively and

obtain ~xvc;i and ~xvs;i. Each omics has a corresponding decoder to reconstruct the data. The structure of

the decoder is the opposite of the encoder. The reconstruction process of ~xvc;i and ~xvs;i are denoted as:

~xvc;i = Dv
c

�
zvc;i

�
(Equation 3)

~xvc;i = Dv
c

�
zvc;i

�
(Equation 4)

According to the above equations, the corresponding reconstruction loss Lrec of multi-omics data in each

training batch can be denoted as:

Lrec =
XV
v = 1

XM
i = 1

���xvi � ~xvc;i

���2

2
+
XV
v = 1

XM
i = 1

���xvi � ~xvs;i

���2

2
(Equation 5)

where M represents the number of samples in each training batch.
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Instance-level contrastive learning

The shared information of different omics obtained in the previous step often lacks consistency. Therefore, we

need to align the extracted representations fzvc;igVv = 1
from V omics data. In previous studies, most methods

utilize adversarial training for alignment, which discriminate the distribution of each shared information by

training a generative adversarial network (GAN). When the discriminator is unable to distinguish differences

between shared information fromdifferent omics, it is considered that these shared information are sufficiently

similar.51 However, GAN is often difficult to train and thus prone to model crashes, which cannot be improved

well even with longer training time. In addition, since adversarial alignment only considers the representation

distributions, a given cluster from one omics might be aligned with a different cluster from another omics.

To overcome the shortcomings of adversarial training, new alignment methods are needed to reinforce the

consistency of shared information and contrastive learning has made impressive achievements in unsuper-

vised representation learning.52,53 The basic idea of contrastive learning is that in the feature learning process,

the distance between positive pairs is brought closer, while the distance between negative pairs is drawn

farther apart. Contrastive learning learns the representation by comparing a given anchor sample with its cor-

responding positive and negative samples in subspace. In Figure S3, we take two omics data as an example to

illustrate the basic idea of unsupervised instance-level contrastive learning. In instance-level contrastive

learning, the consistency between different augmented instances of the same sample is maximized for repre-

sentation learning to address the problem of adversarial learning in representation alignment.53,54 This pro-

vides a new idea for the alignment of shared information in multi-omics. Therefore, we perform instance-level

contrastive learning instead of adversarial learning to achieve the alignment of shared information.

If contrastive learning is directly applied to zvc;i, it may lead to information loss,53 which could make against

downstream tasks. Therefore, instead of using zvc;i directly, we apply a two-layer nonlinear projection

function f ð$Þ to map zvc;i to hvc;i so that to preserve more useful information in zvc;i , that is:

hv
c;i = f

�
zvc;i

�
(Equation 6)

Since the ground-truth labels are unknown in unsupervised learning, for a given sample, we cannot

accurately distinguish its positive samples and negative samples. It is necessary to define the positive

and negative samples in instance-level contrastive learning first. We define fxvi gVv = 1 as different instances

of the i-th ð1 % i %NÞ sample. Assuming that there are M samples in each training batch, any two omics

data Xv and XuðusvÞ include 2 �M instances. For a given instance xvi in Xv , the corresponding instance

xui in Xu is considered as a positive sample, while the remaining ð2 �M � 2Þ instances are considered as

negative samples. The cosine similarity SimðÞ measures the similarity of two instances:

Sim
�
hv
c;i;h

u
c;j

�
=

hv
c;i

T$hu
c;j���hv

c;i

���$���hu
c;j

��� (Equation 7)

where i; j˛ f1; 2;.;Mg, v;u˛ f1; 2;.;Vg.

To complete the instance-level contrastive learning, we introduce the NT-Xent loss for these 2 �M
instances. For an instance xvi , its contrastive loss lv;ui in omics v and u is denoted as:

lv;ui = � log
exp

�
Sim

�
hv
c;i; h

u
c;i

�.
t
�

PM
j = 1;jsi exp

�
Sim

�
hv
c;i ;h

v
c;j

�.
t
�
+
PM

j = 1 exp
�
Sim

�
hv
c;i; h

u
c;j

�.
t
� (Equation 8)

where i;j˛ f1; 2;.;Mg, v;u˛ f1; 2;.;Vg,M denotes the number of samples in the training batch, and t is the

temperature parameter to control the softness.

In clustering tasks, hard samples are defined as samples with high similarity to a given anchor sample.

Contrastive loss is a hardness-aware loss function, and the temperature t play a role in controlling attention

on hard samples. Lower temperature focuses more on separating hard samples which are similar to anchor

samples, and thus tend to result in generating more uniform representations. However, there are many

hard samples, such as different instances belonging to the same category, which are actually potential pos-

itive samples. If paying excessive attention to distinguish hard samples, it may break the semantic structure

of the embedding distribution. An appropriate temperature should be a compromise to balance uniformity

and tolerance.55
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For omics v and u, the contrastive loss Lv;ucon for all instances is:

Lv;ucon =
1

2M

XM
i = 1

�
lv;ui + lu;vi

�
(Equation 9)

If more than two omics are available, the above formula is applied between the two omics and summed.

Therefore, we can obtain the contrastive loss function Lcon of multi-omics:

Lcon =
XV � 1

v = 1

XV
u = v+1

Lv;ucon (Equation 10)

By minimizing the contrastive loss Lcon, the shared information between different omics will have high

cosine similarity to achieve representation alignment. At the same time, contrastive learning will make

the distribution of clusters among different omics data as consistent as possible, which enables the omics

data with better original cluster distribution to guide the learning of other omics.

Separation of shared and specific information

The shared and specific information extracted by the AEs are not automatically separated, and they may be

redundant and pollute each other, which affects the purity of the information. Therefore, orthogonality

constraint is applied to separate these two types of information. Suppose Cv and Sv represents the shared

and specific information matrix composed of the shared representation fzvc;igNi = 1
and specific representa-

tion fzvs;igNi = 1
, which are extracted from the v-th omics. Applying the orthogonality constraint on Cv and Sv

to obtain the corresponding orthogonality loss Lort , denoted as:

Lort =
XV
v = 1

���CvTSv
���2

F

Cv =
h
zvc;1; z

v
c;2;.; zvc;n

iT
(Equation 11)

Sv =
h
zvs;1; z

v
s;2;.; zvs;n

iT
where k$k2F is the squared Frobenius norm.

Accordingly, the total loss function L of MOCSS is formulated as:

L = Lrec + Lcon + Lort (Equation 12)

Algorithm 1 Summarizes the process of shared and specific representation learning.

Algorithm 1: Shared and Specific Representation Learning
Input: Multi-omics dataset X = fX1;X2;.;XVg, number of clusters K , batch size M, temperature parameter t

1: Normalization

2: Initialize the parameters of autoencoders and projection head f ð$Þ
3: While not reaching the maximum epoch T do

4: randomly select M samples from Xv

5: generate shared and specific representation from eachomic using Eq:ð1Þ-ð4Þ
6: compute reconstruction loss Lrec by Eq:ð5Þ
7: compute contrastive loss Lcon by Eq:ð6Þ-ð10Þ
8: compute orthogonality loss Lort by Eq:ð11Þ
9: compute overall loss L and updata entire network by Eq:ð12Þ
10: generate the shared information matrix Cv and specific information matrix Sv for all samples

11: End while

Output: Shared information matrix Cv and specific information matrix Sv
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Sample clustering

When the model is trained, for a given sample xi, the shared information Zc;i = fzvc;igVv = 1
and specific infor-

mation Zs;i = fzvs;igVv = 1
are obtained from V omics data. Since the shared information of different omics is

highly similar after contrastive learning, we only use the average zc;i in final representation:

zc;i =
1

V

XV
v = 1

zvc;i (Equation 13)

Finally, we concatenate zc;i and specific information fzvs;igVv = 1
from all omics to represent the sample xi, de-

noted as:

zi = zc;i k z1s;i k z2s;i k . k zVs;i (Equation 14)

Therefore, the representation matrix Z of all samples is:

Z = ½z1; z2;.; zn�T (Equation 15)

The K-means clustering algorithm is applied on Z to separate all samples into K clusters, and each cluster

represents a cancer subtype so that to realize the unsupervised cancer subtyping.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyses were performed in Python version 3.7.11. The details of data filtering, network struc-

ture and hyperparameters setting have been indicated in the respective method details. The datasets are

used for repetitive experiments and the selected features and the methodology is repeatable, the details

have been included in the previous sections.
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