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Frailty is an age-related clinical syndrome that may increase the risk of falls, disability,

hospitalization, and death in older adults. Delaying the progression of frailty helps improve

the quality of life in older adults. Caloric restriction (CR) may extend lifespan and reduce

the risk of age-related diseases. However, few studies have explored the relationship

between CR and frailty. In this review, we focused on the impact of CR on frailty and aimed

to identify potential associated mechanisms. Although CRmay help prevent frailty, further

studies are required to determine the underlying mechanisms and specific CR regimens

suitable for use in humans.
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HIGHLIGHTS

- Caloric restriction (CR) has antiaging effects and great significance in delaying frailty
and sarcopenia.

- Some suggestions about CR for frailty are proposed.
- Further study is needed to determine themechanisms and detailed CR interventions appropriate

for humans.

INTRODUCTION

Frailty is an age-related clinical geriatric syndrome associated with the decline of multiple
physiological systems and increased risk of adverse health outcomes, such as falls, hospitalization,
disability, and premature mortality in older adults (1, 2). Frailty is receiving increasing research
and clinical attention due to the rapid population aging. The prevalence of frailty is estimated
in the range of 4–59% (3). The Fried phenotype (1) and the frailty index (FI) (4) are two widely
used methods for frailty assessment. The frailty phenotype includes features, such as unintentional
weight loss, poor muscle strength, exhaustion, reduced physical activity, and slow walking speed
(1). Interventions that prevent or delay the onset of frailty are required to improve the quality of life
among older adults. The previous studies have examined frailty in rodents (5–8) and humans (9).

High-calorie diets are risk factors for obesity and metabolic diseases (10). Caloric restriction
(CR) is defined as a reduction in energy intake (typically by 20–40% of ad libitum consumption)
without malnutrition (11). CR has been reported to considerably extend a healthy lifespan and
prevent age-related diseases in both animals and humans (11–14). However, the previous studies
have mainly focused on the association between CR and aging, and few studies have explored the
relationship between CR and frailty. This review aimed to summarize the evidence on the impact
of CR on frailty and to explore candidate underlying mechanisms.
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CR AND FRAILTY

In the clinical setting, the FI may be a lifespan biomarker,
helping in predicting age-related mortality (15). A previous study
has shown that 30% CR may enhance strength in both old-
and middle-aged male mice and improve balance and motor
coordination in both old- and middle-aged female mice; these
outcomes are closely associated with a delay in the onset of age-
related frailty (16). In addition, a separate study has shown that
both middle-aged and old male mice with the CR of 30% had grip
strength greater than that observed in their counterparts (17).
Old male C57BL/6 mice that consumed a 40% CR diet over 13
months period, starting from 6 months of age, and that fed an
ad libitum diet combined with 6 months of resveratrol treatment
both improved frailty status compared with their counterparts.
However, this difference was not observed in female mice (18).
In contrast to the C57BL/6 mice, CR did not delay age-related
decline in DBA/2 mice. Male DBA/2 mice on a similar CR
diet had a higher risk of frailty than did the matched C57BL/6
mice. There was no difference in frailty assessment by FI among
both sexes of CR mice (18). The impact of CR regimens on
frailty, activity, and memory in male Wister rats was stratified
by CR starting point and duration. A CR of 40% imposed over
6, 12, or 18 months, starting at 6 months of age, improved the
general locomotor activity and spatial memory and decreased the
age-related frailty. However, the benefits of CR started in late
adulthood were unclear; for example, a CR of 3 months starting
at the age of 15 and 21 months increased the risk of frailty in
old rats (19). Most studies on CR have been conducted in male
animals. Further studies in female mice and rats or other species
are required.

A 4-year treatment involving 30% CR beginning in adulthood
(3.2 ± 0.1 years of age) may extend lifespan by 50% and
reduce the risk of age-related diseases in male gray mouse
lemurs, without affecting motor and cognitive performance (20).
Meanwhile, 30% CR may extend the health span in rhesus
monkeys (21). In the same species, Yamada et al. have shown
that long-term 30% CR started in adulthood may reduce the
incidence of frailty by improving weakness, endurance, slowness,
and physical activity and extend healthy lifespan in both the
sexes (22).

An interleukin-10 knockout (IL-10−/−) mouse model is
the genetic model of frailty (8). However, few studies on CR
have used this model. Rapamycin, an inhibitor of mammalian
target of rapamycin (mTOR), may improve muscle function
and prevent frailty in IL-10−/− mice (23). Cu/Zn superoxide
dismutase knockout mouse (Sod1−/−) is another model of
frailty, with characteristics similar to those observed in
humans with frailty, such as weight loss, weakness, reduced
physical activity, and exhaustion (7). The studies have shown
that 40% CR may attenuate age-related loss of muscle
mass of Sod1−/− mice by improving mitochondrial function,
reducing oxidative stress damage and cellular senescence, and
decreasing IL-6 levels (24, 25). Upregulation of SIRT3 and
mitochondrial antioxidant manganese superoxide dismutase
expression in CR Sod1−/− mice may help protect against
muscle damage (24).

CR and Frailty in Humans
The Comprehensive Assessment of Long-Term Effects of
Reducing Intake of Energy (CALERIE) trial has shown that 6
months of 25% CR reduced the levels of fasting insulin and
body temperature in overweight adults (26). Further studies
have shown that extending CR for 2 years may improve chronic
inflammation markers, blood pressure, the levels of glucose, and
blood lipids, alongside other cardiovascular metabolic indicators
in young and middle-aged healthy adults (27), while improving
cognitive function in non-obese healthy adults (28). Dora et al.
found that this CR regimen reduced oxidative stress in male and
female adults, as indicated by the urinary concentration of F2-
isoprostane (29). Another study indicated that 12 weeks of CR
improved cardiometabolic health in sedentary adults with obesity
and aged ≥65 years (14). Age-related loss of skeletal muscle
quantity and quality is associated with reduced gait speed and
overall strength and a high risk of fall and frailty. A previous
study has shown that 15–25%CRmay prevent age-relatedmuscle
atrophy in humans (30), potentially improving the frailty. Other
studies have shown that time-restricted feeding improved the
walking speed and quality of life in overweight sedentary older
adults (aged ≥65 years) (31). However, the generalizability of
these findings requires further research.

CR and Sarcopenia
Sarcopenia is an age-related syndrome of muscle strength and
functional decline that is closely associated with frailty; in fact,
it may contribute to physical frailty. CR exerts a protective effect
against sarcopenia in both rodents and non-human primates
(32–35). A CR of 30% over 10 weeksmay improve skeletal muscle
function in male C57BL/6 mice (33). Lifelong 8% CR prevents
age-related disruption of the myofiber membrane environment
in male Fischer-344 rats (32). The effects of different durations
(2.5, 8.5, and 18.5 months) of 40% CR on skeletal muscle may
depend on animal strain, sex, and age (36). Vastus lateralis
biopsies collected at 6, 9, and 12 years after the treatment that
included a 30%CR diet have shown that CRmay prevent the shift
in fiber type distribution and delay cellular atrophy inmale rhesus
monkeys (34).

POSSIBLE MECHANISM OF CR EFFECTS
ON FRAILTY

The mechanisms of CR impact on frailty remain unclear; several
target pathways involved in antiaging may be affected, such
as the inhibition of insulin-like growth factor-1 (IGF-1) and

mTOR signaling, activation of adenosine 5
′

-monophosphate-
activated protein kinase (AMPK) and sirtuins, and promotion
of autophagy (Figure 1) (12). Sirtuins are a conserved family of
nicotinamide adenine dinucleotide (NAD)-dependent proteins.
Silent mating-type information regulation 2 homolog 1 (SIRT1)
and other sirtuins may mediate the protective effects of CR (37).
SIRT1 activation may extend lifespan through the activation of
AMPK, which further inhibits mTOR, promotes lipid catabolism
and gluconeogenesis (38). CR may delay cognitive decline in
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FIGURE 1 | The proposed mechanism of caloric restriction (CR) impacts

frailty. CR may reduce the risk of frailty and associated adverse outcomes by

activating the AMPK and SIRT1 pathways, inhibiting the IGF-1 and mTOR

signaling and ferroptosis, and reducing the inflammation mediated by NF-KB

pathways. CR-induced SIRT1 activation may upregulate AMPK and suppress

NF-κB and mTOR activity. CR and metformin may attenuate ferroptosis by

activating the AMPK pathway and improving frailty. AMPK, adenosine

5′-monophosphate (AMP)-activated protein kinase; CR, caloric restriction;

CRMs, caloric restriction mimetics; FOXO, forkhead box O; IGF-1, insulin-like

growth factor-1; mTOR, mammalian target of rapamycin; NF-κB, nuclear

factor-κB; SIRT1, silent mating-type information regulation 2 homolog 1.

mice by modulating the SIRT1/mTOR signaling pathway and by
activating SIRT1 and suppressing mTOR signaling (39).

Lower sirtuin levels are independently associated with frailty,
regardless of age, sex, and comorbidities. Lower circulating levels
of SIRT1 and SIRT3 may indicate frailty (40), and frail older
adults are more likely than their counterparts to have lower
serum-induced SIRT1 expression levels (41). In contrast, the
previous study has shown that frail older patients had higher
levels of SIRT1 than did their counterparts. Older adults with
elevated SIRT1 levels had decreased physical function (42).
Nevertheless, serum-induced SIRT1 expression has not been
associated with frailty (43). Further studies are required to
elucidate the relationship between SIRT1 and frailty and other
signaling pathways that may mediate the relationship between
CR and frailty.

Cell senescence and chronic inflammation are important
characteristics of aging and frailty (44); CR exhibits anti-
senoinflammatory effects by suppressing the expression of
cytokines and chemokines in the senescence-associated secretory
phenotype. The CR mimetics (CRMs) may improve the
dysregulated activity of signaling pathway molecules (45). A CR
diet may delay the onset of frailty and improve the progression
of several chronic diseases by reducing the development of
chronic low-grade inflammation (46), associated with elevated
levels of C-reactive protein, IL-1β, IL-6, and tumor necrosis
factor-α (TNF-α) (47). Moreover, CR exhibits considerable anti-
inflammatory activity by modulating the activity of nuclear
factor-κB (NF-κB) and forkhead box O (FOXO) (48). Activation
of SIRT1 may suppress the NF-κB pathway (49). Immune
senescence is a natural consequence of aging that is associated
with frailty. CR may attenuate age-related changes of the natural
killer cells and T cells to preserve immune function in later life,
which is a system-wide effect (50).

Iron dyshomeostasis and ferroptosis may trigger cell and
organismal death in Caenorhabditis elegans (51). CR and
metformin attenuate ferroptosis by activating the AMPK
pathway, which has been associated with extended lifespan and
health span and improved frailty (51). CR may protect against
cognitive function decline by inducing senescence-accelerated
prone eight astrocytes protective gene expression and functional
rejuvenation in vitro (52). In addition, CR may improve insulin
sensitivity (11) by mediating the adipose mTOR2 pathway;
however, the activity of this pathway is not necessary for the
beneficial effects of CR (53).

Age-related apoptosis in skeletal myocytes may lead to
sarcopenia, which involves mitochondria- and TNF-α-mediated
pathways (54). Interventions targeting myonuclear apoptosis
improve sarcopenia and physical frailty symptoms (55). Lifelong
8% CR has been shown to reduce age-related rates of apoptosis
and oxidative damage to the skeletal myocyte by regulating
autophagy in rats (56). This mechanism may be associated
with heat shock protein 27 signaling, which, when insufficient,
may contribute to apoptosis and muscle wasting (57). The
upregulation of the IGF1-Akt-mTOR-FOXO signaling pathway
may accelerate sarcopenia in aged mice (58). CR may help
preserve muscle mass in middle-aged rats by downregulating
mTOR and ubiquitin-proteasome pathway signaling (59).
Further, CR may delay skeletal muscle aging in rhesus monkeys
by inducing metabolic changes (60). These findings indicate
that CR may delay sarcopenia by reducing oxidative stress
damage, inflammation, and iron overload, as well as improving
mitochondrial function, enhancing protein homeostasis, and
increasing autophagy and apoptosis (61).

TYPES OF CR

Caloric restriction has been reported to extend health span and
lifespan and prevent age-related diseases and frailty. However, the
optimum timing of CR initiation or duration remains unclear as
few previous studies have focused specifically on frailty. Further
studies are required to establish regimens most likely to improve
the quality of life of older adults. At the time of writing, several
types of CR regimens exist. For example, the Mediterranean
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CR diet has been shown to decelerate age-related cognitive
decline (62) and the progression of aging and prevent frailty
(63), making this approach useful for frailty management in the
clinical context (64). The clinical impact of CR may depend on
the factors, such as compliance; herein, we describe candidate
approaches to CR that include intermittent fasting, CRMs, and
protein dietary restriction.

Intermittent Fasting
No diet regimen is suitable for everyone. Different from
continuous CR, intermittent fasting consists of periods of
little or no energy intake and intervening periods of normal
food intake (65), which have benefits for weight loss, healthy
aging, and chronic disease prevention (66), such as improving
cardiometabolic health in overweight and obese individuals (67).
In addition, intermittent fasting may play an important role in
reducing oxidative stress, improving insulin sensitivity, repairing
autophagy, and improving cognitive function (65). Established
intermittent fasting regimens determined by the interval length
of fasting (66, 68) include time-restricted feeding, alternate-day
fasting, alternate-day modified fasting, and the 5:2 diet. For
example, the 5:2 diet involved 2 days of fasting with nomore than
25% energy intake and 5 days of regular eating patterns per week
(67). Time-restricted feeding may help protect cardiometabolic
health; in contrast to CR, it may also be associated with
satisfactory compliance as time is relatively easy to monitor (69).
In later life, intermittent fasting on alternate days may increase
renal gasotransmitter hydrogen sulfide production, which may
help reduce age-related frailty in male mice (70).

CR Mimetics
Caloric restriction mimetics are compounds that mimic
physiological and metabolic CR effects (71), such as resveratrol,
rapamycin, metformin, NAD precursors, and senolytics (15).
They have positive effects on the rodent lifespan and human
health and are used in interventions against aging and age-related
cardiovascular, neurodegenerative, and malignant diseases (72).
Moreover, these compounds may help prevent age-related frailty,
as assessed using the FI in mice (15). Several CRMs have been
shown to prevent frailty (Table 1); for example, 6 months of
resveratrol treatment (100 mg/kg/day) starting at 18 months of
age has been shown to prevent frailty in mice (18). In addition,
6-week resveratrol treatment (150 mg/kg/d) has been shown to
improve the grip strength and muscle mass in aged rats through
the activation of the AMPK/SIRT1 pathway (73). SRT1720,
another SIRT1 activator, may extend lifespan and improve the
health of mice through SIRT1 activation and NF-κB expression
reduction (74). Frailty is associated with SIRT1 activity in
older adults (42); targeting this pathway with CRMs, such as
resveratrol may affect both robustness and frailty in humans
(37); Metformin has been reported to extend the lifespan of
older adults with type 2 diabetes by preventing frailty (75).
Exposure to any dose or frequency of metformin administration
may reduce the risk of frailty in older adults (76). An 18-month
intervention involving rapamycin (1.5 mg/kg/d) for IL-10−/−

mice has been shown to prevent muscle mass loss and frailty by
decreasing myostatin levels (23). Meanwhile, 12-week treatment
with low-dose oral rapamycin (0.5, 1, and 2mg) failed to improve

the frailty status in older adults with coronary artery diseases
(77). The combination of dasatinib (5 mg/kg) and quercetin (50
mg/kg), as one of the senolytics, may extend health span and
alleviate symptoms of frailty in aged mice (78). In addition, a
chronic nicotinamide diet, an NAD+ precursor, at doses in the
range of 0.5 or 1.0 g/kg, can improve the health span but not
the lifespan of adult mice (79). Future studies are required to
elucidate the effects of CRMs on frailty.

Protein Diet
Macronutrient balance is important for healthy aging. Higher
protein intake has been associated with worse frailty status over
time in a relatively healthy population; no similar effect has
been identified for either carbohydrates or fats (80). Further,
low-protein high-carbohydrate diets may help expand lifespan
(81). Protein restriction has been shown to affect the rodent
lifespan in a manner similar to that associated with CR (81, 82).
Amino acids, particularly branched-chain amino acids (BCAAs),
such as leucine, isoleucine, and valine, are associated with
improved health and increased lifespan in different organisms
(83, 84). Protein restriction may increase the risk of frailty and
sarcopenia (85). Intake of a BCAA-enriched balanced amino
acid mixture may help preserve muscle fiber quantity, improve
motor coordination and endurance, and extend the lifespan of
middle-aged mice by modulating the mTOR/eNOS pathway,
which affects mitochondrial biogenesis (84). In addition, a
BCAA-enriched diet may help prevent disability and extend a
healthy lifespan in older adults (86), suggesting that this diet
may be suitable for older adults at risk of frailty. In contrast,
Richardson et al. suggested that lifelong restriction of dietary
BCAAs may extend lifespan and prevent frailty in aged male
mice. Nonetheless, the effect of the BCAA diet on frailty remains
unclear (87). Further studies are needed to examine these
associations in humans. The controversies regarding the effects
of BCAA dietary restriction or enrichment may be associated
with different factors, such as intervention onset, duration, and
species. Further studies are required to elucidate the relationship
between protein intake, lifespan, and age-related diseases.

COMBINATION OF CR AND EXERCISE

Diet and exercise are critical components of healthy aging.
Protein supplementation alone may not alleviate sarcopenic
symptoms (30). Protein supplementation combined with
resistance training is recommended to prevent sarcopenia and
frailty (64). The previous studies have shown that a combination
of resistance training and CR for 6 months may improve
maximal strength in menopausal women with obesity (88).
Meanwhile, other studies have shown that CR combined with
resistance training may prevent CR-induced muscle loss in
older adults with obesity (89). A separate study has shown
that the interventions involving CR and exercise may improve
age-related conditions in adults with type 2 diabetes (90).
Thus, exercise may be considered as another type of CRMs,
helping prevent frailty and improve healthy aging alone or in
combination with CR (91). These effects are likely mediated
by antioxidant-related mechanisms (91). However, it should be
noted that the combination of CR and aerobic exercise training
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TABLE 1 | Caloric restriction mimetics and frailty assessments.

CRMs Category Species Onset Dose and

duration

Frailty assessment Results

Resveratrol SIRT1

activator

Male, C57BL/6J mice 18 months 100 mg/kg/d,

6 months

Mouse FI Reduces FI scores (18)

Male, SD rats 24 months 150 mg/kg/d,

6 weeks

Physical function Improves grip strength and

muscle mass (73)

SRT1720 SIRT1

activator

Male

C57BL/6J mice

7 months 100 mg/kg/d

Natural death

- Extends lifespan and improves

health in mice (74)

Metformin AMPK

activator

Adults aged ≥65 years

with type 2 diabetes

Receiving metformin in

outpatient care

– FI Reduces risk of frailty regardless

of dose and frequency (76)

Rapamycin mTOR

inhibitor

IL-10−/− mice 6 weeks 1.5 mg/kg/d,

18 weeks

Mouse FI Decreases levels of myostatin

which may prevent muscle mass

loss and frailty (23)

Dasatinib and

quercetin

Senolytic

drugs

Male, C57BL/6J mice ① 20 months

② 24–27 months

A

combination

of dasatinib (5

mg/kg) and

quercetin (50

mg/kg)

① 4 months

② Natural death

Physical function Alleviates symptoms of frailty and

extends healthspan (78)

Nicotinamide NAD+

precursor

Male, C57BL/6J mice 56 weeks 0.5 and 1.0

g/kg, 62

weeks

– Improves healthspan but does

not extend lifespan (79)

AMPK, adenosine 5′-monophosphate-activated protein kinase; CRMs, caloric restriction mimetics; FI, frailty index; IL-10−/−, interleukin-10 knockout; mTOR, mammalian target of

rapamycin; NAD, nicotinamide adenine dinucleotide; SD, Sprague-Dawley; SIRT1, silent mating-type information regulation 2 homolog 1.

practiced for 5 months may not affect cognition in sedentary
older adults with obesity (92). Thus, further investigations are
required to determine lifestyle interventions suitable for older
adults and those with frailty or sarcopenia.

POTENTIAL RISKS ASSOCIATED WITH CR

Malnutrition is common in older adults and increases the risk of
frailty, sarcopenia, comorbidities, and premature death. CR may
delay the onset of frailty and sarcopenia, potentially helping to
improve the quality of life of older people. However, extreme CR
may lead to adverse events, such as sarcopenia, osteoporosis, and
immune deficiencies (93). Aged rats with 3 months of CR had
poorer performance and frailty scores than their counterparts
(19). This finding was consistent with that of another study
showing that 40% CR initiated in mice aged 22–24 months
increased mortality rates in male C57BL/6, DBA/2, and B6D2F1
mice (94). Further, CR accelerated the loss of gray matter but
preserved the white matter in the brain of aged mouse lemurs;
neither effect altered the cognitive performance (20). While
chronic food restriction may impair spatial recognition memory
in developing mice (an effect mediated by the extent of food
restriction and individual tolerability), acute food restriction
exerts negative effects on locomotor activity in mice (95). The
relationships between CR, genetics, sex, animal strains, as well
as regimen duration and extent, are complex. Future studies
are required to elucidate the suitable timing, duration, and
extent of CR that may help prevent the onset of frailty in
older adults.

CONCLUSION

Caloric restriction has shown some benefits in both animal and
human studies; however, the factors that determine the impact of
CR remain unclear (19). Rodent and non-human primate models
of CR are associated with the limitations that may affect study
designs. The impact of CR on aging may be mediated by dietary
composition, sex, age at onset, feeding regimens, and genetics
(96). There is no standard for CR regimens (e.g., timing of
initiation and duration, or caloric intake values). In addition, the
evidence on the association between CR and frailty in the clinical
setting is insufficient. Moreover, the underlying mechanisms are
unclear. Consequently, further studies are required to elucidate
the caloric intake and nutrient composition optimal for healthy
aging in humans.
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