
Boosting the accuracy of protein secondary structure

prediction through nearest neighbor search

and method hybridization

Spencer Krieger* and John Kececioglu

Department of Computer Science, The University of Arizona, Tucson, AZ 85721, USA

*To whom correspondence should be addressed.

Abstract

Motivation: Protein secondary structure prediction is a fundamental precursor to many bioinformatics tasks. Nearly
all state-of-the-art tools when computing their secondary structure prediction do not explicitly leverage the vast
number of proteins whose structure is known. Leveraging this additional information in a so-called template-based
method has the potential to significantly boost prediction accuracy.

Method: We present a new hybrid approach to secondary structure prediction that gains the advantages of both
template- and non-template-based methods. Our core template-based method is an algorithmic approach that uses
metric-space nearest neighbor search over a template database of fixed-length amino acid words to determine esti-
mated class-membership probabilities for each residue in the protein. These probabilities are then input to a dynam-
ic programming algorithm that finds a physically valid maximum-likelihood prediction for the entire protein. Our
hybrid approach exploits a novel accuracy estimator for our core method, which estimates the unknown true accur-
acy of its prediction, to discern when to switch between template- and non-template-based methods.

Results: On challenging CASP benchmarks, the resulting hybrid approach boosts the state-of-the-art Q8 accuracy by
more than 2–10%, and Q3 accuracy by more than 1–3%, yielding the most accurate method currently available for
both 3- and 8-state secondary structure prediction.

Availability and implementation: A preliminary implementation in a new tool we call Nnessy is available free for
non-commercial use at http://nnessy.cs.arizona.edu.

Contact: skrieger@arizona.edu

1 Introduction

Predicting the secondary structure of a protein from its amino acid
sequence is a classic and fundamental problem in bioinformatics,
that is a building block in many tasks such as protein tertiary struc-
ture prediction (Dill and MacCallum, 2012), protein multiple se-
quence alignment (Deng and Cheng, 2011; Kececioglu et al., 2010;
Lu and Sze, 2008) and solvent accessibility prediction (Adamczak
et al., 2004). The true secondary structure of a protein is usually
obtained from its known tertiary structure using a tool such as DSSP
(Kabsch and Sander, 1983), which labels the amino acid residues in
the protein (based on the torsion angles of their backbone) with
eight states, that are traditionally reduced to just three classes: G
(310-helix), H (a-helix) and I (p-helix), are usually classified as alpha
(a); B (isolated bridge) and E (extended sheet) are usually classified
as beta (b); and everything else is usually classified as coil (c), repre-
senting ‘other’ (or the unstructured class).

State-of-the-art tools for secondary structure prediction perform
sequence database homology searches over proteins with unknown
structure, using PSI-BLAST (Altschul et al., 1997) or a similar
search tool, to generate a position-specific scoring matrix across the
residues of the protein. Most tools do not take advantage of the vast
number of proteins with known structure.

In contrast, our core approach instead uses a variant of k-nearest
neighbor classification over a template database of proteins with
known structure to estimate secondary structure class membership
probabilities, followed by a fast dynamic programming algorithm to
compute a globally optimal maximum-likelihood secondary struc-
ture prediction.

Related work
A plethora of methods have been proposed for protein secondary
structure prediction over the past 60 years. A recent survey paper
(Yang et al., 2016) cites over 45 tools developed since 1960. Most re-
cent tools use results from protein sequence database homology
searches (Drozdetskiy et al., 2015; Jones, 1999; Ma et al., 2018), pos-
sibly combined with other information, such as physiochemical struc-
tural properties of the input sequence (Dor and Zhou, 2006),
backbone torsion angles (Faraggi et al., 2012), as well as small data-
bases of templates from proteins for which secondary structure is
known (Li et al., 2012; Pollastri et al., 2002; Saraswathi et al., 2012).
This additional information is then often fed into neural networks,
such as filter neural networks (Mirabello and Pollastri, 2013; Yaseen
and Li, 2014) or deep neural networks (Heffernan et al., 2015;

VC The Author(s) 2020. Published by Oxford University Press. i317

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 36, 2020, i317–i325

doi: 10.1093/bioinformatics/btaa336

ISMB 2020

http://nnessy.cs.arizona.edu
https://academic.oup.com/


Qi et al., 2012; Spencer et al., 2015; Wang et al., 2016), that output
the structure prediction.

Currently, the most widely-used tools are perhaps PSIPRED
(Jones, 1999) and JPRED (Drozdetskiy et al., 2015), which typically
have an average Q3 accuracy for 3-state secondary structure predic-
tion on benchmark datasets of around 80–85%. Neither of these
tools can predict 8-state secondary structure. PSIPRED was among
the first tools to achieve improved accuracy through a PSI-BLAST
search, and currently searches the UNIREF90 sequence database to
obtain a sequence profile that is then fed into a two-stage neural net-
work. JPRED incorporates both PSI-BLAST and HMMer (Finn
et al., 2011) sequence profiles as inputs to their neural network.

The state-of-the-art tools that achieve the highest currently avail-
able accuracy include SSpro (Pollastri et al., 2002), DeepCNF
(Wang et al., 2016), PORTER (Mirabello and Pollastri, 2013) and
PSRSM (Ma et al., 2018), which on standard benchmarks typically
achieve Q3 accuracy around 85–90%. The state-of-the-art tools that
predict 8-state secondary structure see a large drop in accuracy to
around 72% Q8 accuracy. SSpro is the only state-of-the-art tool
that uses so-called template data, by searching for proteins of known
secondary structure that share sequence homology with the query
protein—if such proteins exist. For protein residues not covered by a
matching template, SSpro uses a neural network to predict their
structure class. This template-based method is very accurate when
good matches can be found, but much less accurate when no good
template exists (dropping around 10% in accuracy). DeepCNF and
PORTER use variations on deep convolutional neural networks and
conditional neural fields on sequence profiles. PSRSM uses semi-
random subspaces, a variation on support vector machines.

Our contributions
In contrast to prior work, we present an algorithmic approach to
protein secondary structure prediction. At a high level, our core
method is template-based, and avoids sequence database homology
searches to surpass the speed of state-of-the-art tools; our hybrid
method then builds on this core approach, in combination with an
alternate non-template-based method, to surpass the accuracy of the
state-of-the-art. (SSpro, prior to our work, also combines a tem-
plate- and non-template-based approach; our hybrid method is
unique in that it can discern when to switch between such
approaches by leveraging a novel accuracy estimator.) More con-
cretely, this work makes the following contributions.

• Our core method replaces expensive protein sequence database

homology search by nearest neighbor search over a smaller tem-

plate database of fixed-length words under substitution distance,

which is significantly faster, and has a large potential for further

speedup.
• The core method finds a globally-optimal maximum likelihood

prediction for the secondary structure of the entire protein, con-

sidering class membership probabilities at residues, structure

transition probabilities between residues, and distributions of

run lengths for structure classes. This maximum likelihood pre-

diction is efficiently computed using dynamic programming.
• A unique aspect of our core approach is that it yields a novel ac-

curacy estimator, that for the first time can quickly estimate the

unknown true accuracy of its prediction. This estimate is respect-

ively within roughly 5% and 8% on average of the unknown Q3

and Q8 accuracy for 3- and 8-state prediction.
• This new accuracy estimator leads to a natural hybrid method,

which combines our core template-based approach with an alter-

nate non-template-based method. The resulting hybrid gains the

advantages of both: the high accuracy of our core approach

when the protein has good matches to our template database,

and the more stable accuracy of a non-template-based method in

general. Remarkably, the average accuracy of this new hybrid

method is always better than both of its base methods, across all

standard benchmarks.
• The new core and hybrid methods afford a significant accuracy

boost. On the challenging CASP benchmarks, where we predict

on a CASP dataset using a template database constructed over

proteins entered into PDB prior to the CASP competition date,

our hybrid method boosts state-of-the-art Q8 accuracy by more

than 2–10%, and Q3 accuracy by more than 1–3%. On yearly

PDB datasets, where we predict on proteins entered into PDB in a

given year using a template database over proteins from prior

years, our core method boosts state-of-the-art Q8 accuracy by

more than 3%, and our hybrid method by more than 8–12%.

In short, our hybrid approach is the most accurate method cur-
rently available for both 3- and 8-state prediction on all standard
benchmarks.

A preliminary implementation in a new tool we call Nnessy
(short for ‘’nearest-neighbor-based prediction of protein secondary
structure without searching for homology’’) is available free for
non-commercial use at http://nnessy.cs.arizona.edu.

Overview
The next section describes our approach, including the variant of
nearest neighbor classification used by the core method for estimat-
ing class membership probabilities, the dynamic programming algo-
rithm for maximum likelihood prediction, our accuracy estimator
and the hybrid method. Section 3 presents experimental results com-
paring the 3- and 8-state prediction accuracy of our approach to
other state-of-the-art tools. Section 4 studies the behavior of our ap-
proach to provide insight on why it performs well. Finally Section 5
concludes.

2 Methods

We first describe how our core approach, which is template-based,
computes a secondary structure prediction, and then explain how
we leverage it in a new hybrid approach that combines the advan-
tages of both template- and non-template-based methods.

Our core approach proceeds in two phases. The first phase esti-
mates for each residue in the protein its class membership probabil-
ity for secondary structure classes. The second phase takes these
probability estimates, together with empirical transition rates be-
tween secondary structure runs from different classes and empirical
distributions of run lengths, and computes a secondary structure
prediction for the entire protein that is globally optimal with respect
to a maximum likelihood objective. The residue class membership
probabilities for the first phase are estimated by a variant of nearest
neighbor classification, using nearest neighbor search over fixed-
length amino acid words. The optimal maximum likelihood predic-
tion for the second phase is computed by dynamic programming.

Our hybrid approach exploits a unique aspect of this core
method: that we can compute an estimated accuracy for its predic-
tion. This accuracy estimate enables our hybrid method to recognize
when our core template-based prediction may be inaccurate, and
hence switch to a potentially more accurate non-template-based
method.

2.1 Estimating structure probabilities at residues
Key to our core approach for secondary structure prediction is esti-
mating class membership probabilities for the residues of the pro-
tein: at each position i in the protein, for each structure class c, the
probability that class c is the true secondary structure state of the
residue at position i. We estimate these probabilities by a form of
nearest neighbor classification, using words of a fixed length ‘
extracted from the amino acid sequence P of the protein.

Given a collection of proteins with known tertiary structure, and
hence whose correct secondary structure is known, we form a tem-
plate database D by extracting all words of length ‘ from their

i318 S.Krieger and J.Kececioglu

http://nnessy.cs.arizona.edu


amino acid sequences, together with their associated secondary
structure word of the same length. (If the same amino acid word w
occurs more than once in the protein collection with different associ-
ated secondary structure words, we collapse the differences into a
single secondary structure word over an extended secondary struc-
ture alphabet that contains ambiguity codes for non-empty subsets
of the structure classes. For each amino acid word in database D, we
also keep a count of its number of occurrences in the protein collec-
tion. If the amino acid sequence for the protein has positions with
ambiguous amino acids, we retain these ambiguities in the amino
acid word put into D.)

To predict the secondary structure of a new protein, we extract
words of this length ‘ from its amino acid sequence P, and for each
such query word w from P, we find its so-called k-nearest neighbors
in template database D: the k amino acid words v in D that have
smallest distance d(v, w) to query word w, under a word distance
function d.

The associated secondary structure words in D for these k-near-
est neighbors of w are then used to estimate class membership
probabilities. For a given residue at position i in P, there are, in
general, ‘ words of length ‘ that overlap position i. For each of these
‘ query words w overlapping i, we find their k-nearest neighbors
v in D, and combine together the associated secondary structure
words for all of these k‘ overlapping words v to estimate the class
membership probabilities for residue i.

We next describe how we measure word distances, search for
nearest neighbors, and combine overlapping words into a probabil-
ity estimate.

2.1.1 Measuring distances between words

To measure the distance d between two amino acid words v and w,
both of length ‘, we use a form of substitution distance,
dðv;wÞ ¼

P
1� i� ‘ dðv½i�;w½i�Þ, where dða;bÞ is the substitution

dissimilarity score for amino acid pair a, b. For substitution scores d,
we take the standard VTML200 amino acid similarity matrix (Müller
et al., 2002) and transform it into dissimilarity scores by negating its
values, shifting them to positive scores by adding in the most nega-
tive value, and rescaling them into the range ½0; 1�.

2.1.2 Finding nearest neighbors

When the substitution scores d in word distance function d satisfy
the so-called triangle inequality, namely dða; cÞ � dða; bÞ þ dðb; cÞ
for all amino acids a, b, c, word distance d will also satisfy the tri-
angle inequality dðu;wÞ � dðu; vÞ þ dðv;wÞ for all words u, v, w.
The transformed VTML dissimilarity scores d mentioned above do
satisfy the triangle inequality, hence word distance function d does
as well.

In general, a distance function d that satisfies the triangle in-
equality, non-negativity (dðv;wÞ � 0 for all v, w), symmetry
(dðv;wÞ ¼ dðw; vÞ for all v, w) and identity (dðv;wÞ ¼ 0 iff v¼w), is
called a metric. When word distance function d is a metric, template
database D under distance d is known as a metric space.

One of the best data structures for nearest neighbor search in a
metric space is the cover tree of Beygelzimer et al. (2006).
Theoretically, cover trees permit nearest neighbor searches over a
set of n objects in Oðlog nÞ time, after constructing a cover tree in
Oðn log nÞ time, assuming the intrinsic dimension of the metric space
has a so-called bounded expansion constant (Beygelzimer et al.,
2006). (For actual data, the expansion constant can be exponential
in the intrinsic dimension.) In our implementation, for nearest neigh-
bor search we use the recently developed dispersion tree data struc-
ture of Woerner and Kececioglu, which in extensive testing on
scientific data is significantly faster in practice than cover trees
(Woerner, 2016). Dispersion trees, which are hierarchies of bound-
ing balls, are unique in that they are the first to use a provably opti-
mal algorithm for tree searching: over all possible ways of searching
the tree, they use the minimum number of distance function evalua-
tions to find the k-nearest neighbors for any query.

2.1.3 Combining overlapping words

We first describe how to estimate class membership probabilities at
a residue using k-nearest neighbor searches in our template database
when k ¼ 1, and then generalize to k > 1.

For position i in a protein with amino acid sequence P, and an
odd word length 2‘þ 1, let w(i) be the word of this length extracted
from P that is centered at position i, v(i) be the 1-nearest neighbor
word to w(i) in template database D under word distance d, and s(i)
be the known secondary structure word associated with amino acid
word v(i) in database D. We weight position j in a word of length
2‘þ 1, where 0 � j � 2‘, by xðjÞ, where these weights form a dis-
crete distribution: xðjÞ � 0 and

P
j xðjÞ ¼ 1. In our implementation,

weight x peaks at the central position of a word.
In the following, we use the notation ha ¼ bi, which evaluates

to 1 when a¼b, and 0 otherwise. Also, we denote the symbol at
position j in a word s by s½j�, where word positions are indexed start-
ing from 0.

We estimate the class membership probability of residue i being
in structure class c as follows:

Pr ðc occurs at iÞ :¼
X

�‘�D�þ‘
xð‘� DÞ

�
sðiþ DÞ½‘� D� ¼ c

�
:

In the above summation, for each nearest neighbor structure
word s(j) from an adjacent location j ¼ iþ D that has structure
class c at position ‘� D (which is the position in s(j) that overlaps
with location i in the protein), weight xð‘� DÞ is added into the
class membership probability for c at position i. For the above defin-
ition, the relation

P
c Prðc occurs at iÞ ¼ 1 holds, as a consequence

of
P

j xðjÞ ¼ 1.
This way of estimating class membership probabilities is illus-

trated in Figure 1, for k ¼ 1. To generalize to k > 1, for a query
word w(i) we find its k nearest neighbor words v(i), and retrieve
their k associated structure words s(i). The above summation for
class membership probabilities now also sums over these k structure
words at location iþ D, and each of these k structure words sðiþ DÞ
now contributes a weight that is 1=k times the original weight
xð‘� DÞ given above for k ¼ 1.

To handle the degenerate case of a boundary position i near the
start or end of a protein without an amino acid word of length ‘ cen-
tered at i, we create a full border word padded out to length ‘ by
putting dummy amino acid Z at the missing positions. We create

Fig. 1. Template database words overlapping a given query residue contribute to its

class membership probability. Across the bottom is a portion of the amino acid se-

quence of an actual query protein. Stacked above the residue highlighted by the

arrows in the query sequence are the 1-nearest-neighbor words from our template

database found for the query words containing the highlighted residue. The known

secondary structure class of each amino acid is indicated by its color: blue for a,

green for b and black for c. The example is for word length 23, and positional

weights x from our implementation (namely, uniform across a word, except the

central weight is doubled). For this word length and positional weights, the a-, b-

and c-class membership probabilities for the highlighted residue are 0.00, 0.62 and

0.38, respectively.

Boosting the accuracy of protein secondary structure prediction i319



border words at boundary positions when inserting template words
into our database and extracting query words during prediction.
We ensure query words have as nearest neighbors only
template words with the same or fewer dummy symbols by making
dða;bÞ � dðZ;ZÞ < dða;ZÞ for a;b 6¼ Z. Estimating structure proba-
bilities at boundary positions then proceeds as described earlier.

2.2 Computing maximum likelihood protein structures
Given the residue class-membership probabilities for the protein, a
straightforward greedy algorithm for prediction would simply out-
put the highest-probability structure-class, independently at each
residue. A failing of this natural greedy approach is that it does not
necessarily output a physically valid secondary-structure prediction:
runs of consecutive residues that share the same structure class are
known to physically have minimum lengths, and a greedy prediction
may violate these minimum run lengths. In contrast, we develop an
efficient dynamic programming algorithm that is guaranteed to out-
put a physically valid prediction that satisfies minimum run length
constraints, while optimizing the structure class probabilities at resi-
dues, as well as other features of the prediction such as the rates of
transitions between runs and the lengths of runs.

2.2.1 Maximum likelihood objective

Given a protein whose secondary structure we want to predict, that
has amino acid sequence P of length n, we view a secondary struc-
ture prediction for the protein as a string S of length n over the sec-
ondary structure alphabet R. We index the positions of structure
prediction S starting from 1.

Let S be the set of all valid secondary structure predictions for P:
namely, the set of all strings of length n over alphabet R whose runs
of a given structure class satisfy the minimum run-length require-
ments for physically valid secondary structures.

Our likelihood function on a prediction S 2 S is a product of the
probabilities that a secondary structure for P has the observed:
(i) states of structure classes at the positions in S, (ii) transitions be-
tween classes at adjacent positions in S, and (iii) runs of the given
lengths in S.

The contribution of the structure states in S to the likelihood is
the product over positions i for 1 � i � n of the class membership
probability PrðS½i� occurs at iÞ.

The contribution of transitions in S to the likelihood is the prod-
uct over positions i<n of the probability Pr S½i� followed by

�
S½iþ 1�Þ.

For the contribution of runs in S to the likelihood, for a position i
let qðiÞ be the length of the run of class S½i� that extends to the left from
position i. We assume that prediction S is terminated with a dummy
symbol at S½nþ 1� that is not in alphabet R (to capture the last run in S
in the following product). The contribution of runs to the likelihood is
then the product, over positions 1 � i � n for which S½i� 6¼ S½iþ 1�,
of the run-length probability Pr run of S½i� of length qðiÞ

� �
.

We denote the minimum run length for runs of structure class c
by kc. In practice, when empirically measuring the probability of a
run of length ‘, we explicitly record this empirical probability for
runs of length ‘ < h, for a fixed length upper bound h. (We ensure
this length upper bound satisfies h � maxc kc.) The empirical prob-
ability that we then store for length h is really a lumped sum over all
runs of length ‘ � h.

We express our optimization problem as finding a prediction that
minimizes the negative logarithm of the likelihood function. For resi-
due position i, structure classes a, b, c and run length ‘ < h, define

pði; cÞ :¼ �log Pr c occurs at ið Þ;
qða;bÞ :¼ �log Pr a followed by bð Þ;
rð‘; cÞ :¼ �log Pr run of c of length ‘ð Þ;
rðh; cÞ :¼ �log Pr run of c of length at least hð Þ:

We weight the relative contribution to the log-likelihood of
terms due to probabilities for class membership p(i, c), transitions
q(a, b) and lengths of runs rð‘; cÞ, by the respective coefficients
astate; atrans and arun.

The negative log-likelihood function that we optimize over struc-
ture predictions S is then,

LðSÞ :¼ astate

X
1� i�n

pði; S½i�Þ

þ atrans

X
1� i<n

qðS½i�; S½iþ 1�Þ

þ arun

X
1 � i � n

S½i� 6¼ S½iþ 1�

rðqðiÞ; S½i�Þ:

Next we explain how to efficiently find a prediction S 2 S that
minimizes LðSÞ, or equivalently, has maximum likelihood.

2.2.2 Dynamic programming algorithm

We find an optimal physically-valid prediction of maximum likeli-
hood using dynamic programming, as follows.

Let Lði; ‘; cÞ, for ‘ < h, be the negative log-likelihood of an opti-
mal prediction ending at position i, where position i is predicted to
have structure class c and the run of class c ending at position i has
length ‘. For ‘ ¼ h, quantity Lði; h; cÞ is defined to be the negative
log-likelihood of an optimal prediction ending in a run of length at
least h.

The negative log-likelihood of an optimal prediction S 2 S for a
protein of length n is then minc2R minkc � ‘�h Lðn; ‘; cÞ.

We now give recurrences for Lði; ‘; cÞ in general.
For structure class c and lengths ‘ in the range kc < ‘ < h,

Lði; ‘; cÞ ¼ astate pðc; iÞ þ atrans qðc; cÞ
þ arun rð‘; cÞ � rð‘� 1; cÞ

� �
þ Lði� 1; ‘� 1; cÞ:

For structure class c and length ‘ ¼ kc,

Lði; kc; cÞ ¼ astate

X
i�kc < j� i

pðj; cÞ þ atransðkc � 1Þ qðc; cÞ

þmin
b6¼c

min
kb �k�h

Lði� kc; k;bÞ
� �

þ atrans qðb; cÞ
� 	

þ arun rðkc; cÞ:

For structure class c and length ‘ ¼ h,

Lði; h; cÞ ¼ astate

X
i�hþkc < j� i

pðj; cÞ

þ atrans ðh� kcÞ qðc; cÞ

þ min
kc �k� h

Lði� h þ kc; k; cÞ þ
arun rðh; cÞ � rðk; cÞ

� �� 	
:

Together the above recurrences specify how to compute Lði; ‘; cÞ
for all kc � ‘ � h and kc � i � n. For the boundary values where
1 � i < kc, we set Lði; ‘; cÞ :¼ 1.

The dynamic programming algorithm uses the above recurrences
to first fill in a three-dimensional table for Lði; ‘; cÞ, in order of
increasing i and ‘. It then finds the optimal entry, argmin‘;c Lðn; ‘; cÞ,
that corresponds to a complete prediction of minimum negative log-
likelihood, and recovers an optimal prediction by tracing backward
from this final entry. Since the length parameter ‘ satisfies kc � ‘ �
h for constants kc and h, there are O(1) values for ‘; there are also
O(1) values for c. So the table has HðnÞ entries, and filling in an entry
by the recurrences takes O(1) time. Thus filling the entire table takes
HðnÞ total time, which is also the time to recover the optimal
prediction.

In short, the dynamic programming algorithm finds a physically-
valid secondary structure prediction of maximum likelihood in HðnÞ
time.

2.3 Estimating the accuracy of a structure prediction
A unique aspect of our core nearest-neighbor-based approach to sec-
ondary structure prediction is that, in addition to outputting a pre-
dicted structure, we can also provide an estimated accuracy for this
prediction. While in practice it is normally not possible to measure

i320 S.Krieger and J.Kececioglu



the true Q3 or Q8 accuracy of a prediction (since the correct second-
ary structure for the protein is usually not known), we can actually
estimate this unknown Q3 or Q8 accuracy reasonably well, based on
the similarity of the overlapping nearest neighbor words (which vote
on structure probabilities) to their corresponding query words.

Intuitively, as these nearest neighbor words that overlap at a
given residue are closer to their query words for this residue, our
confidence in the resulting structure probabilities at this residue
should increase. More precisely, at each residue in a collection of
proteins whose correct secondary structure is known, we measure
the distances of the overlapping nearest neighbor words to their
query words for this residue, and average these word distances for
that residue. For residues in the protein collection, we know the
correct secondary structure class for the residue, and we have the
greedily predicted structure class of highest estimated probability.
We then sort all residues in the protein collection by their average
word distance, and for each residue in this sorted list, we measure
the empirical accuracy of the residues within a window of the
sorted list centered at that residue (namely a window consisting of
the m consecutive residues with closest average distance below the
residue, and the m consecutive residues with closest average dis-
tance above the residue), by counting how many residues in this
window have a correctly predicted structure class, divided by the
total number of residues in the window. Section 4.2 later shows
that, as we would intuitively expect, the empirical residue accuracy
measured in this way is in fact negatively correlated with the aver-
age word distance of residues. We then fit an estimator to this data
from the protein collection on empirical accuracy versus word
distance.

To obtain an accuracy estimate for an entire protein structure
predicted by our core approach, we measure these average word dis-
tances at the residues of the protein, look up the corresponding em-
pirical accuracy for these word distances using the fitted estimator,
and then average these empirical accuracies across the residues in
the protein. The resulting estimated accuracy of the structure predic-
tion is reasonably close to the true accuracy of the prediction (in
practice within roughly 5% and 8% on average for Q3 and Q8 accu-
racies, respectively) as discussed in Section 4.2.

This accuracy estimator is similar to the feature-based approach
to accuracy estimation developed for parameter advising by
DeBlasio and Kececioglu (2017), where the feature at residues is
average word distance.

2.4 Constructing a hybrid predictor
When predicting on a protein whose amino acid words match well
to our template database, this core template-based approach tends
to achieve high accuracy, but for proteins without good template
matches its accuracy can drop substantially. Fortunately, we can le-
verage our accuracy estimator to recognize when our core
approach’s prediction is likely inaccurate, and in that situation in-
voke a non-template-based method. This leads to a natural hybrid
approach, that combines the distinct advantages of both template-
based methods (which are very accurate for proteins sufficiently
similar to their template database) and non-template-based methods
(which tend to be more stable and generalize better, though they
usually do not reach the peak accuracies of template-based
methods).

For structure prediction S, let QðSÞ be the estimated accuracy of
this prediction using our estimator from Section 2.3. (Note that in
reality our accuracy estimator uses information beyond simply the
prediction S: namely, average word distances at residues.) The hy-
brid approach uses an accuracy threshold s, as well as an alternate
prediction method (ideally, complementary to our core approach)
that supplies alternate prediction S0.

Our hybrid approach then simply evaluates accuracy estimator
Q on prediction S from our core approach, and if QðSÞ � s, outputs
S; otherwise, it invokes the alternate prediction method to output S0.

Surprisingly, this new hybrid approach significantly exceeds
the average accuracy of both methods it hybridizes, as shown in
Section 3.2.

3 Results

We present results from computational experiments with our core
and hybrid approaches on evaluation datasets, and compare to
state-of-the-art methods.

3.1 Datasets, evaluation, and implementation
Our template databases are drawn from proteins in the protein data-
bank (PDB) (Berman et al., 2000). These proteins are split into
words of length 23, for our nearest neighbor search. For method de-
velopment and parameter tuning, our testing set consists of proteins
deposited into PDB between October 1, 2018 and January 1, 2019,
while the template database contains proteins deposited before
October 1, 2018. For comparison to state-of-the-art methods, we
use benchmark CASP datasets. All 129 proteins of the CASP10 data-
set, all 105 proteins of the CASP11 dataset, all 55 proteins of the
CASP12 dataset, and all 49 of the CASP13 dataset were used in our
evaluation. The yearly datasets contain a random subset of proteins
deposited into PDB each year from 2014 to 2019 (called
PDB2014, . . . , PDB2019), except PDB2019, which contains all pro-
teins deposited between January 1, 2019 and May 15, 2019. All
dataset proteins have known secondary structure, and we remove
any proteins shorter than 23 residues or with more than five am-
biguous amino acids. For a fair evaluation, we also remove identical
copies of proteins in the yearly datasets from our template database.
We do not remove proteins from our template database that are
similar to those in evaluation datasets, following the convention
established by other template-based approaches (Pollastri et al.,
2002). However, for every CASP dataset, our template database
contains only proteins available 1 month before that CASP competi-
tion ended, simulating a template database available for the CASP
competition.

3.1.1 Evaluation

We compare the accuracy of Nnessy, and the best hybrid of
Nnessy with another tool, to state-of-the-art methods on the
PDB2019 and CASP datasets, which we call the evaluation datasets.
Other tools may have trained on proteins similar to the evaluation
data, but we give them the benefit of the doubt, as these tools do not
have an option to retrain with a new training set. Our evaluation on
PDB2019 follows the convention of other template-based methods
(Pollastri et al., 2002).

We also evaluate the accuracy of Nnessy on the six yearly data-
sets, consisting of proteins added to PDB each year for the
past 6 years. For these datasets, we compare Nnessy, the best tool
for 8-state and 3-state prediction, and the hybrid between them.

We use Q3 and Q8 accuracy to measure performance, which is the
number of residues predicted correctly divided by the total number
of residues in the protein. When we refer to the Q3 or Q8 accuracy of
a dataset, we refer to the average accuracy of the proteins in that
dataset.

3.1.2 Implementation and parameter tuning

We implemented our method in C/Cþþ and Python. We used cross-
validation to tune the following parameters: word length (‘), the
number of neighbors found in nearest neighbor searches (k), pos-
itional weights for secondary structure words (x) and weights on
the terms in the maximum likelihood objective function.

Word length for the template database was chosen to be ‘ ¼ 23,
which maximizes the number of words in the template database. We
found a strong correlation between larger template databases and
higher-accuracy predictions. Word lengths in the range [13,33] were
tested and accuracies differed by about 1%. The template database
for the PDB2019 dataset (the largest template database) contains
24,312,377 length-23 words.

In the overlapping secondary structure words method discussed
in Section 2.1, k is the number of neighbors returned from the tem-
plate database for a given query word. We tuned the value of k to
yield the highest accuracy on our testing set, and chose k¼3.

Boosting the accuracy of protein secondary structure prediction i321



Positional weights x for a secondary structure word used in the
overlapping words procedure are uniform, except at the central pos-
ition, where the weight is doubled.

In the negative log-likelihood objective function used in the dy-
namic programming algorithm, the coefficients put lower weight on
transition rate (0.1) and run-length (0.1) terms, whereas coefficients
for the other terms are 1. Run lengths were found over the template
database, and the objective function weights were chosen using grid
search over possible values.

3.2 Prediction accuracy
Table 1 compares the Q8 accuracy of Nnessy, the hybrid method
and state-of-the-art tools. The Q8 accuracies in the table give the
mean and standard deviation over the dataset. The hybrid boost for
a tool shows the improvement in accuracy when hybridizing the tool
with Nnessy. For all tools and datasets, the hybrid offers a boost in
accuracy over either tool. The best Nnessy hybrid is the highest-
accuracy hybrid between Nnessy and another tool. We evaluated
the accuracies for other tools ourselves by either downloading the
tool (PSIPRED, SSpro), or using a server for the tool (JPRED,
PORTER, DeepCNF and PSRSM). For many of the tools, the accuracy
shown in Tables 1 and 2 is higher than the accuracy reported in their
paper, possibly due to the presence of evaluation proteins in their
training sets. The hybrid method still achieves a boost in accuracy
even over these higher accuracies.

Hybridization combines the strengths of template- and non-
template-based tools. Template-based methods predict accurately
when a close template match is found, while non-template-based
tools predict well consistently and generalize to new data. With hy-
bridization, we achieve a more robust, higher-accuracy tool than ei-

ther single tool. Nnessy is the template-based tool in every hybrid,
because the hybrid approach needs an accuracy estimator, which
other template-based tools lack. The best hybrid method outper-
forms all other tools by more than 3% on every evaluation dataset,
and by more than 10% on CASP13 and PDB2019. Hybridization
also raises the accuracy of Nnessy substantially, around 15% on
average for the CASP datasets.

Prediction accuracy variance is high for Nnessy because predic-
tions for proteins with close template matches are very accurate,
while poor template matches yield lower prediction accuracy.
However, when Nnessy is hybridized with another tool, the hybrid
accuracy variance is generally close to the variance of the other tool,
due to the removal of many low-accuracy predictions. Surprisingly,
hybridization raises the low accuracy of Nnessy above the accuracy
of any other tool, which is discussed further in Section 4.3.

Table 2 compares the Q3 accuracy of Nnessy, the hybrid method
and state-of-the-art tools. For each tool, we give the accuracy boost
from hybridizing it with Nnessy (as described in Section 2.4). The
best Nnessy hybrid for 3-state prediction is always with PSRSM and
the hybrid method boosts the Q3 accuracy by 2.3% on average per
evaluation dataset. Once again, despite the low accuracy of Nnessy
on the CASP datasets, hybridizing any tool with Nnessy boosts the ac-
curacy for that tool on all datasets. The accuracy variance follows the
same trends as 8-state prediction, where the hybrid method reduces the
variance of Nnessy to the level of the other hybridized tool.

Following other template-based methods (Pollastri et al., 2002),
we evaluate our accuracy on proteins submitted to PDB each year,
using proteins submitted previous to that year as a template data-
base. Table 3 shows the accuracy of Nnessy, the best tools on CASP
datasets for 3-state and 8-state prediction and the hybrid method be-
tween them evaluated on the yearly datasets. Unlike the CASP data-

Table 1. Eight-state accuracies on CASP and PDB2019 datasets

CASP10 CASP11 CASP12 CASP13 PDB2019

Number of proteins 129 105 55 49 292

Average protein length 177 183 188 280 281

Hybrid Hybrid Hybrid Hybrid Hybrid

Tool Q8 accuracy Boosta Q8 accuracy Boosta Q8 accuracy Boosta Q8 accuracy Boosta Q8 accuracy Boosta

Nnessy 67.4% 6 22.4 67.2% 6 21.3 55.5% 6 21.8 66.5% 6 21.1 82.4% 6 18.9

DeepCNF 69.6% 6 12.7 þ6.1% 72.5% 6 8.0 þ6.8% 68.2% 6 13.4 þ2.8% 64.0% 6 11.4 þ9.7% 68.7% 6 11.8 þ14.1%

SSpro 77.3% 6 16.1 þ3.9%b 77.9% 6 14.9 þ4.8%b 62.5% 6 14.8 þ3.5% 59.9% 6 16.6 þ12.8% 73.9% 6 18.8 þ7.7%

PORTER 75.6% 6 9.9 þ5.2% 75.1% 6 8.2 þ6.0% 70.9% 6 12.6 þ2.4%b 65.2% 6 15.2 þ10.4%b 70.5% 6 11.3 þ12.6%b

Best Nnessy hybrid 81.2% 6 16.2 82.7% 6 14.4 73.3% 6 14.3 75.6% 6 14.4 83.1% 6 15.0

Highlighted table entries are in bold.
aHybrid boost is the improvement in accuracy when hybridizing a tool with Nnessy.
bThe tool that gave the best Nnessy hybrid for that dataset.

Table 2. Three-state accuracies on CASP and PDB2019 datasets

CASP10 CASP11 CASP12 CASP13 PDB2019

Number of proteins 129 105 55 49 292

Average protein length 177 183 188 280 281

Hybrid Hybrid Hybrid Hybrid Hybrid

Tool Q3 accuracy Boosta Q3 accuracy Boosta Q3 accuracy Boosta Q3 accuracy Boosta Q3 accuracy Boosta

Nnessy 75.5% 6 18.5 74.5% 6 17.0 67.9% 6 15.8 75.7% 6 16.3 85.7% 6 15.2

JPRED 78.3% 6 7.9 þ5.6% 78.0% 6 7.0 þ5.7% 75.9% 6 9.7 þ2.8% 76.0% 6 9.1 þ5.9% 77.6% 6 7.5 þ9.4%

DeepCNF 81.8% 6 9.6 þ4.1% 82.3% 6 6.0 þ4.3% 79.8% 6 9.9 þ1.9% 77.8% 6 8.6 þ5.2% 81.3% 6 9.1 þ6.0%

PSIPRED 84.8% 6 7.5 þ3.5% 83.6% 6 5.8 þ3.9% 80.0% 6 10.0 þ2.1% 79.8% 6 8.1 þ4.6% 79.7% 6 8.6 þ7.5%

SSpro 85.4% 6 11.6 þ2.5% 85.8% 6 10.5 þ2.8% 75.2% 6 10.7 þ2.8% 74.0% 6 11.4 þ7.1% 82.6% 6 12.9 þ4.2%

PORTER 85.3% 6 6.8 þ3.1% 84.5% 6 6.2 þ3.4% 81.8% 6 9.0 þ1.8% 80.2% 6 10.0 þ4.6% 83.1% 6 8.5 þ4.6%

PSRSM 89.6% 6 9.3 þ2.0%b 90.5% 6 7.7 þ1.4%b 82.6% 6 12.2 þ1.4%b 82.5% 6 12.7 þ3.5%b 84.8% 6 10.2 þ3.2%b

Best Nnessy hybrid 91.6% 6 9.2 91.8% 6 7.7 84.0% 6 12.0 85.9% 6 11.8 88.0% 6 9.2

Highlighted table entries are in bold.
aHybrid boost is the improvement in accuracy when hybridizing a tool with Nnessy.
b The tool that gave the best Nnessy hybrid for that dataset.

i322 S.Krieger and J.Kececioglu



sets, there is high sequence similarity between proteins in the yearly
datasets and the template database. This yields high accuracies for
Nnessy over other tools for 8-state prediction, with the hybrid
method improving that accuracy even further. For 8-state predic-
tion, template-based approaches offer higher prediction accuracies
because there is more chance for confusion in non-template-based
approaches. The variance in prediction accuracy follows the same
trend as it did in Tables 1 and 2.

The maximum-likelihood dynamic programming approach enables
Nnessy to output physically valid secondary structure predictions,
while raising the average accuracy by about 0.1% for all datasets.

4 Discussion

We discuss accuracy as a function of template database size, fidelity
of accuracy estimation, behavior of the hybrid approach, and run-
ning time.

4.1 Accuracy versus template database size
With larger template databases, Nnessy tends to get higher accur-
acy. We measure the tradeoff between template database size and

accuracy by randomly subsampling our template database and then
predicting on PDB2019 using these smaller databases. Figure 2
shows the tradeoff of Q3 and Q8 accuracy versus template database
size. Our accuracy remains stable until more than 50% of the words
are removed from the template database. This may be due to redun-
dancy among overlapping words, where removing random words
from long runs of nearest neighbors with near-identical secondary
structure has little effect on overall accuracy.

Figure 2 also shows the accuracy achieved by methods whose Q3

or Q8 accuracies intersect the respective curve. Our current imple-
mentation of the core method has running time proportional to the
size of the template database, so reduced template database size
roughly correlates with reduced running time. Nnessy could use a
template database of 30% size and still match the accuracy of the
next-best method on PDB2019, while running about three times
faster than our current implementation. It is possible that a careful
subsampling (where we remove words systematically instead of ran-
domly) could achieve even better results.

4.2 Performance of the accuracy estimator
Nnessy uses the distance to the overlapping nearest neighbors of
each residue to estimate prediction accuracy. Figure 3 shows the aver-
age accuracy of residues, given the average nearest neighbor distance
of their overlapping words. Each blue circle represents a residue from

Table 3. Eight- and three-state accuracies on yearly PDB datasets of the best tools

PDB2014 PDB2015 PDB2016 PDB2017 PDB2018 PDB2019

8-State Q8 accuracy Boosta Q8 accuracy Boosta Q8 accuracy Boosta Q8 accuracy Boosta Q8 accuracy Boosta Q8 accuracy Boosta

PORTER 75.6% 6 7.4 þ8.5% 74.9% 6 10.8 þ8.8% 75.2% 6 11.2 þ9.1% 73.6% 6 9.4 þ10.1% 74.5% 6 9.6 þ9.8% 70.5% 6 11.3 þ12.6%

Nnessy 79.3% 6 18.1 þ4.8% 80.6%6 16.4 þ3.1% 82.5% 6 15.3 þ1.8% 80.5% 6 17.4 þ3.2% 82.8% 6 15.7 þ1.5% 82.4% 6 15.2 þ0.7%

Hybrid 84.1% 6 10.8 83.7% 6 12.3 84.3% 6 12.5 83.7% 6 12.7 84.3% 6 12.5 83.1% 6 15.0

3-State Q3 accuracy Boosta Q3 accuracy Boosta Q3 accuracy Boosta Q3 accuracy Boosta Q3 accuracy Boosta Q3 accuracy Boosta

Nnessy 85.5% 6 12.9 þ2.3% 85.3% 6 22.0 þ6.0% 87.3% 6 12.0 þ2.9% 84.9% 6 12.8 þ4.2% 85.7% 6 10.7 þ2.3% 85.7% 6 15.2 þ2.3%

PSRSM 87.6% 6 8.4 þ0.2% 87.2% 6 8.4 þ4.1% 88.5% 6 6.0 þ1.7% 86.0% 6 13.3 þ3.1% 88.0% 6 9.1 þ0.0% 84.8% 6 10.2 þ3.2%

Hybrid 87.8% 6 8.7 91.3% 6 7.6 90.2% 6 9.2 89.1% 6 11.9 88.0% 6 9.1 88.0% 6 9.2

Highlighted table entries are in bold.
aBoost is the improvement in accuracy of the hybrid over the original tool.

Fig. 2. Average accuracy on PDB2019, using a fraction of the full template database.

The horizontal axis is the percentage of the full template database used, for a ran-

dom subset of the database. The vertical axis is the accuracy on PDB2019. The solid

curves in the plot give the Q3 and Q8 accuracy of Nnessy. Dashed lines represent the

accuracy of other methods on PDB2019; their intersection point with a curve gives

the fractional size of the template database at which Nnessy meets their accuracy.

Only tools whose accuracies intersect each curve are shown. By reducing its tem-

plate database size, Nnessy can be further sped up, and still exceed the accuracy of

state-of-the-art tools on such datasets.

Fig. 3. Comparison of residue accuracy to overlapping word distance. Each blue cir-

cle represents a residue from the evaluation datasets, with the average distance of its

overlapping nearest-neighbor words given by the horizontal axis, and the average

accuracy of the 100 residues with closest average word distance shown on the verti-

cal axis. The dashed lines show the fitted accuracy estimator, which gives the esti-

mated probability that the predicted state of a residue is correct, as a function of its

average word distance.

Boosting the accuracy of protein secondary structure prediction i323



the evaluation datasets, with the average distance of its overlapping
nearest-neighbor words given on the horizontal axis, and the empiric-
al average accuracy of the 100 residues with closest average word dis-
tance given on the vertical axis. We fit lines to the two portions of the
plot, which are used for accuracy estimation. Residue accuracy does
not change much with increasing distance until around a distance of
0.6, where the accuracy begins to plummet with increased distance.
To estimate prediction accuracy of a protein, we average the esti-
mated residue accuracy across the protein.

Figure 4 shows the true Q3 accuracy compared to the estimated
accuracy for each protein in the evaluation datasets. The green and
red discs give the average accuracy compared to the average esti-
mated accuracy for an evaluation or yearly dataset. The black
dashed line shows the identity, where predicted accuracy equals true
accuracy. On average, the accuracy estimator has error of 5.3% for
3-state predictions and 8.3% error for 8-state predictions on the
evaluation datasets. For 8-state prediction, the plots look roughly
the same for both Figures 3 and 4. For each of the evaluation data-
sets, the estimated accuracy of a protein is from an estimator fitted
on evaluation datasets that do not include the protein.

4.3 Performance of the hybrid approach
The hybrid approach combines the best predictions from Nnessy
with the robust predictions from a non-template-based tool. We esti-
mate the prediction accuracy for a protein based on the distance of
overlapping nearest neighbor words for each residue as detailed in
Section 4.2. If the estimated accuracy is above a threshold (80%),
Nnessy’s prediction is output as the hybrid prediction. Otherwise
the prediction of the other hybridized tool is chosen. We chose 80%
as the threshold because, for Nnessy, few proteins have estimated
accuracy greater than 80%, but true accuracy lower than 80% (see
Fig. 4). Therefore, the hybrid approach rarely chooses a low-
accuracy prediction from Nnessy. When no close template matches
are found (the nearest-neighbor distance is high), non-template-
based tools generally have higher accuracy than Nnessy, due to bet-
ter generalization, so their prediction is used.

The hybrid approach chooses predictions near-optimally, where
the optimal choice is the prediction with higher true accuracy. The
following table compares the accuracies of: Nnessy, the next-best

tool on the CASP datasets (PORTER for 8-state and PSRSM for 3-
state), the hybrid of the two tools with randomly chosen predictions,
the hybrid with an 80% threshold, and an oracle that picks the
highest-true-accuracy prediction. All accuracies are averaged over
the CASP datasets.

The hybrid method is usually within 1% of the oracle and is
even optimal in some cases (for the hybrid of Nnessy and PORTER
on CASP10). This demonstrates that the hybrid method selects pre-
dictions much better than random, and the simple, thresholded
hybrid method approaches optimal prediction selection. The per-
residue hybrid approach, where the hybrid chooses which prediction
to output at the residue level instead of the protein level, has a higher
oracle accuracy, but in practice a simple 80% threshold for the per-
residue hybrid approach did not outperform the per-protein hybrid.

In Figure 5, we visualize the selections made by the hybrid ap-
proach. We sorted the proteins in the CASP dataset by the Q8 accuracy
of the PORTER-Nnessy hybrid, and the protein rank of this sorting is
given on the horizontal axis. A blue circle and green triangle are plot-
ted for each protein giving the Q8 accuracy of PORTER and Nnessy
on the vertical axis, respectively. The black curve goes through the
prediction the hybrid selected for each protein. Points above and
below the line respectively indicate suboptimal and optimal choices
made by the hybrid approach, where choosing the higher-accuracy
prediction is optimal. Due to the high variance in the prediction ac-
curacy of Nnessy, as shown by the accuracy spread of circle markers
in the plot, on CASP datasets the hybrid approach chooses 19% of
Nnessy’s 8-state predictions, and 25% of its 3-state predictions. On
the other hand for the PDB datasets, the hybrid chooses 70% of
Nnessy’s 8-state predictions and 83% of its 3-state predictions.

4.4 Running time
The core method of Nnessy circumvents a traditional homology
search, offering a speedup over a PSI-BLAST search of large protein

Fig. 4. Comparison of true and estimated accuracy for our accuracy estimator. The

blue circles represent proteins from all datasets, with the estimated accuracy of the

Nnessy prediction for the protein shown on the horizontal axis, and the true accur-

acy of the prediction on the vertical axis. Along the dotted line, estimated accuracy

is equal to true accuracy. The dashed line is at the threshold used by our hybrid

method; circles to its right are Nnessy predictions chosen by the hybrid method.

The red discs show the average true accuracy and average estimated accuracy of

proteins in the four CASP datasets; green discs show the same for the six PDB data-

sets. The estimated accuracy of a protein is from an estimator fitted on evaluation

datasets that do not include that protein. The closer a circle is to the dotted line, the

more accurate the accuracy estimator.

Fig. 5. Visualization of the hybrid method. Each value along the horizontal axis cor-

responds to a single protein from CASP datasets. These CASP proteins are sorted

along this axis by their Q8 accuracy for the Nnessy-PORTER hybrid. At the rank of

each such protein in this sorted order, a blue circle and a green triangle are plotted,

with the vertical axis giving the Q8 accuracy of their Nnessy and PORTER predic-

tion, respectively. The solid black curve goes through the prediction that is selected

by the hybrid method. Circles or triangles above this curve correspond to proteins

for which the hybrid selection has suboptimal accuracy, while all those below are

proteins for which the hybrid method is optimal.

Nnessy PORTER PSRSM Random Hybrid (Oracle)

8-State 64.2% 71.7% 68.0% 77.7% (78.1%)

3-State 73.4% 86.3% 79.8% 88.3% (88.9%)

i324 S.Krieger and J.Kececioglu



sequence databases. We ran the following experiment using four
cores of a Xeon Broadwell E5-2695 Dual 14-core, 2.3 GHz proces-
sor with 24 GB of memory. We measured the processing time for
proteins in the CASP datasets, and Nnessy takes 1.4 s per residue,
or on average 5 min to process a 200-length protein. PSI-BLAST
over Uniref50 (used by SSpro) takes 2.7 s per residue, or on aver-
age 9 min to process a 200-length protein. PSI-BLAST over
Uniref90 (used by PSIPRED) takes 9.6 s per residue, or 32 min on
a 200-length protein. Our current implementation is nearly twice as
fast as SSpro, and over six times faster than PSIPRED. The nearest
neighbor searches of Nnessy are readily parallelized by distributing
queries to separate jobs.

5 Conclusion

Our core approach to protein secondary structure prediction repla-
ces the sequence database homology searches of current methods
with a faster nearest neighbor search over a smaller template data-
base of fixed-length words. Our hybrid approach, which combines
this core method with an alternate non-template-based method, is
the most accurate approach currently available for both 3- and 8-
state secondary structure prediction.

Acknowledgements

The authors acknowledge the following former students of J.K. who worked

on prior versions of this approach: David Celaya, David Perkins, David

Porfirio, Benjamin Salazar, Joseph Thomas and Benjamin Yee. The authors

also thank Dan DeBlasio, Travis Wheeler and August Woerner for helpful

discussions.

Funding

This research was supported by the US National Science Foundation through

grants IIS-1217886 and CCF-1617192 to J.K.

Conflict of Interest: none declared.

References

Adamczak,R. et al. (2004) Accurate prediction of solvent accessibility using

neural networks-based regression. Proteins, 56, 753–767.

Altschul,S.F. et al. (1997) Gapped BLAST and PSI-BLAST: a new generation

of protein database search programs. Nucleic Acids Res., 25, 3389–3402.

Berman,H. et al. (2000) The Protein Data Bank. Nucleic Acids Res., 28,

235–242.

Beygelzimer,A. et al. (2006) Cover trees for nearest neighbor. In Proceedings

of the 23rd International Conference on Machine Learning (ICML).

[CrossRef][10.1145/1143844.1143857]

DeBlasio,D. and Kececioglu,J. (2017) Parameter Advising for Multiple

Sequence Alignment, Volume 26 of Computational Biology Series. Springer

International. Cham, Switzerland.

Deng,X. and Cheng,J. (2011) MSACompro: protein multiple sequence align-

ment using predicted secondary structure, solvent accessibility, and resi-

due–residue contacts. BMC Bioinformatics, 12, 472.

Dill,K.A. and MacCallum,J.L. (2012) The protein-folding problem, 50 years

on. Science, 338, 1042–1046.

Dor,O. and Zhou,Y. (2006) Achieving 80% ten-fold cross-validated accuracy

for secondary structure prediction by large-scale training. Proteins Struct.

Funct. Bioinf., 66, 838–845.

Drozdetskiy,A. et al. (2015) JPred4: a protein secondary structure prediction

server. Nucleic Acids Res., 43, W389–W394.

Faraggi,E. et al. (2012) SPINE X: improving protein secondary structure pre-

diction by multistep learning coupled with prediction of solvent accessible

surface area and backbone torsion angles. J. Comput. Chem., 33, 259–267.

Finn,R.D. et al. (2011) HMMER web server: interactive sequence similarity

searching. Nucleic Acids Res., 39, W29–W37.

Heffernan,R. et al. (2015) Improving prediction of secondary structure, local

backbone angles, and solvent accessible surface area of proteins by iterative

deep learning. Sci. Rep., 5, 11476.

Jones,D. (1999) Protein secondary structure prediction based on

position-specific scoring matrices. J. Mol. Biol., 292, 195–202.

Kabsch,W. and Sander,C. (1983) Dictionary of protein secondary structure:

pattern recognition of hydrogen-bonded and geometrical features.

Biopolymers, 22, 2577–2637.

Kececioglu,J. et al. (2010) Aligning protein sequences with predicted second-

ary structure. J. Comput. Biol., 17, 561–580.

Li,D. et al. (2012) A novel structural position-specific scoring matrix for the

prediction of protein secondary structures. Bioinformatics, 28, 32–39.

Lu,Y. and Sze,S.H. (2008) Multiple sequence alignment based on profile align-

ment of intermediate sequences. J. Comput. Biol., 15, 767–777.

Ma,Y. et al. (2018) Protein secondary structure prediction based on data parti-

tion and semi-random subspace method. Sci. Rep., 8, 9856.

Mirabello,C. and Pollastri,G. (2013) Porter, PaleAle 4.0: high-accuracy pre-

diction of protein secondary structure and relative solvent accessibility.

Bioinformatics, 29, 2056–2058.

Müller,T. et al. (2002) Estimating amino acid substitution models: a compari-

son of Dayhoff’s estimator, the resolvent approach and a maximum likeli-

hood method. Mol. Biol. Evol., 19, 8–13.

Pollastri,G. et al. (2002) Improving the prediction of protein secondary struc-

ture in three and eight classes using recurrent neural networks and profiles.

Proteins Struct. Funct. Bioinf., 47, 228–235.

Qi,Y. et al. (2012) A unified multitask architecture for predicting local protein

properties. PLoS One, 7, e32235.

Saraswathi,S. et al. (2012) Fast learning optimized prediction methodology

(FLOPRED) for protein secondary structure prediction. J. Mol. Model., 18,

4275–4289.

Spencer,M. et al. (2015) A deep learning network approach to ab initio protein

secondary structure prediction. IEEE/ACM Trans. Comput. Biol. Bioinf.,

12, 103–112.

Wang,S. et al. (2016) Protein secondary structure prediction using deep convo-

lutional neural fields. Sci. Rep., 6, 18962.

Woerner,A. (2016) On the neutralome of great apes and nearest neighbor

search in metric spaces. PhD dissertation, Graduate Interdisciplinary

Program in Genetics, University of Arizona, Tucson, Arizona, USA.

Yang,Y. et al. (2016) Sixty-five years of the long march in protein secondary

structure prediction: the final stretch? Brief. Bioinf., 19, 482-494.

Yaseen,A. and Li,Y. (2014) Context-based features enhance protein secondary

structure prediction accuracy. J. Chem. Inf. Model., 54, 992–1002.

Boosting the accuracy of protein secondary structure prediction i325


	btaa336-T1
	tblfn1
	tblfn2
	btaa336-T2
	tblfn3
	tblfn4
	btaa336-T3
	tblfn5

