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Abstract: Microorganisms area treasure in terms of theproduction of various bioactive compounds
which are being explored in different arenas of applied sciences. In agriculture, microbes and their
bioactive compounds are being utilized in growth promotion and health promotion withnutrient
fortification and its acquisition. Exhaustive explorations are unraveling the vast diversity of
microbialcompounds with their potential usage in solving multiferous problems incrop production.
Lipopeptides are one of such microbial compounds which havestrong antimicrobial properties
against different plant pathogens. These compounds are reported to be produced by bacteria,
cyanobacteria, fungi, and few other microorganisms; however, genus Bacillus alone produces a majority
of diverse lipopeptides. Lipopeptides are low molecular weight compounds which havemultiple
industrial roles apart from being usedas biosurfactants and antimicrobials. In plant protection,
lipopeptides have wide prospects owing totheirpore-forming ability in pathogens, siderophore
activity, biofilm inhibition, and dislodging activity, preventing colonization bypathogens, antiviral
activity, etc. Microbes with lipopeptides that haveall these actions are good biocontrol agents.
Exploring these antimicrobial compounds could widen the vistasof biological pest control for
existing and emerging plant pathogens. The broader diversity and strong antimicrobial behavior
of lipopeptides could be a boon for dealing withcomplex pathosystems and controlling diseases
of greater economic importance. Understanding which and how these compounds modulate the
synthesis and production of defense-related biomolecules in the plants is a key question—the answer
of whichneeds in-depth investigation. The present reviewprovides a comprehensive picture of
important lipopeptides produced by plant microbiome, their isolation, characterization, mechanisms
of disease control, behavior against phytopathogens to understand different aspects of antagonism,
and potential prospects for future explorations as antimicrobial agents. Understanding and exploring
the antimicrobial lipopeptides from bacteria and fungi could also open upan entire new arena of
biopesticides for effective control of devastating plant diseases.
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1. Introduction

Crop plants are damaged every year by phytopathogens, leading to enormous economic
losses to farmers across the world. Currently, themost effective available control measure for
plant diseasesthroughchemical pesticideshasresulted intoxic effectsonnon-target organismsandas
these compounds arenon-biodegradable in nature, this has become a matter of serious concern for
contemporary environmentalists. Since chemical control is not sustainable and is almost certain
to cause environmental pollution [1–3], different microbiological agents and biologically active
molecules are beingexplored for their potential to inhibit thegrowth of phytopathogensand alleviation
of other stresses [4–8] to crop plants. These bioactive compounds are produced by microorganisms,
specificallyby the Bacillus genus whichis considered one of the most important bioactive compound
factories [2,3,8]. Plant diseases caused by phytopathogenshave beenone of the most important and
emerging categories of threats to global food security [9,10]. Microbiome associated with the plants
is known to produce a structurally diverse group of compounds with hydrophilic and hydrophobic
moieties and of which exhibitsbiosurfactant activity. These biosurfactants include lipopeptides,
glycolipids, phospholipids, polysaccharide-protein complexes, neutral lipids, and fatty acids [11].

Due to the enormous variation in the chemical structures, lower toxicity to non-targets,
biodegradability, and effectiveness to be functional under extreme environmental conditions such as
high pH, extreme temperature, salinity, drought, metal stress, etc., these bio-surfactants qualifythe
parameters set for asuitable green and eco-friendly alternative as compared to their synthetic
counterparts for managing phytopathogens and reduce crop losses therefrom. Duetothese properties,
they have gained much attension in applied sectors ranging from pharmaceutical, cosmetics,
agriculture, oil recovery, and food industriestothe activities related to environmental remediation [12–16]
Lipopeptides are defined as cyclic, low molecular weight compounds withantimicrobial potential
largely produced by Bacillus and Pseudomonas spp. [17,18]. In general, the molecular weight of
lipopeptides ranges from 1000–2000 Da. They are synthesized by specific gene clusters, namely
nonribosomal peptides synthetase (NRPs) via a multi-enzyme biosynthesis pathway [19]. Surfactin,
iturin, and fengycin are the three major families reported from Bacillus groups and are mainly
composed of a hydrophilic amino acid (7–10 amino acids) linked with a hydrophobic fatty acid
tail. Aneurinifactin is a group of lipopeptide reported from marine bacterium Aneurinibacillus
aneurinilyticus isolated from the Gulf of Mannar [20]. Moreover, several lipopeptides such as iturin [21],
surfactin [22], sophorolipids [23], rhamnolipids [24], trehalose lipid [25], and mannosylerythritol
lipids [26] exhibited antifungal, antibacterial, or antitumor activities, signifying their utility as potent
alternativesof conventional therapeutic agents and biocontrol agents for use in various biomedical and
agriculturalapplications [15,24]. Surfactins consist of seven amino acids linked to one unique hydroxy
fatty acid, whereas iturins consist of seven amino acids linked to one unique amino acid. The chemical
composition of fengycins reveals that it consists of 10 amino acids linked to one unique hydroxy fatty
acid. These lipopeptides are the most important factors contributing to their biocontrol potential in the
plant growth-promoting microorganisms [17,18,22].

These cyclic lipopeptides produced by different microorganisms retain antiviral, antifungal,
antibacterial, biofilm-forming, and plant resistance-inducing activities. Several reports indicate that
these small molecular weight lipopeptides facilitate root colonization in many plants [8–10,15,16].
They act as potential antagonists by direct inhibition of phytopathogens through different mechanisms
and/or by stimulating and strengthening plant defense machinery of defense-related networks known
as induced systemic resistance (ISR) [16]. Recently, biocontrol agents of microbial origin have gained
much attention for soil-borne disease control [27]. These bioagents synthesized and secreted several
diffusible and volatile organic compounds in the rhizosphere and plant system and these compounds
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are the most important factors contributing to the biocontrol activity [28] of the producer organism.
These biomoleculesare chiefly characterized for their antagonistic activity against plant pathogens of
different crops [27,29,30]. There are some cyclic lipopeptides which have recently been identified as
elicitors of plant defence response such as ISR [7,16]. These biomolecules play a key role and modulate
various mechanisms underlying the defense responses or, more specifically, ISR, both directly and
indirectly. Moreover, cyclic lipopeptides may be involved anywhere in the three-step process of ISR, viz.
the perception of bacterial elicitor, systemic signal transduction, and, finally, defense gene expression
in the host system [8–10]. However, the role of plant growth-promoting rhizobacteria (PGPR) in the
signaling and induction of defense mechanisms isbeing well documented [31,32]. Until now, very little
wasknown about mechanisms as to how the lipopeptides elicit ISR and activate different cascades of
pathways after early interaction with the plant cell. Some molecules accountable for the ISR-eliciting
activity may be cell-surface components [33–35], volatiles [36], iron-regulated metabolites [37–39],
antibiotics compounds [40–43], and quorum-sensing signals [44]. Tran et al. [45] reported that
“massetolide” produced by Pseudomonas fluorescens SS101 elicit ISR-reactions in tomatoeschallenged
with Phytophthora infestans.

Similarly, members of the surfactins and fengycins families also act as elicitors of ISR by
supplementing and eliciting the host resistance potential [46]. Members of the surfactin family
show structural variability among them with good emulsifying and foaming properties. This is in
contrast to the various investigations conducted with some PGPRs and pathogen-associated molecular
patterns (PAMPs) used to decipher the events for ISR development taking place after lipopeptide
inoculation [47–49]. However, very little information is available about the role of lipopeptides as
elicitors of plant defense in controlling pathogen invasion. Although, they are known to act as chemical
barriers and thus, slow down or inhibit pathogen colonization [50].

2. Isolation and Characterization of Lipopeptides

2.1. Isolation and Purification of Lipopeptides

Lipopeptides are chiefly synthesized by microorganisms belongingto bacterial genus Bacillus [51]
by multimodular enzymes that are NRPSs. The cells are grown in their respective media and are allowed
to produce lipopeptides (Figure 1). These lipopeptides are separated from cells bycentrifugation.
Malfanova et al. [52] grew the bacterial cells for 60 h at 28 ◦C and then centrifuged at 13,000 rpm
for 10 min to remove cells and obtain crude lipopeptides. After this, the supernatantwasacidified
(pH 2.0) using concentrated HCl and acid precipitate wasextracted with methanol. The extract obtained
wasconcentrated by vacuum evaporation. This can also be done by lyophilization. The resulting
material wasdissolved in 1/50 of the initial volume of methanol or may be dissolved in PBS for
further experimentations [52–54]. The crude extract wasthen purified by different methods of
chromatography like gel filtration in Sephadex column using methanol, HPLC, etc. and the collected
eluent wasused for identification using MALDI-TOF-MS, LC-MS, or MS-MS, comparing retention time
and molecular masses. Different elution programs are used for the quantification of different families
of lipopeptides [55].
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Figure 1.Flow chart diagram of lipopeptide extraction and the purification process. 

2.2. Molecular Characterization of Antifungal Lipopeptides 

Lipopeptide producing genes are well characterized and studies on specific lipopeptides can 
be done with great efficiency by a PCR based approach using specific primer pairs [56,57]. Some of 
the validated primer sets are listed in Table 1. The presence and expression of these lipopeptide 
producing genes can be assessed by PCR and real time PCR (qPCR) based studies, respectively. A 
large population can be screened quickly using these kinds of primer sets for the presence of 
different lipopeptides producing genes. The expression of these genes during antagonism is 
determined by RT-PCR. RNA is isolated under different treatment conditions. The purity and 
concentration of isolated RNA isolates are determined by absorbance recording at 260/280 nm or 
using nanodrop and are diluted to a common concentration in all the treatments. The RNA is then 
converted to cDNA, which is further used as a template in RT-PCR flowing standard protocols. 
After PCR amplification, the PCR products are loaded on to 1.2% agarose gel and the eluted 
products were applied for Sanger’s dideoxy sequencing and similar sequence can be obtained by 
using ‘BLAST’(Basic Local Alignment Search Tool) available in NCBI .  

Figure 1. Flow chart diagram of lipopeptide extraction and the purification process.

2.2. Molecular Characterization of Antifungal Lipopeptides

Lipopeptide producing genes are well characterized and studies on specific lipopeptides can be
done with great efficiency by a PCR based approach using specific primer pairs [56,57]. Some of the
validated primer sets are listed in Table 1. The presence and expression of these lipopeptide producing
genes can be assessed by PCR and real time PCR (qPCR) based studies, respectively. A large population
can be screened quickly using these kinds of primer sets for the presence of different lipopeptides
producing genes. The expression of these genes during antagonism is determined by RT-PCR. RNA is
isolated under different treatment conditions. The purity and concentration of isolated RNA isolates
are determined by absorbance recording at 260/280 nm or using nanodrop and are diluted to a common
concentration in all the treatments. The RNA is then converted to cDNA, which is further used as a
template in RT-PCR flowing standard protocols. After PCR amplification, the PCR products are loaded
on to 1.2% agarose gel and the eluted products were applied for Sanger’s dideoxy sequencing and
similar sequence can be obtained by using ‘BLAST’ (Basic Local Alignment Search Tool) available
in NCBI.
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Table 1. List of various lipopeptides encoding genes and their respective primer set for PCR amplification.

S.No. Lipopeptide Class Gene Primer Name Primer Sequences (5′-3′) Reference

1. Surfactins

(a) Surfactin sf P SFP-F1
SFP-R1

ATGAAGATTTACGGAATTTA
TTATAAAAGCTCTTCGTACG [58]

(b) Surfactin Srf c Sur3f
Sur3r

ACAGTATGGAGGCATGGTC
TTCCGCCACTTTTTCAGTTT [57]

(c) Surfactin Srf A-A srfAA-Fw
srfAA-Rv

AAAGGATCCAGCCGAAGGGTG TCATGGT
AAAAAGCTTGTTTTTCTCAAAGAACCAGCG [59]

(d) Surfactin srf AA (Surfactin
synthetase subunit 1)

SRFAF
SRFAR

TCGGGACAGGAAGACATCAT
CCACTCAAACGGATAATCCTGA [60]

(e) Surfactin srf A F3726
R3879

GAAGTCTTCAGCGGCGAACTG
GGGTGGCTCCGTTTTTCTCG [56]

(f) Surfactin srf DB SUR3F
SUR3R

ACAGTATGGAGGCATGGTC
TTCCGCCACTTTTTCAGTTT [61]

2. Iturins

(a) Iturin A ItuD ItuD1f
ItuD1r

GATGCGATCTCCTTGGATGT
ATCGTCATGTGCTGCTTGAG [57]

(b) Iturin A Itu-C ituC-Fw
ituC-Rv

AAAGGATCCAAGCGTGCCTTTTACGGGAAA
AAAAAGCTT AATGACGCCAGCTTTCTCTT [59]

(c) Iturin ituC (Iturin A
synthetase C)

ITUCF
ITUCR

GGCTGCTGCAGATGCTTTAT
TCGCAGATAATCGCAGTGAG [60]

3. Fengycins

(a) Fengycin FenD FenD1f
FenD1d

TTTGGCAGCAGGAGAAGTTT
GCTGTCCGTTCTGCTTTTTC [62]

(b) Fengycin fenD (Fengycin
synthetase)

FENDF
FENDR

GGCCCGTTCTCTAAATCCAT
GTCATGCTGACGAGAGCAAA [60]

(c) Fengycin FenE FenEF
FenER

GTTTCATGGCGGCGAGCACG
GATTCGCGGGAAGCGGATTGAGC [62]

(d) Fengycin Fen Af2-F
Tf1-R

GAATAYMTCGGMCGTMTKGA
GCTTTWADKGAATSBCCGCC [63]

4. Bacillomycins

(a) Bacillomycin bmyB (Bacillomycin L
synthetase B)

BMYBF
BMYBR

GAATCCCGTTGTTCTCCAAA
GCGGGTATTGAATGCTTGTT [60]

(b) Bacillomycin D BamC Bacc1f
Bacc1r

GAAGGACACGGAGAGAGTC
CGCTGATGACTGTTCATGCT [57]

(c) Bacillomycin D bam D ITUD-F1
ITUD-R1

TTGAAYGTCAGYGCSCCTTT
TGCGMAAATAATGGSGTCGT [64]

5. Bacilysin

(a) Bacilysin bacAB BACD-F1
BAMD-R1

AAAAACAGTATTGGTYATCGCTGA
CCATGATGCCTTCKATRCTGAT

[65]

(b) Bacilysin bacAB BACAB-F1
BACAB-R1

CTTCTCCAAGGGGTGAACAG
TGTAGGTTTCACCGGCTTTC

6. Ericin

Ericin eriB eriBF
eriBR

GAWKNACWCCWTWTGG
CCRCCATATCSWTMTRYYTC [66]

7. Mersacidin

(a) Mersacidin mrsA MRSA-F1
MRSA-R1

GGGTATATGCGGTATAAACTTATG
GTTTCCCCAATGATTTACCCTC

[67]

(b) Mersacidin mrsM MRSM-F1
MRSM-R1

AAATGACCCGGCATATGTTC
TGCTGACTAACTGGAATTGGAA

8. Mycosubtilin

(a) Mycosubtilin fenF ITUD-F1
ITUD-R1

TTGAAYGTCAGYGCSCCTTT
TGCGMAAATAATGGSGTCGT

[68]

(b) Mycosubtilin mycC MYCC-F1
MYCC-R1

AATCAATTGGCACGAACCTT
ATCGCCCGTTTTGTACATTC

9. Zwittermicins

(a) Zwittermicin A Zwit ZWITF2
ZWITR1

TTGGGAGAATATACAGCTCT
GACCTTTTGAAATGGGCGTA [61]

10. Kurstakins

(a) Kurstakins Kur Aks-F
Tks-R

TCHACWGGRAATCCAAAGGG
CCACCDKTCAAAKAARKWATC [69]

Where H denotes A or C or T, W-A or T, R-A or G, D- A or G or T, K- G or T, Y-C or T.
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3. Different Classes of Lipopeptides

Lipopeptides are a group of microbial surfactants such as surfactin, lichenycin, iturin,
and fengycin [70]. From previous studies, lipopeptides from the surfactin, iturin, and fengycins
families are characterized in Figure 2. These are majorly produced by Bacillus spp., including B. subtilis,
B. amyloliquefaciens, B. licheniformis, B. globigii, B. pumilus, B. cereus, B. megatarium, and B. thurigiensis [71–74].
Based on amino acid sequences, they have been broadly classified into three major groups: surfactins,
iturins, and fengycins. The following are major classes of lipopeptides.
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3.1. Iturins

The antifungal cyclic lipopeptide produced by Bacillus spp. is low molecular weight lipopeptide
iturin. Iturin have antimicrobial potential against plant pathogens [75]. The biopesticide and fungicidal
properties of iturins are realized by interacting with sterol components of the cell membrane of
phytopathogenic fungus. Compounds of the iturin family are characterized by a peptide ring of seven
amino acids, which shows high polymorphism resulting in varied biological and physico-chemical

https://pubchem.ncbi.nlm.nih.gov
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properties. The vast diversity of this family includes iturin A, iturin C, iturin D, iturin E, bacillomycin
D, bacillomycin F, bacillomycin Lc, mojavensin A, and mycosubtilin [76]. Iturin A causes potassium
ion-conducting channels in lipid bilayers as a mechanism of antagonism. Some of the members like
mojavensin A, however, show cytotoxic activities [77].

3.2. Surfactins

Surfactins showed high antifungal and antibacterial activities and constitute one of the major
classes of antibiotic lipopeptides produced by Bacillus spp. [19,78]. It is biosurfactant and important
for biofilm production and its stability. Produced by Bacillus subtilis, it has been proven to be cidal
to the bacterial phytopathogen, Pseudomonas syringae pv. tomato in Arabidopsis [79]. In the structure
of surfactins, a cyclic lactone ring is formed which contains amphipathic cyclic lipoheptapeptide
of Glu-Leu-Leu-Val-Asp-Leu-Leu (ELLVDLL) fatty acid chain and another sequence chiral to this
(LLDLLDL) which is interlinked with 12-16-C β-hydroxy [80]. A change in the size and order of
amino acids alsocauses variation in the lipid portion [81]. The amino acids and β-hydroxy fatty acids
in a given surfactin not only vary with the producer bacterial strain, but the culture conditions also
contribute to the diversity [82]. Surfactins affect the lipid bilayer of membranes and thus, are effective
against both Gram-positive and Gram-negative bacteria. It is also thought to have anti-mycoplasma,
antiviral, and antitumor activities and canalso suppress inflammatory responses through the inhibition
of phospholipase A2 [82,83]. In biocontrol, it cansuppress phytopathogens like Pseudomonas syringae,
Xanthomonas axonopodis, Sclerotinia sclerotium, Botrytis cinerea, Colletotrichum gloeosporioides, and also
activated ISR [84,85].

3.3. Fengycins

Fengycins are a family of lipopeptides produced by members of genera Bacillus and Paenibacillus.
They have antifungal activity and affect filamentous fungi [86], the most important group of
phytopathogens. Structurally, fengycins are decapeptides, with14-19-C attached to a β-hydroxy
fatty acid chain exhibiting strong antifungal activity [87,88]. This third family of lipopeptides is
also known as plipastatin. They arealso involved in the triggering systemic response against plant
pathogens. There are two classes of Fengycins—Fengycin A and Fengycin B. Both classes differ from
each other by the amino acid attached at position 6. Fengycin A contains Ala at position 6, whereas
Fengycin B contains Val in this position.

3.4. Pseudofactins

These are a class of lipopeptides produced by Pseudomonas fluorescens. There are of two major
types—Pseudofactin I and Pseudofactin II. This class has got a huge therapeutic usage, especially
Pseudofactin II, which has got antiadhesive properties [89]. Itsgreater emulsification activity and its
stability have made it a compound of choice over other synthetic surfactants; therefore, it is considered
potent in bioremediation. Structurally, Pseudofactins are cyclic octapeptides attached to palmitic
acid [75].

3.5. Viscosins

Viscosins are also obtained from Pseudomonas fluorescens and have antibacterial and antifungal
activity. The specific feature of viscosins is itshigh surface-activeness, which can inhibit the migration
of cancer cells. In the case of Pseudomonas, viscosins increase the efficiency of plant roots and also have
protective roles for germinating seedlings against plant pathogens [90].

3.6. Daptomycins

Daptomycins are a newer class of lipopeptide antibiotics approved by the US FDA and are
effective against Gram-positive bacterial infections [91]. Structurally, daptomycins are a cyclic decanoyl
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lipid chain with 13 amino acid peptides. Theyexhibit broad-spectrum activity against an array of
Gram-positive bacteria such as Staphylococcus, Streptococcus, Pneumococcus, Clostridium, and Enterococcus.
The source microorganism for the production of daptomycin is actinobacterium Streptomyces
roseosporus [91]. It inhibits the synthesis of lipoteichoic acid and disrupts bacterial membrane
potential (depolarization) by the formation of pores which provides itsantimicrobial, antiparasitic,
and immuno-suppressor properties. The functioning of daptomycin is calcium ion-dependent [91].

3.7. Poaeamides

Poaeamides are known fortheir diverse capability like swarming, biofilm formation, and regulation
of attachment-detachment to plant roots, etc., apart from antifungal activity against plant pathogens
like Rhizoctonia solani causing damping-off [92,93]. It is produced by Pseudomonas spp. [94] and has got
potential pharma and biocontrol properties.

4. Biocontrol Potential of Lipopeptides

Almost all of the Bacillus species produce antimicrobial compounds known as lipopeptides and
several strains of B. subtilis and B. amyloliquefaciens are reported to produce lipopeptides. Gong et al. [95]
and Qian et al. [96] reported that the crude lipopeptides are stable to heat, pH, and showed high
capability as biocontrol agents against various pathogens [97]. Mora et al. [60] observed that the
antagonistic activity between plant-associated Bacillus and phyto-pathogens are related to the presence
of cyclic lipopeptide genes. However, natural Bacillus strains play an important role in the production
of different concentrations of each lipopeptide and thus are crucial for their interaction with plant as
well as biofilm formation interaction with plants and the production of biofilms [85,98]. It has been
reported that lipopeptides have shown potential antagonistic activity against disease causing bacteria
and fungi in vitro and in planta conditions [99]. Cho et al. [100] reported that the Bacillus pumilus strain
HY1 hasshown strong biocontrol activity against harmful aflatoxin producing fungi A. flavus and
A. parasiticus suppress the fungal species Aspergillus flavus and A. parasiticus, which areproducers of
potentially harmful aflatoxins. There are a few key mechanisms discussed in this section by which
lipopeptides show antimicrobial activities (Table 2).

Table 2. Different lipopeptides, their source microorganisms, and the nature of antimicrobial activity.

S. No. Source Organism Lipopeptide Class/Type Activity/Action
References
(Not to Be
Attended)

1. Actinoplanes friuliensis Friulimicin
Broad range of
multi-resistant
Gram-positive bacteria

[101]

2. Arthrobacter spp. MIS38 Arthrofactin Bio-surfactant [102]

3. Bacillus subtilis Iturin A, Bacillomycin,
Fengycin, Bacillomycin Antifungal [57]

4. B. subtilis HC8 Surfactin, Fengycin A,
Fengycin B, Iturin A, Antifungal [52]

5. B. subtilis K1 Surfactin, Iturin, Fengycin A
and B, Fengycin A2 and B2 Antifungal [103]

6. B. subtilis GA1 Iturins, Fengycins,
Surfactins Antifungal [104]

7. B. subtilis M4 Fengycin A and B Antifungal [30]

8. B. subtilis B-FS01 Fengycin Antifungal [105]

9. B. subtilis and
B. amyloliquefaciens

Fengycin, Iturins, Surfactins,
Bacillomycin Antibaterial [60]
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Table 2. Cont.

S. No. Source Organism Lipopeptide Class/Type Activity/Action
References
(Not to Be
Attended)

10. B. subtilis SPB1 Surfactin, Fengycin, Iturins Antifungal [106]

11. B. subtilis EBS05 Surfactin A Antifungal [107]

12. B. subtilis B49 Fengycin, Bacillomycin D Antifungal [61]

13. B. subtillis ATCC 13952 Fengycin Antifungal [61]

14. B. subtillis DF-HO8 Fengycin Antifungal [61]

15. B. subtilis CMB32 Iturin A, Fengycin,
Surfactin A Antifungal [108]

16. B. subtilis (Marine) Surfactins and Fengycins Delayed Germination [109]

17. B. subtilis B1
Iturin C, Surfactin, Fengycin
A and B, Bacillomycin D,
Bacilysin, Mycobacillin

Antifungal [110]

18. B. subtilis JA Surfactin, Iturin,
and Fengycin Antifungal [111]

19. B. subtilis 9407 Fengycin Antifungal [112]

20. B. subtilis HC8 Fengycin A and Fengycin B Antifungal [52]

21. B. subtilis S499 Surfactin, Fengycin A,
and Fengycin B Antifungal [30]

22. B. subtilis fmbj Fengycin A and Fengycin B Antifungal [113]

23. B. subtilis EPCO16
Iturin A, Surfactin,
Zwittwermicin A,
Bacillomycin D

Antifungal [114]

24. B. subtilis 6051 Surfactin Antibacterial activity against
P. Syringae [79]

25. B. subtilis M4 Iturin/Fengycin
Antifungal activity against
Pythium ultimum causing
Damping-off disease of Beans

[30]

26. B. subtilis M4 Fengycin
Antifungal activity against
Botrytis cinerea causing Gray
mold disease of Apples

[30]

27. B. subtilis Iturin/Fengycin
Antifungal activity against
podosphaera fusca causing
Powdery mildew of Cucurbits

[97]

28. B. subtilis JA; JA026 Fengycin

Antifungal activity against
Gibberella zeae (anamorph of
Fusarium graminearum)
Fusarium causing head blight
(FHB) in Wheat and Barley and
Ear rot in Corn

[115]

29. B. subtilis B-FS01 Fengycin

Antifungal activity against
Fusarium moniliforme causing
Seedlingblight, Stalk rot,
and Ear rot

[105]

30. B. subtilis BBG127
and BBG131 Cyclic lipopeptides

Antifungal activity against
Botrytis cinerea 630 causing
Necrosis of Grapevines

[116]

31. B. subtilis 9407 Fengycin
Antifungal activity against
Botryosphaeria dothidea causing
Apple ring rot

[112]

32. B. subtilis GA1 Iturin, Fengycin, Surfactin
Antifungal activity against
Botrytis cinerea causing Grey
mould disease of Apples

[104]
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Table 2. Cont.

S. No. Source Organism Lipopeptide Class/Type Activity/Action
References
(Not to Be
Attended)

33. B. amyloliquefaciens ES-2 Fengycin, Surfactin Antibacterial/anti-fungal [53]

34. B. amyloliquefaciens TF28 Iturin A Antifungal [54]

35. B. amyloliquefaciens
ARP23 and MEP218

Surfactin C15, Fengycins A,
Iturin A

Antifungal activity against
Sclerotinia sclerotiorum [59]

36. B. amylolequifaciens S499 Fengycin, Iturins, Surfactin ISR [117]

37. B. amyloliquefaciens 32a Surfactin, Iturin A,
Bacillomycin D, Fengycin Antimicrobial [118]

38. B. amyloliquefaciens CC09 Fengycin, Iturin, Surfactin,
Bacillomycin Antifungal [18]

39. B. amyloliquefaciens BO7 Surfactin Antifungal [119]

40. B. amyloliquefaciens subsp.
plantarum SV65 Fengycin Antifungal activity [120]

41. B. amyloliquefaciens
MEP218 Iturin, Fengycin, Surfactin Antibacterial, Antifungal [121]

42. B. amyloliquefaciens
KPS46 Surfactin

Antibacterial activity against
Xanthomonas axonopodis
pv. glycines

[122]

43. B. amylolequifaciens Lipopeptides, Surfactin,
Iturin, Fengycin

Antiviral
ActivityagainstRhizomania, an
important disease of Sugarbeet

[117]

44. B. mojavensis RRC101 Leu7-Surfactin Antifungal [123]

45. B. mojavensis A21 Surfactin, Fengycin,
Pumalicidin Antimicrobial, Antifungal [124]

46. B. mojavensis RRC101 Surfactin, Fengycin Antifungal [125]

47. B. licheniformis Lichenysin Bio-surfactant [124]

48. B. licheniformis Surfactins, Lichenysins Bio-surfactant [126]

49. B. pumilus HY1 Iturins Antifungal [100]

50. B. pumilus (Marine) Pumilacidin Antibacterial activityagainst
Staphylococcus aureus [127]

51. B. thuringiensis CMB26 Fengycins Fungicidal, Bactericidal,
andInsecticidal activity [128]

52. B. thuringiensis kurstaki
HD-1 Kurstakins Antifungal activity against

Stachybotrys charatum [129]

53. B. thuringiensis kurstaki Kurstakin Antifungal activity [130]

54. B. vallismortis R2 Surfactins, Iturins,
Fengycins

Antifungal activity against
Alternaria alternate causing Black
point disease of Wheat

[131]

55. B. cereus DFE4 Surfactin, Iturin A,
Bacillomycin D Antifungal [132]

56. B. methyltrophicus TEB1 Iturin A, Fengycin, Surfactin Antifungal [133]

57. B. methylotrophicus HC51 Iturin A, Fengycin Antifungal [134]

58. Bacillus sp.C3 Iturin A, Surfactin,
Subtilosin, Subtilin Antifungal [135]

59. Bacillus sp.BmB9 Surfactin, Iturin, Fengycin Antifungal, Antibacterial [136]

60. Bacillus sp. FJAT-14262 Surfactin Antifungal [137]

61. Bacillus sp. CY22 Iturin Antifungal [138]

62. Bacillus sp. NH-100 Surfactin A Antifungal [139]
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Table 2. Cont.

S. No. Source Organism Lipopeptide Class/Type Activity/Action
References
(Not to Be
Attended)

63. Bacillus sp.
Iturin A, Surfactin,
Zwittermicin A,
Bacillomycin D

Antifungal activity against
Fusarium oxysporum f.sp.
lycopersici causing Wilt
in Tomato

[114]

64. Bacillus sp. (Marine) Mixirins A, B, and C Cytotoxic [77]

65. Chromobacterium sp. C61 Chromobactomycin
Antifungal activity against
Magnoporthe grisea causing
Rice Blast

[140]

66. Fusarium sp. YG-45 Fusaristatins A and B Antimicrobial [141]

67. Fusarium decemcellulare
LG53 Fusaristatin A Mildantimicrobial [142]

68. Geitlerinema sp.(Marine
cyanobacterium) Mitsoamide Cytotoxic activities [77]

69. Herbaspirillum seropedicae
Z67 Serobactins A, B, and C As aniron source [143]

70. Pseudomonas fluorescens
96.578 Tensin

Antifungal activity against
Rhizoctonia solani causing
Sugarbeet seed infection

[144]

71. P. fluorescens BD5 Pseudofactin II Anti-adhesive activity [89]

72. P. fluorescens SS101 Massetolide A Systemic resistance (Late Blight) [45]

73. Pseudomonas poae
RE*1-1-14 Poaeamide

Antifungal activity against
Rhizoctonia solani causing
Damping off and Rootrot
in Sugarbeet

[93]

74.
Pseudomonas sp. UCMA
17,988 (Isolated from
Bovine raw milk)

Milkisin

Antimicrobial activity against
Listeria monocytogenes,
Staphylococcus aureus,
and Salmonella enteric

[145]

75. Paenibacillus polymyxa
M-1 Polymyxin, Fusaricidin Suppress phytopathogenic

Erwinia spp. [146]

76. Paenibacillus sp.
IIRAC-30 Surfactin Antifungal [147]

77. Scopulariopsis brevicaulis
(Marine sponge-derived) Scopularides A and B Cytotoxic activities [77]

78. Streptomyces canus Amphomycins Inhibit bacterial cell wall
synthesis [148,149]

79. Streptomyces
viridochromogenes Laspartomycins Antibacterial, Antiherpes

activity [150]

80. Variovorax
boronicumulanss BAM-48 Variochelins A and B Siderophore production [151]

4.1. Lipopeptides as Biosurfactants Distressing Membrane Integrity and Permeability

Lipopoetide surfactants exhibited a unique pore and ion channels forming property thus may
disturb the normal integrity and permeability of lipid bilayer of cell membrane [152]. This ability
of disrupting the structural integrity of the biological membrane establishes their primary mode of
antimicrobiotic action against bacteria, fungi, virus, mycoplasma, etc. [153]. Surfactins, which are one
of the most potent biosurfactants, get inserted into the lipid bilayer after dimerization, chelate mono
and divalent positively charged ions disturb the membrane permeability due to trans-membrane ion
influxes and, finally, cause cell death as a result of cell disruption [153–156].
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Iturins are strongly mycotoxic against a broad range of yeasts and fungal pathogens
including A. flavus and R. solaniin vitro, but possess limited antibacterial and no activity against
viruses [77,157–159]. Although iturins function through their membrane permeabilization properties,
their mode of action is slightly different from surfactins [28]. Iturins cause osmotic disturbance
by forming ion-conducting pores in the membrane without disrupting or solublizing them, unlike
surfactins [160]. Fengicins are potent antifungal agents which act specifically against filamentous fungi,
including phytopathogenic ones, viz. Plasmodiaophora monoliforme, Fusarium moniliforme, Fusarium
gramineareum, and Podosphera fusca [161–163]. Their interaction with the lipid bilayer depends upon
their concentration and they lead the alteration of membrane structural integrity and permeability [164].

Studies using scanning electron and optical microscopy revealed that B. thuringiensis CMB26
derived antibiotic lipopeptide affected the cell surface of plant pathogenic fungus, Colletotrichum
gloeosporioides, E. coli O157, and Pieris rapae crucivora (cabbage white butterfly larvae) by acting on plasma
membrane [128]. Pseudomonas syringae pv. syringae derived cyclic lipodepsipeptides, Syringopeptin,
and Syringomycin also exhibited ion channel formation and lytic against plant and human cells due
to their membrane-permeabilizing properties [165–167]. A fungal cyclohexadepsipeptides enniatin,
derived from Fusarium sp. Verticillium and Halosarpheia, acts as an ionophore which first gets
incorporated in the cell membrane and leads to the intracellular ion leakage and cation specific pores
formation. This may establish the basis of the mechanism of actionof enniatin as a antimicrobial,
anthelmintic, anticancer, and enzyme inhibiting agent [168].

Disruption of the integrity and permeability of biological membranes due to thepore and ion
channels forming ability of lipopeptide surfactants has been established as the most important mode
or mechanism of their action for explaining their applications as antibacterial, antifungal, antitumor,
and hemolytic agents in the agriculture, biomedical, pharmaceutical, and therapeutic sectors. Moreover,
the synergistic effect of various lipopeptides (mainly surfactins, iturins, and fengycins) showed
antiadhesive activity, resulting in the reduction of colonization and stimulating biofilm dispersion
of pathogenic bacteriadue to their amphiphilic surfactant like property [169]. The biosurfactant
property of various lipopeptides is important in prohibiting biofilm formation. These biosurfactants
are amphiphillic molecules that not only inhibit biofilm formation, but also dislodge the existing
biofilm. Two Pseudomonas fluorescens lipopeptides putisovin I and II are reported to suppress the biofilm
formation and breakdown of existing biofilm [170]. Abdallah et al. [171] reported the suppression of
Agrobacterium tumefaciens biofilm by a mixture of lipopeptides produced by Bacillus amyloliquifaciens.
The mixture maybe able to inhibit tumor formation upon pathogen adhesion on a tomato stem.
In this experiment, the formation of new biofilm was also inhibited and the old ones dislodged.
In agriculture, antiadhesive properties of various lipopeptides biosurfactants may also be used to
reduce the attachment of phytopathogens on the plant surface and thus, their colonization efficiency,
which is very crucial for the development of various plant diseases.

4.2. Lipopeptides as Siderophores

Iron is an essential nutrient that is required for normal functioning of important physiological
processes including biological nitrogen fixation, transportation of oxygen, methane production,
and DNA biosynthesis [172]. Microbes, including many bacteria and fungi, produce siderophores,
a class of low molecular weight compounds with astrong tendency to form complexes with
inorganic iron ions, thus making it biologically available to carry out cellular functions [173,174].
Several lipopeptides are also known to function as siderophores. Variochelins, a class of photoreactive
lipopeptide siderophores, are mainly produced by specific genera of marine bacteria, viz. Halomonas,
Marinobacter, Ochrobactrum, Synechococcus, and Vibrio [175–178]. Using a genome mining strategy,
Variovorax boronicumulans BAM-48, a plant-associated terrestrial bacterium wasalso found to produce
variochelins [151]. These siderophores support the growth of the producing organism by making
important nutrients such as iron biologically available to them and also play a crucial role in determining
the microbial community structure [179,180]. Some lipopeptide siderophores also act as chemical
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mediators for bacteria−algal interactions in the ocean [181]. These molecules have iron-binding
α-hydroxycarboxylate ligand groups triggering a ligand-to-metal charge transfer reaction by absorbing
photons in UV light, making iron available to surrounding microalgae, which, in turn, provides organic
matter to the siderophore producing bacteria [181–185]. This mutualism has important ecological
implications [186].

Moreover, Herbaspirillum seropedicae Z67 (class Betaproteobacterium), a N2 fixing and growth
promoting endophyte, inhabiting many important crop has been reported to secrete a class of
amphiphillic lipopeptidal siderophore called serobactins [187–190]. Serobactins employs a similar
mechanism of increasing the bioavailability of inorganic iron common to many siderophores produced
by aquatic bacteria [173]. The lipopeptide siderophores producing plant-associated bacteria can
significantly influence the microbial community structure and thus, contribute to plant growth and
health by modulating plant-microbe as well as plant-pathogen interactions.

4.3. Lipopeptides ISR-Inducer in Plants

Some beneficial bacteria indirectly protect plants from disease-causing microbes through the
stimulation of inducible defense mechanisms which are systemic in nature and called ISR, which are
effective in the management of several plant diseases [191]. Lipopeptides also showed antifungal activity
and are involved in ISR activation and defense responses [116]. They are less toxic, biodegradable,
and environmentally-friendly, with a broad range of target phytopathogens and, thus, have huge
potential for plant diseases management. Many strains of Bacillus spp. strains are known to induce
defense responses in plants, but knowledge about the molecular determinants of the Bacillus mediated
ISR is very limited [36,192]. Ongena et al. [46] showed that surfactins and fengycins lipopeptides
protect bean and tomato plants through ISR and, thus, represent a novel class of microbial-associated
molecular patterns (MAMPs) which play an important role in the activation of the defense signalling
pathway. They also revealed that surfactin and fengycin encoding genes when overexpressed in
Bacillus subtilis strain 168 (poor producer) elevated the ISR potential of derivatives in tomato and bean
plants. Moreover, increase in the activity of the main enzymes of the lipoxygenase pathway were
observed in resistant plants when challenged with lipopeptide overproducers. They also hypothesized
that surfactins and fengycins should have a distinct mechanism for ISR-induction in plants.

Surfactin and fengycin caused ISR induction in the plants against phytopathogenic fungi, but
showed varying responses in different plant cell types [28]. Now, it is well established that surfactin is
crucial for ISR induction, colonization of root and biofilm formation and extracellular matrix formation
in B. subtilis [193]. The binding of surfactin molecules to the plant cell membrane is mainly responsible
for ISR-induction [194]. Enhanced resistance has been reported againstgrey leaf spot disease caused
by Magnaporthe oryzae due to H2O2-mediated defense responses sensitized by ISR responses elicited
by semi-purified surfactin lipopeptides in perennial ryegrass [195]. The Pseudomonas-derived cyclic
lipopeptide orfamide was shown to act as an ISR elicitor, triggering early defense events and inducing
expression of defence related genes without causing cell death in rice against the brown spot disease
fungus Cochliobolus miyabeanus [196]. Endophytic bacteria showed antifungal activity, which played an
important role indefending plants against invading fungal pathogens. Endophytic Bacillus sp. has
been utilized in protecting maize and horse-bean fungal pathogens. Gond et al. [57] reported that
through lipopeptide production, the maize associated symbiotic bacteria directly inhibits the potential
pathogens and also induce host defense gene activation against fungal pathogens. The possible
mechanisms of lipopeptide mediated plant disease management are summarized in Figure 3.
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5. Future prospects of Microbial Lipopeptides in Plant Disease Management

Cropdestruction by existing and emerging phytopathogens is an important issue of contemporary
agriculture that needs to be addressed properly to optimize gains from this age-old enterprise. As the
population continues to build up, losses due to plant diseases are emerging as a threat to global food
security. Plant diseases affect agricultural produce not only quantitatively, but also qualitatively, hence
affecting the gains from marketable produce at two distinct levels. Not only this, but food safety is also
a concern that is related to microbial infestation of agricultural produce [197]. Many of the currently
available antimicrobial products that areused in agriculture are highly toxic and non-biodegradable and,
thus, cause extended environmental pollution. Moreover, increasing resistance to existing antimicrobial
agents among the phytopathogens is also a matter of great concern for the future of agriculture [84,198].
On the other hand, extensive use of agrochemicals has disturbed the ecological balance by creating
non-target toxicity, development of resistance among pathogens, contamination of reservoirs and
groundwater, obvious health risks to humans and other living beings, and increases in the cost of
cultivation. In such a situation, the challenge before microbiologists and plant pathologists in the
future is to control the stronger pathosystems using environmentally-friendly alternatives. This would
require exploring non-conventional and newer approaches to combat a variety of crop diseases [46].
Plant resistance has been exploited for along timeand in response, a large number of resistant strains
of plant pathogens have been reported. The current scenario of antimicrobial agents involvesthe
problem of toxic effects on non-target organisms, including human consumers and the environment,
and this toxicity, coupled with low biodegradability, has made this solution poor [199] enough to
search for alternatives.

Microbial agents for biological control are being explored extensively in different crops against
an array of pathogens as they exhibit a wider range of antimicrobial activities. Some microbial
agents directly act upon the pathogens by millions of antimicrobial compounds, nutrient quenching,
competition for space, etc. Whereas, others interact with plants with long-distance signaling by eliciting
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defense responses using microbe-associated molecular patterns and their compounds or priming
plants without making any direct interaction to the pathogen in question. These beneficial microbes
modulate the growth condition of the surrounding region so that the pathogen could not thrive and
develop in numbers to cause economically significant damage to plants.

Antagonistic microbes control the pathogens via hyperparasitism and antibiosis in direct interaction.
This involves multiple mechanisms and compounds generated through highly regulated cascades.
To use these antimicrobial metabolites for the control of pathogens on the field requires a stringent
and exhaustive registration process to avoid any non-target effects on the other constituents of the
environment. In this aspect, currently, risks associated with antagonistic microbial metabolites are often
assessed similar to that of single-molecule fungicides. Since the nature of the compound and mode of
actions are different, thisrequires a re-thinking of data requirements for the registration of microbial
agents as biopecticides. Endless research data indicated the enormous antimicrobial capabilities of the
genus Bacillus, Pseudomonas, and Trichoderma. These three genera are considered as factories for the
production of biologically active molecules which are potent growth inhibitors of phytopathogens.
Lipopeptides, a subclass of antimicrobial peptides, arenow emerging as an attractive alternative
for the development of new peptide-based biopesticides [84,200]. The usefulness of lipopeptides
is being evaluated as a potent versatile weapon for the control of a wide range of phytopathogens.
The three broad families of Bacillus lipopeptides, surfactins, iturins, and fengycins, along with other
new groups of antimicrobial lipopetides are being explored for their effectiveness against a wide
range of phytopathogens including bacteria, fungi, and viruses [84]. Shafi et al. [201] advocated that
the Bacillus species has numbers of antagonizing attributes against plant pathogens including the
production of lipopeptides, enzymes, and plant growth promotion. Hazarika et al. [202] studied the
role of lipopeptides produced by leaf endophytes against 10fungal species.

Apart from bacterial lipopetides, fungi-derived lipopeptide antibiotics are also gaining importance.
These lipopetides have four categories: cyclic depsipeptides, peptaibiotics, non-depsipeptide cyclic
lipopeptides, and non-peptaibiotic linear lipopeptides [203,204]. These compounds have greater future
significance due to their varied bioactivity and diversity. The major fungal genera producing lipopetides
are Acremonium, Aspergillus, Alternaria, Metarhizium, Beauveria, Fusarium, Penicillium, etc. They exhibit
cytotoxic, antimicrobial, antiviral, insecticidal, antitumoral, and enzyme-inhibitory activities which could
be potential weapon against plant pathogens of economic importance [203]. Fungi derived antimicrobial
lipopetides like peptaibols, lipoaminopeptides, lipopeptaibols, echinocandins, aspochracins, etc. could
be tested against new and emerging pathosystems for preparing biofungicides of tomorrow.

This could open an entire new arena of biopesticides since the whole of society is concerned
about green chemicals. These biodegradable biosurfactants could be environmentally-friendly with
low toxicity andalternatives to highly toxic synthetic chemical pesticides [205]. The implications of
overwintering and the resting stages of pathogens could also be worked out to reduce the inoculum
loads from croplands. The microbial strain may be engineered for the novel structure of surfactin
production [206]. Further, advancement in the bioinformatics assisted molecular and dynamics
simulation studies can also help to decipher the molecular and biochemical mechanisms. Moreover,
several reports have already been initiated on the structure prediction and their possible interaction
with different cellular protein/enzyme targets [207–210]. Cob-Calan et al. [211] demonstrated the
interactions of the cyclic lipopeptides iturin A, fengycin, and surfactin with β-tubulin using molecular
docking and molecular dynamics simulation. A comparative study had shown that iturin A and
fengycin had higher binding affinity as compared to surfactin for the catalytic site of β-tubulin [210,211].
With the help of advancements in genetic engineering and synthetic biology, improved lipopeptide
production with higher efficiency could be developed, targeting important pathosystems. The work on
reducing the cost of industrial production is also an area to be explored with greater efficiency. With all
these initiatives, the lipopeptides of microbial origin could form a useful and wider base to combat the
plant pathogens of today and tomorrow.
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