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Purpose: The current study was to investigate whether myopia affected peripheral
motion detection and whether the potential effect interacted with spatial frequency,
motion speed, or eccentricity.

Methods: Seventeen young adults aged 22–26 years participated in the study. They
were six low to medium myopes [spherical equivalent refractions −1.0 to −5.0 D
(diopter)], five high myopes (<-5.5 D) and six emmetropes (+0.5 to −0.5 D). All myopes
were corrected by self-prepared, habitual soft contact lenses. A four-alternative forced-
choice task in which the subject was to determine the location of the phase-shifting
Gabor from the four quadrants (superior, inferior, nasal, and temporal) of the visual
field, was employed. The experiment was blocked by eccentricity (20◦ and 27◦), spatial
frequency (0.6, 1.2, 2.4, and 4.0 cycles per degree (c/d) for 20◦ eccentricity, and 0.6,
1.2, 2.0, and 3.2 c/d for 27◦ eccentricity), as well as the motion speed [2 and 6 degree
per second (d/s)].

Results: Mixed-model analysis of variances showed no significant difference in the
thresholds of peripheral motion detection between three refractive groups at either
20◦ (F [2,14] = 0.145, p = 0.866) or 27◦ (F [2,14] = 0.475, p = 0.632). At 20◦, lower
motion detection thresholds were associated with higher myopia (p < 0.05) mostly
for low spatial frequency and high-speed targets in the nasal and superior quadrants,
and for high spatial frequency and high-speed targets in the temporal quadrant in
myopic viewers. Whereas at 27◦, no significant correlation was found between the
spherical equivalent and the peripheral motion detection threshold under all conditions
(all p > 0.1). Spatial frequency, speed, and quadrant of the visual field all showed
significant effect on the peripheral motion detection threshold.

Conclusion: There was no significant difference between the three refractive groups
in peripheral motion detection. However, lower motion detection thresholds were
associated with higher myopia, mostly for low spatial frequency targets, at 20◦

in myopic viewers.
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INTRODUCTION

The human visual system is not fully functional at birth.
During early postnatal development, the eye grows toward
emmetropia (Banks, 1980; Mohindra and Held, 1980). Abnormal
development of the visual system can lead to different types of
eye disorders, the most widespread of which is myopia (Wiesel
and Raviola, 1977; Wallman et al., 1978; Siegwart and Norton,
2011). Myopia is a benign disorder in which visual images come
to a focus in front of the retina mostly due to the elongation
of the eye horizontally. The condition is mainly manifested as
a reduction of distance visual acuity (Morgan et al., 2012). The
global prevalence of myopia has reached very high as reported
in multiple epidemiological studies (Grosvenor and Scott, 1993,
1994; Dirani et al., 2009; Lim et al., 2012), particularly in Asian
populations (Wang et al., 2020; Xie et al., 2020). It was predicted
that almost half of the world population would have myopia by
2050 (Holden et al., 2016).

Besides poor visual acuity, myopes also show abnormalities
in spatial visual processing including contrast sensitivity
(Stoimenova, 2007; Ehsaei et al., 2013), blur perception (Gwiazda
et al., 1993; Rosenfield and Abraham-Cohen, 1999; Vasudevan
et al., 2006; Maiello et al., 2017; Ang et al., 2020), color
vision (Garcia-Domene et al., 2018), binocular vision (Vera-
Diaz et al., 2018), and attention (Kerber et al., 2016). Myopes
may also have abnormal temporal visual processing abilities.
For example, Vera-Diaz et al. (2018) found that myopes had
poorer performance than emmetropes in perceiving flickered
binocular stimuli at lower temporal frequencies. Another study
found that critical flicker frequency was lower in high myopes
compared to emmetropes; and in a large range (5–60 Hz)
of temporal frequency, the contrast modulation threshold of
flickering stimuli was higher in high myopes (Chen et al.,
2000). A recent study using a psychophysical multichannel
functional test (Antón et al., 2012) to study the sensitivity of
visual pathways in high myopes (Garcia-Domene et al., 2018)
found that the sensitivity of the magnocellular pathway, which
is mainly responsible for the motion perception (Merigan and
Maunsell, 1990), decreased. Therefore, it suggested myopia may
have impaired motion perception.

Most of the aforementioned studies focused on the central
vision. Recent studies have shown that myopia also causes
abnormal changes in the morphology of the peripheral retina
(Ohno-Matsui et al., 2016; Nagra et al., 2018), and peripheral
defocus is closely related to the development of myopia (Smith
et al., 2005, 2010). In general, peripheral vision refers to the area
outside 2◦ eccentricity of the fovea and parafovea (Strasburger
et al., 2011). Many myopia progression control lenses have been
designed based on the finding of myopic peripheral defocus
slowing down the elongation of the eyeball (Sankaridurg et al.,
2019; Tarutta et al., 2019; Kaphle et al., 2020; Lam et al., 2020).
Studying the characteristics of visual information processing in
the periphery of myopic vision is thus of great significance to our
understanding of myopia.

To understand temporal information processing in the
peripheral visual field of myopes, peripheral motion detection
is a good starting point. Peripheral motion perception, as a

fundamental visual function of humans, affects a range of
higher-level cognitive functions, including orienting, balance,
visually guided action, and mobility (Marron and Bailey, 1982;
Nakayama, 1985; Geruschat et al., 1998; Marigold, 2008), and
closely relates to daily activities (Henderson et al., 2013).
Previous studies on the effect of myopia on peripheral motion
perception did not reach consistent conclusions. To illustrate,
Leibowitz et al. (1972) and Johnson and Leibowitz (1974) found
no significant difference between myopes and emmetropes in
motion discrimination task at 10◦–80◦ eccentricities in the
temporal visual field. McKee and Nakayama (1984) found that
correcting peripheral refractive errors in myopes did not improve
the performance of differential motion perception tasks in the
lower peripheral visual field. A recent study (Kuo et al., 2018)
assessed central and peripheral motion perception (at 3.65◦
and 12◦ eccentricities) using the random-dot paradigm also did
not find significant differences in peripheral motion perception
tasks including minimum displacement (Dmin), maximum
displacement (Dmax), and motion coherence tasks between
young myopic and emmetropic adults. However, they have found
a small but significant correlation between the peripheral Dmin
threshold in the superior-temporal visual field and the axial
length, as well as the macular thickness of the corresponding
inferior-nasal retina. The latter finding suggested that peripheral
motion perception might be affected by myopia.

These studies have enriched our knowledge of the link
between myopia and peripheral motion perception. However,
considering that motion perception is influenced by a variety of
factors, such as eccentricity (Leibowitz et al., 1972; Rogers, 1972;
Johnson and Leibowitz, 1974; Koenderink et al., 1978a,b; McKee
and Nakayama, 1984; van de Grind et al., 1987; Wesemann and
Norcia, 1992), spatial frequency (Koenderink et al., 1978a,b; van
de Grind et al., 1987; Boulton and Baker, 1991; Beard et al.,
1997; Bex and Dakin, 2003; Lappin et al., 2009), speed (Lagae
et al., 1993; Lappin et al., 2009; Ananyev et al., 2019), and the
area in the different visual fields (Kuo et al., 2018), it remains
unclear that whether myopia affects peripheral motion processing
and if so, whether the potential effect varied with these factors.
In this study, we directly addressed this issue by measuring
the motion detection thresholds of gratings in a four-alternative
forced-choice task in blocks of eccentricity, spatial frequency, and
speed in young adults with low to high myopia and emmetropes.

MATERIALS AND METHODS

Participants
Six adults [mean age: 25.17 ± 0.37 years old; mean ± standard
deviation (SD)] with low to medium myopia [LM group;
spherical equivalent refraction (SER) between −1.0 and −5.0 D
(diopter)], five adults (mean age: 25.4 ± 0.8 years old) with high
myopia (HM group; SER less than −5.5 D) and six controls (EM
group; mean age: 23.83± 1.07 years old) with SER between+0.5
and −0.5 D, participated in the current study. Refraction was
done for each subject at the beginning of the study. Subjects
were then grouped according to the refraction (Flitcroft et al.,
2019). All myopes wore self-prepared, habitual soft contact lenses
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TABLE 1 | Clinical details of the participants.

Emmetropes (EM) Low to medium myopes (LM) High myopes (HM)

n 6 6 5

Age (y) 23.83 ± 1.07 25.17 ± 0.37 25.4 ± 0.8

Gender (female/male) (n) 4/2 4/2 5/0

Best-corrected visual acuity (logMAR) −0.11 ± 0.11 −0.08 ± 0.09 −0.06 ± 0.06

Refraction (D) −0.04 ± 0.31 −3.13 ± 1.19 −6.03 ± 0.75

Refraction of contact lenses (DE) – −2.96 ± 1.14 −5.65 ± 0.8

Data are mean ± SD.
DE, dominant eye; the logMAR VA of LM and HM were measured with the soft contact lens correction.

during the experimental session. Subjects’ best-corrected visual
acuity was equal to or better than log MAR 0.0. All subjects had
no history of ocular surgery, or other eye diseases. Observer’s
dominant eye, which was determined using the card-in-the-hole
test (Dane and Dane, 2004), was tested in this study. Details of
the dominant eyes of participants are provided in Table 1.

This study adhered to the Declaration of Helsinki. Informed
consent was obtained from all subjects after explaining the nature
and possible consequences of the study. The study was approved
by the Ethics Committee of the affiliated eye hospital of Wenzhou
Medical University.

Apparatus
Stimuli were generated and controlled by a PC running Matlab
R2016b (MathWorks, Inc., Natick, MA, United States) with
Psychtoolbox 3.0.14 (Brainard, 1997; Pelli, 1997; Kleiner et al.,
2007). The stimuli were presented on a gamma-corrected ASUS
PG278QR LED screen (ASUS Corp., China) with a 2,560× 1,440
resolution and a 60-Hz refresh rate. The average background
luminance was 37.5 cd/on the screen. During the measurement,
observers viewed the screen monocularly with their dominant eye
at a viewing distance of 27 cm. The untested eye was covered with
an opaque patch. The whole experiment was carried out in a dark
room to ensure the only light source was the display.

Stimuli
As shown in Figure 1, the target stimulus was a Gabor, which
was a phase-shifting grating within a two-dimensional Gaussian
window (sigma: 1.2◦ of visual angle; diameter: 4◦ of visual angle).
The grating moved from the far periphery inward in the Gaussian
window. The stimulus was presented randomly in one of the
four quadrants of the visual field (Figure 1B), namely nasal,
temporal, superior and inferior, at one of the two eccentricities
(20◦ and 27◦) on a uniform gray background. To be consistent
with the major motion direction of environmental objects during
locomotion, the motion direction of the target in each quadrant
was aligned with its meridian. To avoid location or eccentricity
change of the target, phase-shifting Gabors whose orientations
were perpendicular to their motion directions were employed.
Therefore, the orientation of the grating was vertical if the
nasal and temporal visual fields were tested, or horizontal if
the superior and inferior visual fields were tested. The spatial
frequencies (SF) of the stimuli were 0.6, 1.2, 2.4, and 4.0 cycle
per degree (c/d) at 20◦ eccentricity, and 0.6, 1.2, 2.0, and 3.2 c/d

at 27◦ eccentricity (Figure 1C). Two speeds, 2 and 6 degrees per
second (d/s) (Figure 1D), were tested.

Procedure
All subjects underwent dark adaptation for 5 min in the
darkroom before the measurements. Subjects were asked to look
straight ahead, with their dominant eye, at a fixation cross in
the center of the screen while performing the task. The non-
dominant eye was covered with an opaque patch. A chin rest
was used to minimize head movements to ensure the viewing
distance and the eccentricities of the stimuli were corrected. The
experiment was done in blocks of two eccentricities, four SFs,
and two speeds with two repetitions in each combined condition,
i.e., in total 32 runs. In each run, a four-alternative forced-choice
task was employed.

Figure 1A shows the procedure of two trials. In each trial, a
stimulus was presented randomly in one of the four quadrants
of the visual field for 600 ms. We asked subjects to determine
in which quadrant the target was presented, and to respond
by pressing the “2,” “4,” “6,” and “8” keys on the keyboard,
respectively. There was a constant 400 ms interval between the
button press and the onset of the next stimulus. Two 2-down
1-up staircases were interleaved for each run to determine the
contrast level of the gratings (Cornsweet, 1962). The step size of
the staircase was 1 dB [Decibel, dB = 20∗log10 (C), C represents
contrast (%)]. The contrast was started from the highest (100%),
decreased with two consecutive, correct responses, and increased
by one level with a single incorrect response. A reversal was
defined as a change of direction of the staircases between
increasing and decreasing. Each block was terminated after 50
trials or 10 reversals. The detection threshold was calculated as
the mean level of the last five reversals of all four staircases
under each condition. From the pilot testing, we found that
the levels of contrast that were requested during the staircases
at any spatial frequency, speed, and eccentricity in the current
study did not exceed the resolution of the eight-bit graphic card’s
capacity. Therefore, no special procedure to achieve extra bits
was carried out.

One 5-min practice run was applied before the start of the
test. Each run lasted about 5 mins. Subjects normally finished
the test (which took 3.5–4 h in total) on two or three separate
days within 1 week. Measures were taken during each session to
prevent visual fatigue, including 2-min mandatory breaks after
every one or two runs, and applying hydrating eye drops (Bausch
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FIGURE 1 | Illustration of the experiment design. (A) The peripheral motion detection procedure. In each trail, the stimulus was randomly presented in one of the four
quadrants of the visual field for 600 ms. Then subjects were asked to determine in which quadrant the grating was presented, followed by a 400 ms interval before
the onset of the next stimulus. (B) Examples of four quadrants (superior, inferior, nasal, and temporal) of the visual field. The cross in the center of the screen was for
fixation. (C) Examples of SFs for two eccentricities, SF were 0.6, 1.2, 2.4, and 4.0 cycle/degree (c/d) at 20◦ eccentricity, and 0.6, 1.2, 2.0, and 3.2 c/d at 27◦

eccentricity. (D) Two speeds of grating moving were tested, 2 and 6 degree/second (d/s).

& Lomb Incorporated) prepared by the authors for each subject
who wore contact lenses.

Statistical Analysis
Contrast thresholds of motion detection were used for statistical
analysis. Two mixed-model analysis of variances (ANOVAs) were
used to test the effects of one between-subjects factor-refractive
group, and three within-subject factors-spatial frequency, speed,
and quadrant of the visual field for each eccentricity. By
Pearson correlation coefficient (ranging between −1 and 1; two-
tailed) and empirical p values from permutation tests (based
on 10,000 permutations of the data), which have been used to
calculate the p values for multiple comparison correction, the
correlation between the average motion detection threshold and
the spherical equivalent were calculated. Statistical analysis was
performed using Matlab and IBM-SPSS 23.0 (IBM Inc., Armonk,
NY, United States).

RESULTS

The Effect of Myopia on the Peripheral
Motion Detection Threshold at 20◦

Eccentricity
In Figure 2, we plotted the average motion detection thresholds
at 20◦ across visual fields, speeds, SFs for EM (green), LM
(blue), and HM (red). LM group had larger peripheral motion
detection thresholds than other groups at 0.6 c/d. At 1.2 c/d,
the threshold of the nasal quadrant was higher in the EM
group, and the threshold of temporal and superior quadrants
at low speed were higher in the LM group. While at high
SFs (i.e., 2.4 and 4.0 c/d), there was no obvious difference in
the thresholds among the three groups. We conducted a four-
factor, mixed model ANOVA with one between-subject factor
(refractive group) and three within-subject factors (quadrant, SF,
and speed), on peripheral motion detection thresholds. However,
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FIGURE 2 | Average motion detection thresholds at 20◦ for emmetropes, low to medium myopes and high myopes. Data were plotted for different visual fields (in
different quadrants), spatial frequencies (in different columns), and speeds (in different rows). The green, blue, and red lines and shadows represent three refractive
groups (EM, LM, and HM). The width of the band represents the range between “mean ± standard error [SE]”.

the ANOVA revealed no significant main effect for the refractive
group (F[2,14] = 0.145, p = 0.866), nor interaction between group
and other within-subject factors (for all, F < 1.391; p > 0.25).
There were significant main effects for all within-subject factors:
quadrant (F[3,42] = 6.009, p = 0.002), SF (F[3,12] = 328.848,
p < 0.001), and speed (F[1,14] = 62.216, p < 0.001). We
also found significant interactions between quadrant and SF
(F[9,6] = 39.263, p < 0.001), quadrant and speed (F[3,12] = 3.961,
p = 0.036), SF and speed (F[3,12] = 15.571, p < 0.001), and
significant three-way interaction between quadrant, SF and speed
(F[9,6] = 8.383, p = 0.009).

The Effect of Myopia on the Peripheral
Motion Detection Threshold at 27◦

Eccentricity
Figure 3 illustrates the average motion detection thresholds at 27◦
for the three groups. Overall, no differences were observed among
the three groups under any of the conditions in Figure 3. A four-
factor mixed ANOVA, with quadrant, SF and speed as within-
subject factors and refractive group as between-subject factor, also
revealed no significant difference between group (F[2,14] = 0.475,
p = 0.632), nor interaction between group and factors (for all,
F < 0.403; p > 0.097). There were significant main effects for
quadrant (F[3,42] = 19.139, p < 0.001) and SF (F[3,12] = 233.346,
p < 0.001), and significant interactions between quadrant and SF
(F[9,6] = 26.16, p < 0.001), quadrant and speed (F[3,12] = 7.388,
p < 0.001), SF and speed (F[3,12] = 19.394, p < 0.001)
and three-way interaction between quadrant, SF and speed

(F[9,6] = 2.023, p = 0.042). While no significant main effect for
speed (F[1,14] = 1.26, p = 0.281) was found.

Correlation Analysis of the Motion
Detection Threshold and the Spherical
Equivalent of Myopes
We further performed Pearson correlation analysis and used
empirical p values from permutation tests to determine the
significance of the correlation between the motion detection
threshold and the spherical equivalent of myopic subjects in
LM and HM. Results at 20◦ are shown in Figure 4. At 20◦,
significantly positive correlations between motion detection
thresholds and refractive error were found at low SF (i.e., 0.6 and
1.2 c/d) and mainly high speed (6 d/s) in the nasal visual field (for
all, p < 0.05). This means that patients with higher myopia had
lower motion detection thresholds. Such pattern was also found
at low SF (0.6 c/d) and high speed (6 d/s) in the superior visual
field (r = 0.575, p = 0.034). While at high SF (4.0 c/d), significant
correlation only occurred at high speed (6 d/s) in the temporal
visual field (r = 0.556, p = 0.032). At 27◦, no significant correlation
was found in any condition (for all, p > 0.1). Results for 27◦ are
attached in Supplementary Material.

DISCUSSION

In this study, we investigated the effect of myopia on peripheral
motion detection in young adults, and to see if it varied with
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FIGURE 3 | Average motion detection thresholds at 27◦ for emmetropes, low to medium myopes and high myopes. Data were plotted for different visual fields (in
different quadrants), spatial frequencies (in different columns), and speeds (in different rows). The green, blue, and red lines and shadows represent three refractive
groups (EM, LM, and HM). The width of the band represents the range between “mean ± SE”.

eccentricity, spatial frequency, speed, as well as location in the
visual field. We found no statistically significant difference in the
peripheral motion detection threshold between emmetropes, low
to medium myopes, and high myopes. Further analysis revealed
that lower motion detection thresholds were associated with
higher myopia, mostly for low spatial frequency target, at 20◦
in myopic viewers.

Although there was evidence that peripheral visual deficit
existed in myopes compared to emmetropes, it was contrast-
dependent. For example, Ehsaei et al. (2013) found reduced
peripheral acuity at a high contrast level (100%) but not at a low
contrast of 14%. Contrast detection thresholds in the periphery
were found not to differ between myopes and emmetropes
in Kerber et al. (2016) study where they measured peripheral
contrast detection thresholds binocularly by using vertical Gabor
stimuli presented at three eccentricities, 8◦, 17◦, and 30◦.
These findings, together with ours, suggest that the difference
of peripheral perception between myopes and emmetropes is
minimal at low contrast.

The fact that no statistical difference in the behavioral task
performance between myopes and emmetropes cannot rule out
the potential effect of myopia on peripheral motion perception. In
fact, we still found significant correlations between the spherical
equivalent of myopia and the peripheral motion detection
threshold, mostly in the nasal and superior visual fields at low SF.
The correlations suggest the myopic impact on peripheral motion
perception. This finding is consistent with a previous study in

which Kuo et al. (2018) used random-dot patterns to assess dot
motion perception using Dmin, Dmax, and motion coherence
tasks in both central and peripheral visual fields in young myopic
and emmetropic adults. They also found that the Dmin threshold
in the superior-temporal visual field was correlated positively
with the axial length and negatively with the macular thickness of
the corresponding retina, despite the fact that no difference was
found between myopes and emmetropes, regardless of the tasks
used, in the periphery. This correlation suggested that the severer
myopia, the worse the performance of the Dmin task at the
near periphery. Although the direction of correlations between
the severity of myopia and the peripheral motion detection task
performance was opposite to that in our study, it could be due to,
first, the difference in eccentricity which was 3.65◦ in their study,
20◦ and 27◦ in our study; second, the nature of the task which
was global motion processing in their study and local motion
processing in ours; and third, the SF of the stimuli that covered
the full range by the dots in their study and more narrowly
filtered in our Gabor stimuli for the current study, whereas the
myopic impact on contrast sensitivity has been demonstrated to
be uneven across the spatial frequency range (Risse et al., 1996;
Jaworski et al., 2006).

The negative correlations we found between the myopia
severity and the peripheral motion detection threshold mostly
at the low spatial frequency in the nasal and superior visual field
have some interesting implications about myopic vision and the
myopization process. First, findings from visual search tasks
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suggested that myopes tend to adopt the local processing strategy
over the global processing strategy (Mascetti et al., 2001), or focus
their attention more locally (McKone et al., 2008; Kerber et al.,
2016) compared to their emmetropic counterparts. Therefore,
patients with severer myopia may perform better in the current
peripheral motion detection task which required local instead of
global processing. Second, myopic vision may try to compensate
for its loss in the central vision, especially at high SF (Risse et al.,
1996; Jaworski et al., 2006), by improving peripheral vision at low
SF. Compensation of central vision loss by peripheral vision has

been discovered in several brain plasticity studies (Cummings
et al., 1985; Timberlake et al., 1986; Maniglia et al., 2020). Third,
there is consensus that visual performance varies in different
parts of the visual field (Wertheim, 1980; Fahle and Schmid,
1988). For example, it was found that peripheral visual acuity
was better in the nasal and superior retinal regions than the
temporal and inferior regions for both myopic and emmetropic
groups (Ehsaei et al., 2013). The finding of the current study
that correlations between myopia severity and the peripheral
motion detection were mostly found in the nasal and superior

FIGURE 4 | Continued
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FIGURE 4 | Relationship between the motion detection thresholds and the spherical equivalent (SE) of myopes in the nasal (A), temporal (B), superior (C) and
inferior (D) visual field at 20◦. Each point represents one participant, the circles represent 2 d/s, and the triangles represent 6 d/s. Pearson correlation coefficients
and empirical p values from permutation tests (based on 10,000-time simulation) are shown. #p < 0.1; *p < 0.05.

visual field and only at 20◦, not 27◦, further suggested that
the myopic influence on visual performance also varies across
the whole visual field. This uneven distribution of the myopic
impact in the visual field is also consistent with the finding
in Kuo et al. (2018) study that only in the superior-temporal
visual field the correlations between Dmin task performance
and myopia severity were significant. Besides, the correlation
we found was mainly at low SF. This indicated that the effect

of myopia varies across the SF range, which is consistent with
Diez et al. (2020) research. They found that the changes of
accommodation response were SF-dependent, too. In particular,
the changes of accommodation response of emmetropes and
myopes were similar after the induction of stimulation of high SF,
while there was an opposite direction of accommodation
response changes between the two groups after low
SF stimulation.
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In this study, we did not measure or correct the subjects’
peripheral refractive status like some previous studies, which used
an adaptive optics vision system (Ghosh et al., 2016; Zheleznyak
et al., 2016). Peripheral vision was affected by multiple ocular and
physical factors, including refractive error, diffraction, scattering,
aberration, and the form of the palpebral fissure (Rosenholtz,
2016). Many studies have shown that refractive errors distribute
unevenly across the whole retina, and conventional correction
methods including single vision spectacle lenses and soft contact
lenses do not correct the refractive errors in the whole visual field
evenly either (Shen et al., 2010). It is possible that uncorrected
peripheral refraction might have influenced the threshold of the
peripheral motion detection. However, previous studies have
found that the relative peripheral refraction is larger when the
central corrective power used is higher with both contact lenses
(Shen et al., 2010; Moore et al., 2017) and spectacles (Lin et al.,
2010). This means that more severe myopic eyes corrected with
soft contact lenses suffer from more peripheral refractive errors,
thus more blur in the peripheral vision. This is opposite to
the negative correlation between myopia severity and peripheral
motion detection threshold. Thus, the correlation we found
could not be completely explained by refractive status in the
peripheral retina.

Compared with previous studies, we did not take additional
measures [e.g., blind spot (Leibowitz et al., 1972; Johnson and
Leibowitz, 1974; Kuo et al., 2018), bright-colored afterimage
(McKee and Nakayama, 1984), and pupil tracking camera
(Venkataraman et al., 2015), etc.] to monitor subjects’ eye
movements. In our experiment, stimulus was randomly
presented in one of four visual quadrants to minimize the effect
of expected eye movements. Previous studies have shown that
the response time of the human eye to the moving target is
150–250 ms on the horizontal meridian, which increased with
the decrease of motion speed (Westheimer, 1954), and the
latency of a voluntary saccade in a visual search was found to be
200–250 ms (Araujo et al., 2001). This means that the duration of
the stimulus-600 ms, was not long enough for the subjects to scan
all four possible locations in the four visual quadrants to look for
the target with central vision. It was possible that the gaze moved
toward the target location unintentionally upon the detection of
the target. It was the consequent reaction following the detection
of the target with peripheral vision, instead of planned voluntary
eye movements to see the target with central vision. In addition,
the statistical difference of motion detection thresholds between
the two eccentricities, and among the four visual quadrants also
indicated that the detection was not performed by central vision.

The viewing distance was 27 cm in our study. We have
adjusted eccentricity with viewing distance due to the size of the
screen and proximal accommodation (PA). The distance of PA in
emmetropes is generally 25 cm, and shorter in myopic patients
(Maiello et al., 2014). In order to measure the largest eccentricity
and to avoid the occurrence of PA with our experimental setup,
27◦ were selected as the largest eccentricity to test, and 27 cm as
the viewing distance.

The orientations and motion directions of the Gabor targets
in the current study were designed intentionally. Previous studies
(Berkley et al., 1975; Venkataraman et al., 2016; Zheleznyak

et al., 2016) have shown that peripheral vision measured with
gratings oriented parallel to the meridian performs better than
those using perpendicular gratings. While in the current study,
by using Gabors oriented perpendicular to the meridians, we
kept the motion direction at each location consistent with the
major relative motion direction of environmental objects during
locomotion. To keep the location of the target constant, phase-
shifting Gabors were used. If the orientation was parallel to the
motion direction, one would not tell that the target was moving.
Thus, the orientation of the Gabor at each location had to be
perpendicular to its motion direction. What’s more, aligning the
motion direction with the meridian also avoids bias toward one
of the quadrants at the other meridian. For example, a Gabor
moving horizontally at the superior location presents a bias
toward the temporal or nasal field depending on the viewing
eye. To achieve these aforementioned goals, also considering
that the orientation sensitivity of different meridian is different
(Berkley et al., 1975; Venkataraman et al., 2016; Zheleznyak et al.,
2016), we intentionally used Gabors oriented perpendicular to its
motion direction.

Note that all our myopic subjects were young adults with
stable refraction status. The peripheral motion perception in
myopic children whose refractive status is still developing
is an interesting topic for further research for two main
reasons. First, peripheral defocus plays an important role in
myopia progression (Smith et al., 2005, Smith et al., 2010;
Mutti et al., 2007). Second, previous studies showed different
development rates of peripheral vision from central vision (Bjerre
et al., 2014), and more constricted visual field in children
compared to adults (Aspinall, 1976). Whether the maturation
of peripheral visual functions is affected by myopia and how it
is different from the central vision will provide insight into the
myopization process.

CONCLUSION

In summary, no significant difference was found in the peripheral
motion detection threshold between myopic and emmetropic
observers, however, we showed significant correlations between
the spherical equivalent of myopia and the peripheral motion
detection threshold, mostly in the nasal and superior visual
fields at low SF, and in the temporal quadrant at high
spatial frequency and high speed in myopic viewers at 20◦.
The higher the myopia, the lower the motion detection
thresholds. We speculate it might be related to adaptation and
compensation in the process of myopia development. Future
research on the effect of myopia on peripheral motion perception
in children will contribute to further understanding of the
myopization process.
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Correlation Analysis of the Motion Detection Threshold and the Spherical
Equivalent (SE) of Myopes at 27◦

We also performed Pearson correlation analysis and used empirical p values from
permutation tests to determine the significance of the correlation between the
motion detection threshold and the SE of myopic subjects in LM and HM at 27◦.
As shown in Supplementary Figure, no significant correlation was found under
all conditions (for all, p > 0.1).

Supplementary Figure | Relationship between the motion detection thresholds
and the spherical equivalent (SE) of myopes in the nasal (A), temporal (B),
superior (C) and inferior (D) visual field at 27◦. Each point represents one
participant, the circles represent 2 d/s, and the triangles represent 6 d/s. Pearson
correlation coefficients and empirical p values from permutation tests (based on
10,000-time simulation) are shown.
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