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Abstract
Background: The effects of dairy on energy metabolism appear to be mediated, in part, by leucine
and calcium which regulate both adipocyte and skeletal muscle energy metabolism. We recently
demonstrated that leucine and calcitriol regulate fatty acid oxidation in skeletal muscle cells in vitro,
with leucine promoting and calcitriol suppressing fatty acid oxidation. Moreover, leucine
coordinately regulated adipocyte lipid metabolism to promote flux of lipid to skeletal muscle and
regulate metabolic flexibility. We have now investigated the role of mitochondrial biogenesis in
mediating these effects.

Methods: We tested the effect of leucine, calcitriol and calcium in regulation of mitochondrial
mass using a fluorescence method and tested mitochondrial biogenesis regulatory genes as well
mitochondrial component genes using real-time PCR. We also evaluated the effect of leucine on
oxygen consumption with a modified perfusion system.

Results: Leucine (0.5 mM) increased mitochondrial mass by 30% and 53% in C2C12 myocytes and
3T3-L1 adipocytes, respectively, while calcitriol (10 nM) decreased mitochondrial abundance by
37% and 27% (p < 0.02). Leucine also stimulated mitochondrial biogenesis genes SIRT-1, PGC-1α
and NRF-1 as well as mitochondrial component genes UCP3, COX, and NADH expression by 3–
5 fold in C2C12 cells (p < 0.003). Adipocyte-conditioned medium reduced mitochondrial
abundance (p < 0.001) and decreased UCP3 but increased PGC-1α expression in myocytes,
suggesting a feedback stimulation of mitochondrial biogenesis. Similar data were observed in
C2C12 myocytes co-cultured with adipocytes, with co-culture markedly suppressing mitochondrial
abundance (p < 0.02). Leucine stimulated oxygen consumption in both C2C12 cells and adipocytes
compared with either control or valine-treated cells. Transfection of C2C12 myocytes with SIRT-
1 siRNA resulted in parallel suppression of SIRT-1 expression and leucine-induced stimulation of
PGC-1α and NRF-1, indicating that SIRT-1 mediates leucine induced mitochondrial biogenesis in
muscle cells.

Conclusion: These data suggest that leucine and calcitriol modulation of muscle and adipocyte
energy metabolism is mediated, in part, by mitochondrial biogenesis.
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Background
Previous studies demonstrate that dairy foods may inhibit
adiposity [1,2]; this effect is mediated, in part, by dietary
calcium suppression of calcitriol (1,25-(OH)2-D3) which
otherwise promotes lipogenesis and inhibits lipolysis via
both genomic and non-genomic mechanisms [3-5].
Indeed, vitamin D receptor (VDR) knockout mice exhib-
ited a lean phenotype and resistance to diet-induced obes-
ity [6]. Dairy foods also contain significant non-calcium
anti-obesity bioactivity [1,2]; this is largely attributable to
leucine, which we have recently found to exert significant
effects on both adipocyte and skeletal muscle energy
metabolism [7]. Notably, dietary calcium and dairy
induced lipolysis is not associated with hyperlipidemia
[8], suggesting a coupling with fatty acid oxidation. These
observations are consistent with our recent data which
indicate that dietary calcium and dairy reduce inflamma-
tory and oxidative stress [9,10], which otherwise are com-
monly found in hyperlipidemic conditions [11].

Skeletal muscle constitutes an important site for lipid uti-
lization, and we have recently demonstrated that leucine
and calcitriol participate in the regulation of fatty acid oxi-
dation in skeletal muscle cells in vitro, with leucine pro-
moting fatty acid oxidation while calcitriol exerts the
opposite effect [7]. In addition, leucine also modulated
adipocyte lipid metabolism, possibly serving to provide
an increased flux of lipid to skeletal muscle, thereby pro-
viding the energy substrate to support leucine-stimulated
protein synthesis. However, the mechanism underlying
the effects of leucine and calcitriol on skeletal muscle fatty
acid oxidation is not clear. Notably, skeletal muscle fatty
acid oxidation appears to be associated with mitochon-
drial biogenesis and expression of multiple genes, such as
peroxisome proliferator-activated receptor gamma coacti-
vator 1-alpha (PGC-1α) and sirtuins, which are involved
in the regulation of energy metabolism via their modula-
tion of thermogenesis, mitochondrial number and fatty
acid oxidation [12-14].

Accordingly, this project was designed to investigate the
role of leucine and calcitriol in regulation of mitochon-
drial biogenesis and expression of genes involved in mod-
ulation of mitochondrial biogenesis and energy
metabolism in skeletal muscle cells and adipocytes. To
further test the physiological consequences related to
mitochondrial biogenesis and energy metabolism, we
also assessed the effects of leucine on cellular oxygen con-
sumption in both cell types.

Materials and methods
Experimental Approach
We first measured mitochondrial mass using NAO fluo-
rescent dye in differentiated muscle cells and adipocytes
to explore the direct effect of leucine and calcitriol in reg-

ulation of mitochondrial mass. We also evaluated the
expression of well-recognized regulatory genes in mito-
chondrial biogenesis such as SIRT-1, NRF and PGC-1α, as
well as mitochondrial component genes such as NADH
dehydrogenase, cytochrome C oxidase, and UCP3 in mus-
cle cells alone, or in muscle cells pretreated with condi-
tioned medium previously collected from adipocyte
culture or co-cultured with muscle cells. Conditioned
medium treatment and co-culture have been demon-
strated to be an effective tool to investigate the cross-talk
via secretory factors in metabolism between two different
cell types. To further evaluate the effect of leucine in regu-
lating mitochondrial function, we also designed a novel
oxygen consumption system that measured oxygen con-
sumption in both muscle cells and adipocytes. Since SIRT-
1 is a key regulatory gene on mitochondrial biogenesis, we
also did a SIRT-1 knock-down study using siRNA to deter-
mine whether SIRT-1 mediates the effect of leucine and
calcitriol on mitochondrial mass. In some experiments,
the calcium channel antagonist nifedipine was used to
investigate the role of calcium signaling in regulation of
calcitriol modulation of mitochondrial mass. The concen-
tration of leucine selected for these studies (0.5 mM), as
well as our previous work [7], is based upon typical
plasma levels achieved following a high protein meal or
following leucine administration in mice (0.4 – 0.6 mM)
[15-17]. To address the possibility that the effects of leu-
cine are non-specific effects of branched chain amino
acids as an energy substrate, key experiments incorporated
the same concentration of valine as an additional control.

Cell culture
C2C12 and 3T3-L1 preadipocytes (American Type Culture
Collection) were plated at a density of 8000 cells/cm2 (10
cm2 dish) and grown in Dulbecco's modified eagle's
medium (DMEM) containing 10% fetal bovine serum
(FBS), and antibiotics (growth medium) at 37°C in 5%
CO2. Confluent 3T3-L1 preadipocytes were induced to
differentiate with a standard differentiation medium con-
sisting of DMEM medium supplemented with 10% FBS,
250 nM dexamethasone, 0.5 mM 3-Isobutyl-1-methylx-
anthine (IBMX) and 1% penicillin-streptomycin. Preadi-
pocytes were maintained in this differentiation medium
for 3 days and subsequently cultured in growth medium.
Cultures were re-fed every 2–3 days to allow 90% cells to
reach fully differentiation before conducting chemical
treatment. For differentiation of C2C12 cells, cells were
grown to 100% confluence, changed into differentiation
medium (DMEM with 2% horse serum and 1% penicillin-
streptomycin), and fed with fresh differentiation medium
every day until myotubes were fully formed (3 days). In
some experiments, cells were seeded on 40 mm coverslips
(Bioptechs Inc., Butler, PA) which were loaded later in the
FSC2 incubator as described in the oxygen consumption
measurement section.
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Co-culture of adipocyte and C2C12
Cells were co-cultured by using transwell inserts with a 0.4
μm porous membrane (Corning, Lowell, MA) to separate
adipocytes and C2C12 muscle cells as described previ-
ously [10]. After incubation for 48 hours, the cells in the
lower well were harvested for further analysis.

Treatment of cells
Calcitriol, leucine, valine and nifedipine were freshly
diluted in medium before treatment. Cells were incubated
in serum free medium overnight and then washed with
fresh medium, re-fed with medium containing the differ-
ent treatments (0.5 mM leucine, 0.5 mM valine and/or 5
μM nifedipine with or without 10 nM calcitriol) and incu-
bated at 37°C in 5% CO2 for 48 h before analysis. In some
experiments, the supernatants of differentiated 3T3-L1
adipocytes (conditioned medium) were used to replace
the medium of C2C12 myocytes. Cell viability was meas-
ured via trypan blue exclusion.

Transfection
siRNA-annealed oligonucleotide duplexes for SIRT1
(Sequence 5'->3' sense: GCAAUAGGCCUCUUAAUUAtt;
antisense: UAAUUAAGGCCUAUUGCtt) and negative
control (Catalog NO. 4611) were purchased from
Ambion (Ambion, Austin, Texas, USA) and C2C12 cells
were transfected using siPORT NeoFX (Ambion, Austin,
TX) following the manufacturer's instructions.

Total RNA extraction
A total cellular RNA isolation kit (Ambion, Austin, Texas,
USA)) was used to extract total RNA from cells according
to manufacturer's instruction. The concentration and
purity of the isolated RNA were measured spectrophoto-
metrically (A280/A260 between 1.9–2.1) and the integrity
of RNA sample were analyzed via BioAnalyzer (Agilent
2100, Agilent Technologies).

Quantitative real-time PCR
Adipocyte and muscle 18S, genes encoding mitochondrial
component protein such as cytochrome c oxidase (COX)
subunit VIIc1, NADH dehydrogenase (NADH) and
uncoupling protein 3 (UCP3), and mitochondrial biogen-
esis regulatory genes PGC-1α, nuclear respiratory factor-1
(NRF), and sirtuin 1 (SIRT-1) were quantitatively meas-
ured using an ABI 7300 Real-Time PCR System (Applied
Biosystems, Branchburg, New Jersey, USA) with a TaqMan
1000 Core Reagent Kit (Applied Biosystems, Branchburg,
New Jersey, USA). The primers and probe sets were
obtained from Applied Biosystems TaqMan® Assays-on-
Demand™ gene expression primers and probe sets accord-
ing to manufacture's instruction. Pooled adipocyte total
RNA were serial-diluted in the range of 1.5625–25 ng and
used to establish a standard curve; total RNAs for
unknown samples were also diluted in this range. Reac-

tions of quantitative RT-PCR for standards and unknown
samples were performed according to the instructions of
ABI 7300 Real-Time PCR System and TaqMan Real Time
PCR Core Kit. The mRNA quantitation for each sample
was further normalized using the corresponding 18S
quantitation.

Mitochondrial mass assay
The mitochondrial probe NAO (Invitrogen, Carlsbad,
California, USA) was used to analyze mitochondrial mass
by fluorescence (excitation 485 nm and emission 520
nm). Qualitative imaging data were obtained using a flu-
orescence microscope (Leica, Lasertechnik GmbH, Hei-
delberg, Germany) linked to a Hamamatsu color chilled
3CCD camera (Hamamatsu, Japan), and quantitative data
were obtaining with a fluorescence microplate reader
(Packard Instrument, Downers Grove, Illinois, USA). The
intensity of fluorescence was expressed as arbitary units
per μg protein.

Oxygen consumption measurement
To monitor the real-time oxygen consumption by C2C12
and adipocyte, we designed an in vitro oxygen consump-
tion system as shown in figure 1A. Coverslips containing
either adherent C2C12 cells or differentiated adipocytes,
which had been pre-treated with reagents as described,
were loaded into an FCS2 stage incubator (Bioptechs Inc.,
Butler, PA) The FCS2 incubator is a closed chamber with
a perfusion pathway formed by separating the microaque-
duct slide from the coverslip containing cells with a single
silicone gasket to generate laminar flow conditions during
perfusion. The FCS2 incubator was connected to a peri-
staltic pump on the efferent side using 1/16" C-Flex Tub-
ing (Bioptechs Inc., Butler, PA). A dissolved oxygen meter

Schematic figures of the oxygen consumption systemFigure 1
Schematic figures of the oxygen consumption sys-
tem. A) The general design of the oxygen consumption sys-
tem; B) measurement stage; C) washing stage.
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(Warner Instruments, Hamden, CT) was inserted with a
polypropylene T-shaped connector and sealed in the per-
fusion pathway to detect the changes in oxygen concentra-
tion in the perfusion fluid (RPMI 1640). By controlling of
the three clamps located on the tubing, the perfusion
pathway can be set as sealed circulation for either oxygen
consumption measurement (Figure 1B) or washing. The
sealed circulation design blocks oxygen coming from out-
side the pathway and provides continuous mixing to
ensure uniform oxygen concentrations during measure-
ment. The oxygen sensor was pre-calibrated in gas and
aqueous phases prior to each experiment. The total fluid
in the closed circulation was 2 ml. In contrast to previous
studies investigating cellular oxygen consumption [18-
20], our system presents a novel approach in it's ability to
continuously measure real-time oxygen consumption in
adherent cells with small amount of fluid (<2 ml) in a
sealed circulation using relatively inexpensive equipment.

The oxygen sensor measures the monotonic decrease in
dissolved oxygen in parts per million (ppm) over time
due to oxygen consumption and the data were fit to curves
using polynomial regression, and initial rates of O2 con-
sumption were calculated from the first three minutes of
each test. Cell counts were done via hemocytometer to
assure that equivalent cell numbers were utilized for all
treatments (~1 × 106 cells).

Statistical analysis
All data are presented as mean ± SD. Data were evaluated
by one-way or two-way ANOVA as appropriate for each
experiment and linear regression test for the first 3 min of
oxygen consumption data, and significantly different
group means (p < 0.05) were then separated by the least
significant difference test using SPSS (SPSS Inc, Chicago,
IL).

Results
Leucine increased mitochondrial mass in C2C12 myo-
cytes, while calcitriol exerted the opposite effect (Figure
2). Exposure of myocytes to adipocyte factors via either
conditioned medium or co-culture with differentiated
adipocytes markedly attenuated the effect of leucine on
mitochondrial biogenesis in myocytes (Figure 1B, p <
0.001). Leucine treatment increased the expression of
mitochondrial biogenesis regulatory genes SIRT-1, PGC-
1α, NRF (Figure 3A, P < 0.05), and mitochondrial compo-
nent genes NADH, COX and UCP3 (Figure 3B; p < 0.05),
Further, adipocyte-conditioned medium and co-culture
decreased UCP3 expression in myocytes while PGC-1α
showed the opposite response (Figure 4; p < 0.001), sug-
gesting a possible feedback up-regulation of mitochon-
drial biogenesis, although no effect was found in NRF or
SIRT1(data not shown). Similar effects were found in dif-

The effects of leucine, calcitriol and nifedipine on mitochon-drial mass as assessed by NAO dye-binding as described in material and methods section in C2C12 myocytes treated with or without conditioned medium (CM) derived from dif-ferentiated adipocytes or co-cultured with differentiated 3T3-L1 adipocytesFigure 2
The effects of leucine, calcitriol and nifedipine on 
mitochondrial mass as assessed by NAO dye-binding 
as described in material and methods section in 
C2C12 myocytes treated with or without condi-
tioned medium (CM) derived from differentiated adi-
pocytes or co-cultured with differentiated 3T3-L1 
adipocytes. The upper panel (A) shows fluorescent images 
of mitochondrial density and the lower panel shows the 
quantitative data in response to the treatments. Values are 
presented as mean ± SD, n = 6. Means with * differ with con-
trol(p < 0.005), ** differ with leucine (p = 0.01), *** differ 
with calcitriol (p < 0.001).
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ferentiated 3T3-L1 adipocytes, as leucine increased mito-
chondrial mass while calcitriol exerted the opposite effect
(Figure 5; P < 0.04); addition of the calcium channel
antagonist nifedipine partially inhibited the effect of cal-
citriol in both cell types (Figure 2B and Figure 5B, p <
0.04).

To further test the physiological significance of the
observed regulation of mitochondrial biogenesis, we
measured the oxygen consumption in C2C12 cells and
differentiated adipocytes using our oxygen consumption
system shown in Figure 5. Leucine significantly stimulated
oxygen consumption in both C2C12 cells (Figure 6A) and
adipocytes (Figure 6B) with leucine treatment resulting in
an 89% increase in C2C12 and a 27% increase in adi-
pocytes in the first 3 mins, respectively (p < 0.001). To ver-
ify the specificity of the leucine effect, we also assessed the
effects of another branched chain amino acid (valine),
and found it to exert no effect on oxygen consumption in
either myocytes or adipocytes.

To further investigate the role of the regulatory genes in
modulating leucine-induced mitochondrial biogenesis in
myocytes, we knocked down SIRT-1 in C2C12 myocytes
using siRNA. SIRT-1 siRNA transfection successfully
decreased SIRT-1 mRNA by ~70% and correspondingly
attenuated leucine induced SIRT-1 expression (Figure 7A,
p < 0.05). Consistent with this, SIRT-1 knock-down
reduced PGC-1α gene expression and attenuated leucine-
induced PGC-1α gene expression (Figure 7B, p < 0.05),
reduced NRF expression and abolished leucine-stimula-
tion of NRF expression (Figure 7C, p < 0.05) in myocytes.

Discussion
Data from the present study demonstrate that leucine
increases mitochondrial mass and associated regulatory
gene expression in both myocytes and adipocytes, while

The effect of leucine, and/or nifedipine and/or calcitriol on PGC-1α and UCP3 gene expression in C2C12 myocytes pre-treated with CM derived from adipocytes or co-cultured with differentiated with 3T3-L1 adipocytesFigure 4
The effect of leucine, and/or nifedipine and/or calci-
triol on PGC-1α and UCP3 gene expression in C2C12 
myocytes pretreated with CM derived from adi-
pocytes or co-cultured with differentiated with 3T3-
L1 adipocytes. Cells were treated with or without leucine, 
nifedipine, or/and calcitriol for 48 hours. Values are pre-
sented as mean ± SD, n = 6. Means with * differ compared 
with control PGC-1α and ** differ compared with control 
UCP3 with p < 0.001.
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calcitriol exerts the opposite effect. Leucine also stimu-
lated oxygen consumption in both myocytes and adi-
pocytes, providing further evidence to support the role of
leucine in regulation of energy combustion. However,
exposure of myocytes to adipocytes via either conditioned
medium or co-culture attenuates these effects, suggesting
that one or more molecules produced by excess adipose
tissue may play a role in suppressing skeletal muscle fatty
acid oxidation by suppressing mitochondrial biogenesis.

Mitochondria play a key role in modulating adipocyte
lipid metabolism and adipogenesis [22,23]. Metabolic
disorders are associated with mitochondrial loss and dys-
function [24,25] and pharmacological strategies to induce
mitochondrial proliferation improve insulin signaling
and energy metabolism [26]. Key proteins of the mito-
chondrial respiratory chain are strongly reduced in adi-
pose tissue, and reduced expression of oxidative
phosphorylation genes and regulatory genes such as PGC-
1α have been reported in diabetes [27]. However, the
molecular signaling leading to this cellular energy metab-
olism dysfunction is largely unknown, although possible
mechanisms have recently been proposed [26,28,29]. In
addition, increased mitochondrial abundance induced by
over-expression of NRF in adipose tissue increased synthe-
sis of adiponectin [29], which has been shown to stimu-
late fatty acid combustion [30], while impaired
mitochondrial function increased ER stress and reduced
adiponectin transcription via activation of N-terminal
kinase (JNK) [29].

PGC-1α is key nuclear receptor co-activator for mitochon-
drial biogenesis, and over-expression of this gene in
mouse skeletal muscle increases mitochondrial abun-
dance, especially in type II fiber rich muscles, resulting in
increased energy expenditure and reduced body weight
[31-33]. Further, recent data suggest that PGC-1α over-
expression in rodents enables muscle to utilize lipid more
efficiently [34]. Moreover, chronic physical activity has
been demonstrated to increase mitochondrial biogenesis
and oxidative muscle fiber content, and this effect is par-
tially attributed to expression of PGC-1α [35]. Our data
indicate that leucine increases mitochondrial biogenesis
and PGC-1α expression, while calcitriol has the opposite
effect, suggesting that leucine and calcitriol regulate skele-
tal muscle energy metabolism, in part, by modulating
PGC-1α expression. Unlike PGC-1α, sirtuins are NAD+-
dependent deacetylases that remove acetyl groups from
acetyllysine-modified proteins, thereby regulating the
biological function of their targets [36]. In mammals,
SIRT-1 deacetylates histone proteins as well as non-his-
tone proteins, and appears to function as an energy sensor
linking energy metabolism to transcriptional regulation
[37]. SIRT-1 regulates PGC-1α and mitochondrial biogen-
esis, as well as the activities of the forkhead transcription
factor (FOXO) family, which has been shown to modulate
myogenesis [38,39]. Our data show that leucine increases
SIRT-1 while SIRT-1 knockdown suppressess leucine-
induced expression of mitochondrial regulatory genes,
indicating that leucine-induced mitochondrial biogenesis
is mediated, in part, by SIRT-1.

Mitochondria play a key role in the regulation of calcium
ion homeostasis by serving as a buffer for cytosolic cal-
cium [40]. In skeletal muscle fibers, the calcium buffering
capacity of mitochondria is tightly linked to mitochon-
drial oxidative phosphorylation and may also be involved
in associated gene expression [41]. Indeed, Ca2+ signaling
plays a role in modulating muscle cellular phenotypic
adaptations via the Ca2+/calmodulin (CaM)-dependent
phosphatase calcineurin (CnA) and Ca2+/CaM-dependent
kinases, such as calcium/calmodulin dependent protein
kinases (CaMK) I and II [34]; this effect regulates hyper-
trophic growth in response to overload to direct muscle
fiber type switch gene expression and mitochondrial bio-
genesis. Although our data do not show a marked inde-
pendent effect of nifedipine, it attenuated the effects of
calcitriol on mitochondrial biogenesis and related gene
expression, suggesting that calcium signaling plays a role
in calcitriol regulation of mitochondrial biogenesis.

Energy partitioning between adipose tissue and skeletal
muscle has been previously demonstrated [42-44].
Indeed, our previous data indicate that co-culture of mus-
cle cells with adipocytes results in decreased fatty acid oxi-

The effect of leucine on SIRT-1 (A) PGC-1α (B) and NRF (C) expression in C2C12 myocytes with or without SIRT-1 siRNA transfection; expression of each gene is normalized to 18s expressionFigure 7
The effect of leucine on SIRT-1 (A) PGC-1α (B) and 
NRF (C) expression in C2C12 myocytes with or with-
out SIRT-1 siRNA transfection; expression of each 
gene is normalized to 18s expression. Values are pre-
sented as mean + SD, n = 6. Means with * differ compared 
from siRNA groups at p < 0.05.
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dation in muscle cells, and this effect is associated with
modulation of cytokine expression and production. Con-
sistent with this, co-culture with adipocytes or use of adi-
pocyte-conditioned medium suppressed skeletal muscle
mitochondrial abundance in the present study, indicating
that mitochondrial biogenesis may mediate for leucine
and calcitriol-induced regulation of fatty acid oxidation.
Recent data demonstrate that tumor necrosis factor alpha
(TNFα) down-regulates mitochondrial biogenesis in both
white adipose tissue and muscle, while deletion of the
TNF receptor in obese mice restores mitochondrial bio-
genesis; these effects maybe mediated by regulation of
endothelial nitric oxide synthase (eNOS) production
[45]. Adiponectin is also likely to play a role in the regu-
lation of muscle mitochondrial biogenesis by adipocytes,
as its expression is reduced with excess adiposity. Notably,
adipocyte adiponectin secretion is regulated by SIRT-1
[46], although the role of this cytokine in mediating the
cross-talk between adipocyte and muscle cells in regulat-
ing mitochondrial biogenesis is not yet clear.

We also found leucine regulation of mitochondrial mass
in muscle cells and adipocytes to be associated with the
stimulation of oxygen consumption. This observation
provided further functional evidence for the modulation
of mitochondrial biogenesis and energy metabolism by
leucine. This effect is specific to leucine and is likely due
to its role in stimulating protein synthesis and associated
metabolic demand for energy [7], as another branched
chain amino acid (valine) had no effect in this system.

We have utilized mitochondrial abundance, as measured
by the fluorescent dye NAO, as an indicator of mitochon-
drial biogenesis. While these measurements cannot
exclude the possibility that mitochondrial size, rather
than number, was affected, the supporting data from both
mitochondrial regulatory genes, such as PGC1α, which is
well recognized to stimulate mitochondrial biogenesis,
and mitochondrial component genes (e.g. cytochrome c
oxidase) are indicative of an increase in mitochondrial
number.

In summary, the present data demonstrate that leucine
and calcitriol modulate energy metabolism, in part,
through regulation of mitochondrial biogenesis, with leu-
cine promoting fatty acid oxidation and mitochondrial
biogenesis while calcitriol exerts the opposite effect. These
data also support our previous observations of cross-talk
between muscle cells and adipocytes in modulation of
energy metabolism via secreted molecules from both cell
types.
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