
sensors

Article

Maximizing the Inner Resilience of a Network-on-Chip
through Router Controllers Design †

Douglas R. Melo 1,2,3,* , Cesar A. Zeferino 1 , Luigi Dilillo 3 and Eduardo A. Bezerra 2,3

1 Laboratory of Embedded and Distributed Systems (LEDS), University of Vale do Itajaí,
Itajaí 88302-902, Brazil

2 Space Systems Research Laboratory (SpaceLab), Federal University of Santa Catarina,
Florianópolis 88040-900, Brazil

3 Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier (LIRMM),
University of Montpellier, CNRS, 34095 Montpellier, France

* Correspondence: drm@ieee.org
† This paper is an extended version of “Analyzing the Error Propagation in a Parameterizable

Network-on-Chip Router” published in the Proceedings of the 2019 IEEE Latin American Test Symposium
(LATS), Santiago, Chile, 11–13 March 2019.

Received: 19 November 2019; Accepted: 29 November 2019; Published: 9 December 2019 ����������
�������

Abstract: Reducing component size and increasing the operating frequency of integrated circuits
makes the Systems-on-Chip (SoCs) more susceptible to faults. Faults can cause errors, and errors can
be propagated and lead to a system failure. SoCs employing many cores rely on a Network-on-Chip
(NoC) as the interconnect architecture. In this context, this study explores alternatives to implement
the flow regulation, routing, and arbitration controllers of an NoC router aiming at minimizing
error propagation. For this purpose, a router with Finite-State Machine (FSM)-based controllers
was developed targeting low use of logical resources and design flexibility for implementation in
FPGA devices. We elaborated and compared the synthesis and simulation results of architectures that
vary their controllers on Moore and Mealy FSMs, as well as the Triple Modular Redundancy (TMR)
hardening application. Experimental results showed that the routing controller was the most critical
one and that migrating a Moore to a Mealy controller offered a lower error propagation rate and
higher performance than the application of TMR. We intended to use the proposed router architecture
to integrate cores in a fault-tolerant NoC-based system for data processing in harsh environments,
such as in space applications.

Keywords: systems-on-chip; networks-on-chip; router architecture; fault tolerance

1. Introduction

Due to technological development and increasing integration, communication architectures that
are used in computers for aerospace applications are composed of a growing number of processing
cores. The increase in processing power is a demand due to the increasing amount of high resolution
sensors and the bandwidth requirements of satellite-ground links. Some approaches proposed
in the literature do not fulfill the communication requirements of future on-board computers [1].
Networks-on-Chip (NoCs) represent an alternative to the interconnect bus for multi-core systems.
They can be used in aerospace applications as the communication backbone for interconnecting
processors, memories, and the controllers of actuators and smart sensors when these components are
integrated on a single chip to reduce the dimensions of the primary computer systems. However, the
costs of an NoC are not negligible, especially when fault tolerance is required.

According to [2], different types of Systems-on-Chip (SoCs) require fault-tolerant components
depending on the target environment. A fault-tolerant NoC must be able to detect the occurrence
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of a fault and prevent the resulting error from causing an application failure. However, providing
reliability in an NoC affects performance, silicon costs, and power consumption, as this is usually done
through redundancy.

Currently, fault tolerance in NoCs mainly relies on spatial redundancy and data encoding.
However, as replication increases power dissipation, in energy constrained systems such as embedded
and aerospace applications, it is necessary to look for solutions that allow fault tolerance with low
energy impact [3].

In this context, this work aims at evaluating the performance and resilience of an NoC router
using combinations of flow regulation (or flow control), routing, and arbitration controllers, presenting
the possible trade-off between the use of hardware resources and the susceptibility to error propagation.
The results showed that the use of Mealy Finite-State Machines (FSMs) to implement the controllers
provides a significant reduction in the number of propagated errors, at the price of reducing the
maximum operating frequency and increasing the energy consumption of the router.

The main contribution of this work does not concern the application of specific hardening
techniques for a given architecture, but rather to assess the impact of different implementations
on the inner resilience capacity of the router itself in terms of error propagation. Since the focus of the
work is on the controllers, other sequential logic structures (e.g., buffers) have remained unchanged
across all architecture combinations. As far as we know, this is the first study investigating the design
of internal controllers to improve the reliability of NoC routers.

The remainder of this paper is structured as follows. Section 2 provides a description of NoCs
characteristics and fault tolerance. In Section 3, we present the router architecture developed for
this evaluation. Section 4 presents the verification model and the fault injection campaign used
for simulation. Finally, Section 5 discusses the experimental results, and Section 6 summarizes the
conclusions of the article.

2. Background

The interconnection in an SoC with few cores is generally performed through shared buses
because this architecture is reusable and reduces design costs and time. However, SoCs with dozens
of cores require an interconnection structure with performance scaling adjusted to the size of the
system. For this reason, in the early 2000s, several studies argued that NoCs would be the best means
of solving this problem [4–8]. NoCs are derived from the interconnection networks used in parallel
computers [9,10]; they are reusable, as the shared bus, and offer parallelism in communication and
scalable performance. An NoC consists of routers, links, and adapters (or Network Interfaces) [8], as
shown in Figure 1.

The router is the main component of an NoC system. It comprises registers, multiplexers, arbiters,
routing, and flow control circuits, in addition to buffers for the temporary storage of packets [10].
It also has input and output links for communication with the local core and other routers in its
neighborhood. The links are usually structured into two unidirectional point-to-point channels, which
may be synchronous or asynchronous. Each channel is made up of data and flow control signals [8].

The Network Interface (NI) is the unit that transparently connects a processing core to a router.
It is responsible for adapting the communication protocols used by the core and the NoC. NIs are
classified following the nature of the client, which might be a processor, a shared memory, or an
external channel [10].
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Figure 1. A 4×4 NoC-based system [11] (©2019 IEEE).

2.1. Network-on-Chip Communication

The usual means of communication between cores in an SoC is through an exchange of messages
broken into packets. Each packet consists of a header (relative to the start of the packet), a payload
(content), and a trailer (signaling the end of the packet).

The data flow in the network is outlined in [12]. Table 1 identifies the components of an SoC and
relates to the layers of the Open System Interconnection (OSI) model. Each layer can provide services,
including fault tolerance. The System layer corresponds to the processing cores and the application.
The Interface layer decouples the cores from the network and controls the process of sending and
receiving packets. The Network layer is responsible for packet routing, while the Link layer addresses
questions related to coding, synchronization, and reliability.

Table 1. Relationship between the OSI reference model and SoC/NoC layers.

OSI Layers SoC/NoC Layers SoC Components

Application System Cores
Presentation

Session Interface Network Adapters
Transport

Network Network Routers

Link Link Wires
Physical
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2.2. Network-on-Chip Features

An NoC can be characterized in terms of the following attributes [8]: topology, flow regulation,
memorization, routing, arbitration, and switching.

The topology defines the routers and links and arranges them in the form of a graph. The most
common topologies in SoCs are those of the planar type, like the 2D mesh. With the advent of
3D integration processes, NoCs for these systems usually have inter-layer communication through
vertical links. These links are made available in reduced numbers and are known as Through-Silicon
Via (TSV) [13]. The topology of an NoC defines the physical layout and the connections between
the nodes and the channels. It is characterized by the number of ports in each router, the number of
hops from the source node to the destination node, the channel bandwidth, and path diversity [14].
The architecture of an NoC is usually defined at design time or according to the requirements of the
target application [15].

The flow control is responsible for the allocation of the resources necessary for a packet to travel
through the network, by regulating traffic in the channels. This regulation is required to prevent any
undesired loss of data from a sender to a receiver. In general, NoCs are networks that do not discard
packets (i.e., they are lossless). Packets are generally divided into flow control units (flits), on which the
flow control takes place. Different flow control techniques are employed in NoCs, such as handshake,
stop-and-go, credit based, and virtual channels. Typically, a flit corresponds to a word of the physical
channel, called physical unit (phit).

Packets destined for channels that are already allocated must wait before being forwarded.
This approach requires the implementation of a scheme that enables the blocked packets to be stored in
queues within the router. Memorization (or buffering) can either be implemented at the input channels
or the output channels. A shared centralized memory based approach can also be adopted.

The routing sets out the path that must be followed to forward a packet to the destination.
There are many different routing strategies, which are usually classified in accordance with the
following criteria: the number of destinations (unicast or multicast), the location where the routing is
performed (centralized, source, or distributed), the type of physical implementation (table based or an
algorithm), and its adaptiveness (deterministic, adaptive, or oblivious). An example of a widely used
technique in NoCs is dimension order routing, which is characterized as unicast, deterministic, and
usually implemented as a hardware supported algorithm executed in the routers. Routing algorithms
in NoCs should prevent packets from being blocked in the network (causing a deadlock) and the
problem of packets moving through the network without reaching their destination (livelock) [9].

A conflict that arises when two or more packets compete for the same channel can be settled
by arbitration. Round-robin is the arbitration scheme that is most widely employed in NoCs
because it provides a fair distribution of channel usage. In the case of NoCs with Quality of
Service (QoS) provision, requiring flow differentiation, alternative schemes can be used to meet
the temporal requirements.

Switching determines how a message is transferred from the input of a router to one of its output
channels. The main types are circuit and packet switching. There are different types of packet switching
techniques, such as Store-and-Forward (SAF), Virtual Cut-Through (VCT), and wormhole. The latter
performs the switching in the flit-level, and it is the most commonly used in NoCs because it offers
low latency at less cost.

2.3. Fault Tolerance and Networks-on-Chip

The relationship between fault, error, and failure was presented in [16]. A fault may manifest an
error, and an error may result in incorrect behavior, called a failure. Faults and errors can be masked
and not lead to an error or failure. Masking occurs on logical, architecture, or application levels and for
a variety of reasons. Faults and errors can be classified according to their duration and can be transient,
intermittent, or permanent [17].
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Studies about fault tolerance in NoCs mainly address both transient and permanent faults.
For instance, the works in [18–23] examined Single Event Upset (SEU) in NoC components. The studies
in [18–20] dealt with transient faults that were due to crosstalk. In [24–26], the authors investigated
the problem of short and open circuit faults in the links of an NoC. In [27–29], the authors discussed
the yield of vertical links in 3D NoCs. The studies that examined intermittent faults [24,30,31] treated
them as permanent faults.

Following, we discuss the way fault tolerance techniques are deployed in NoCs, the methods
for the detection, correction, and recovery of errors, diagnosis, and repair, and the metrics commonly
employed to evaluate these techniques and methods.

2.3.1. Network-on-Chip Layers

An NoC can be divided into four layers: System, Interface, Network, and Link (Table 1).
The studies examined in the literature address the provision of fault tolerance in the structures
of these layers, as follows.

The System layer is related to the processing cores and applications. Some works, like [32–35],
sought to carry out the remapping of a task from a defective processor to a healthy unit. The Interface
layer provides the communication services that are operated at the NIs. This layer was the focus
of investigation in [36,37]. The solutions of these authors included the retransmission of corrupted
packets [21,22] and giving support to communication primitives, such as OpenMP and Message
Passing Interface (MPI) [38].

The Network layer essentially consists of the routers. Some works address the methods for the
protection [19] and verification [22,39] of its internal components. In [40], the authors focused on the
switching logic though most implementations involving routing algorithms that bypass defective
routers. Many of them include adaptive routing algorithms in 2D [41–45] or 3D topologies [28,31,46].
One way to ensure packet delivery is by using trusted paths [47] or even redundant subnets [38,46].
Multiple path techniques, like flooding, can also be adopted [48].

The Link layer comprises the data links responsible for connecting each router to its neighbors
and the processing core. Some studies have employed techniques related to flow control, such as bus
encoding [18], retransmission [20], and bandwidth allocation [49]. Others have adopted additional
links, such as the duplication of wires and channels [24,50], spare links [41,51], link serialization [26], or
by generating new links [25]. The main focus in 3D NoCs is on the TSVs and the problems related to the
manufacturing process [27,29]. There are also studies about fault tolerance techniques for unstructured
links, such as optical [52] and wireless [53].

2.3.2. Detection and Correction

The basic mechanism for providing fault tolerance in a system is redundancy [54]. The purpose of
this mechanism is to detect and, in some cases, to fix errors in the components. Redundancy techniques
can be classified as Spatial, Temporal, and Information and are applied in NoCs as follows.

Spatial redundancy involves the addition of circuits, with the replication of modules whose
outputs are compared by a voter. It is often performed through the use of Dual Modular Redundancy
(DMR) and Triple Modular Redundancy (TMR). When spatial redundancy is implemented in NoCs, it
often consists of the replication of links [20,27,28,30,34,38,40,47,50]. The replication of routers [34,35],
their internal structures [42,51], the use of adaptive routing tables [55], and the inclusion of checkers
and testers in hardware [39] are also classified in this category.

Temporal redundancy consists of the re-execution of an operation resulting in comparison and
validation. It is usually implemented by running an algorithm n times on the same hardware.
In NoCs, some works employ temporal redundancy through the generation of multiple sampling of a
message [19,32,48] or through link sections [26].

Information redundancy relies on additional bits for error detection and correction.
Error-Detecting Code (EDC) techniques can detect an error incidence, while Error-Correcting Code



Sensors 2019, 19, 5416 6 of 23

(ECC) not only detect, but also correct an erroneous data word. Examples include parity [56] and
Cyclic Redundancy Check (CRC) [21,36]. Moreover, the replication of the header flit can be adopted to
ensure correct routing [23].

2.3.3. Recovery

There are two main types of technique for recovering from an error: Forward Error Recovery (FER)
and Backward Error Recovery (BER). FER enables operational continuity in the presence of errors,
without having to return to a previous state. Hamming distance, which is a concept widely addressed
in the literature, consists of the number of positions in which a current word differs from a previous
one. In NoCs, some works use the Hamming code and its variations to correct an error and detect up
to two errors in a single data word [19,30,37].

BER techniques ensure the system can return to a previous state when it is considered to be
healthy. They use checkpoints or logs and require additional memory elements to preserve these states.
In NoCs, BER techniques rely on packet retransmission [20,21,32,49,51]. It is worth noting that FER
is more widely used than BER because the latter requires more memory elements, which makes the
system more susceptible to SEU faults.

2.3.4. Diagnosis and Repair

Detection and correction are approaches that are sufficient for the operational continuity of a
system with transient errors. However, when a system has permanent errors, it is necessary to test and
check its components to determine its correctness. Some works offer online test features [21,30,38,39],
while others adopt Built-In Self-Test (BIST), a mechanism that enables a system to test itself. In BIST,
specific hardware generates stimuli at the inputs of a circuit and compares the output with the correct
expected values. Variations of this technique were employed in NoCs [24,26,34,41,45].

After discovering a defective component, it is desirable to disable it and implement a contingency
plan, such as reconfiguration, before resuming the execution. In routers, it is possible to employ
techniques that can avoid faulty components in the switching logic [21], arbiters [52], and links [26].
However, the focal point of the research is on the reconfiguration of the routing tables, as well as the
algorithms needed to bypass faulty routers [28,40–43,47,55]. The network interfaces are also used for
diagnosis and repair [36].

2.3.5. Evaluation and Metrics

Several studies have adopted specific simulators and virtual platforms to evaluate the proposed
techniques [26,33,34,39,44,45,49,51,53]. Some of them used dedicated simulators based on the targeted
application [25,28,38]. Most of the works carried out a synthesis in Application-Specific Integrated
Circuit (ASIC) to obtain a more accurate cost assessment than that provided by the synthesis of
programmable logic devices, such as Field Programmable Gate Array (FPGA).

The primary metrics for evaluating fault tolerance techniques in NoCs are area overhead, latency,
and power consumption. Other widely used metrics are bandwidth and throughput [26,30,31,33,42,44,
45,48,51,56,57]. Some works also estimate the coverage [19,20,24,39,58], the rate [18,29,45,50,53], and
the stabilization [55] of faults and errors. Yield [27,34], temperature [28,35], and the number of hops
between routers [25,47] are also taken into account when assessing the techniques.

3. Router Architecture

In this study, we designed a parameterizable router architecture to evaluate the occupation of
resources, propagation of errors, performance, and energy consumption of different combinations of
the controllers responsible for data flow regulation, routing, and arbitration. We then implemented
these controllers using Moore and Mealy FSMs. This router was partially evaluated in [11], in which
we analyzed the different implementations of the routing controllers only.
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This article explores the design space for implementing the controllers of an NoC router for
finding the best trade-off. It also provides a reference for evaluating the possible combinations of
controllers when considering a specific environment or the constraints that are more stringent for
the design of a given distributed system. As far as we know, no other work in the literature has
investigated the internal mitigation of errors concerning the type of implementation chosen for the
router controllers.

A Moore machine defines its output signals according to its current state, whereas the Mealy
machine also takes into account its input signals and asserts these outputs during the transition from
one state to another (or to the same state).

The architecture of the router was designed with a focus on regularity, flexibility, and low area
overhead. To fulfill these requirements, we employed the wormhole switching technique and input
buffers capable of storing n words. The router had five ports named Local, North, East, South, and
West. The Local port was the terminal at which a processing core was attached through a network
interface, and the other ports were used to connect the router with its neighbors. Internally, each port
was connected to a crossbar that was responsible for the interconnection among the input and output
channels that composed the communication ports. Figure 2 shows the architecture of the router.

Crossbar

W
S

E
N

Input Channels

L

W
S

E
N

Output Channels

L

RoutingFlow FlowArbitration

Figure 2. Proposed router architecture.

The novelty of the proposed router architecture was its flexibility to combine different types of
FSM in the implementation of the internal controllers. The router was intended to be used in 2D mesh
topology networks. Figure 3 shows the proposed packet structure overview.

Network layer

System layer

Interface layer

Li
nk

 la
ye

r

flit width

Figure 3. Proposed packet structure [11] (©2019 IEEE).

The general packet format covers all the layers shown in Table 1. The sideband bits were related
to the Link layer and comprised the framing tags that defined the begin and the end of the packet.
The packet was then structured in one or more mandatory Network flits, optional Interface flits, and
the payload flits related to the System layer.

To determine the latency of a flit to traverse the router, it is necessary to assess the number of cycles
spent in each sequential logic structure, as presented in Equation (1). As the crossbar was implemented
using combinational logic only, this component was not considered in the latency analysis.

Latency f lit = Cycles f low + Cyclesbu f f er + Cyclesrouting + Cyclesarbitration + Cycles f low (1)

In a scenario without router contention, the buffer latency consisted of a single cycle. The internal
controllers of the router varied their latency according to its implementation. Each controller required
one cycle when using a Moore FSM or none when with a Mealy FSM. Input and output flow controllers
must be implemented using the same FSM approach to provide link compatibility. Equation (2)
represents the best case latency for a flit to traverse the router.
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Latency f lit = 2× Cycles f low + Cyclesrouting + Cyclesarbitration + 1

Cycles =

{
1 when Moore

0 when Mealy

(2)

Using only Moore-based controllers, a flit needs at least five cycles to traverse a router. In a
fully Mealy architecture, only the buffering cycle is required. The following subsections present the
architecture of each Moore controller and its Mealy equivalent for performing the same function.

3.1. Flow Regulation Controller

The flow regulation controller implemented a four-stage handshake protocol for receiving and
sending packets through its input and output channels, respectively. The signals used in these
controllers comprised:

• val and ack: flow control signals used for validation and acknowledging the flit transferred
through the link.

• wok and wr: write port signals of the input buffer.
• rok and rd: read port signals of the input buffer.

The input and output flow controllers share the same parameter to define the type of FSM to be
used. The Moore implementations of these controllers are depicted in Figures 4 and 5.

S0

ack=0
wr=0

start
S1

ack=1
wr=1

S2

ack=1
wr=0

val+wok

val.wok

val

val

val

val

Figure 4. Moore FSM for the input flow regulation controller.

S0

val=0
rd=0

start
S1

val=1
rd=0

S2

val=0
rd=1

ack+rok

ack.rok

ack

ack

ack.rok

ack+rok

Figure 5. Moore FSM for the output flow regulation controller.

Figures 6 and 7 show the Mealy variation for the flow regulation controllers. Compared to the
Moore machine implementations, each machine saved one state.
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S0start S1

val+wok/ack=0,wr=0

val.wok/ack=0,wr=0

val/ack=1,wr=0

val/ack=1,wr=1

Figure 6. Mealy FSM for the input flow regulation controller.

S0start S1

ack+rok/val=0,rd=0

ack.rok/val=1,rd=0

ack/val=1,rd=1

ack/val=1,rd=0

Figure 7. Mealy FSM for the output flow regulation controller.

3.2. Routing Controller

The routing controller executed the XY routing algorithm to schedule an output channel. It was
composed of a datapath and an FSM. The datapath had comparators that analyzed the destination
address enclosed in the packet header. It compared this address with the coordinates of the router
to define a set of signals that identify the relationship between these addresses. These signals were
named xeq, yeq, xgt, ygt, xlt, and ylt. This XY algorithm started running after the arriving of a tag ( f ra)
that assigned the begin of a packet. The scheduling of an output channel then followed the well known
criteria of the XY algorithm: any packet must first travel through the X direction, and only when it
reaches the same column of the destination node, it can take a path through the Y direction. Figure 8
presents the Moore implementation of this controller.

In the Moore approach, when a packet header was received, the machine took a branch to schedule
an output channel, and each branch had two states. In the first state, after the packet header was
forwarded, the FSM went to the second state, in which it waited for the packet trailer. When this trailer
was forwarded, the FSM went back to the idle state (i.e., S0), and the request was de-asserted. On the
other hand, in a Mealy implementation (Figure 9), it was possible to save one state for output for each
channel scheduling.
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S0

req=0
start
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req=E

S2

req=N

S1

req=L
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req=S
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req=W

S6

req=L

S7

req=N

S8

req=E

S9

req=S

S10

req=W
f ra

xeq.yeq

xeq.ygt
xgt

xeq.ylt

xlt
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f ra

f ra
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f ra
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Figure 8. Moore FSM for the routing controller.
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S4

S5f ra/req=0
xeq.yeq/req=L

xeq.ygt/req=N

xgt/req=E
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f ra/req=L

f ra/req=L

f ra/req=N

f ra/req=N

f ra/req=E

f ra/req=E

f ra/req=S

f ra/req=S

f ra/req=W

f ra/req=W

Figure 9. Mealy FSM for the routing controller.



Sensors 2019, 19, 5416 11 of 23

3.3. Arbitration Controller

The arbitration controller consisted of a round-robin arbiter responsible for scheduling the use
of the output channel by the packets of the requesting input channels. As there was no provision for
loop-back communication in our implementation, each arbiter scheduled up to four requests (namely
A, B, C, and D), depending on the router address. Similar to the previous controller, it could also be
implemented using a Moore or a Mealy FSM. Figure 10 presents a simplified representation of the
Moore-based implementation (some transitions are omitted for the sake of clarity).

S0

gnt=0
start

S1

gnt=A

S2

gnt=0

S3

gnt=B

S4

gnt=0

S5

gnt=C

S6

gnt=0

S7

gnt=D

A

A.B.C.D

B

A.B.C.D

C

A.B.C.D

D

A.B.C.D

A.B

A.B.C

A.B.C.D A.B.C.D

B.C

B.C.D

A.C.D

A.B.C.D

C.D

A.D

A.B.D

A.B.C.D

Figure 10. Moore FSM for the arbitration controller.

As in the design of the routing controller, the Mealy implementation of the arbitration controller
(Figure 11) needed only one state for each scheduling branch, and a grant was only given when there
existed an active request.
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S0start S1 S2 S3

A/gnt=A

A.B/gnt=B

A.B.C/gnt=C

A.B.C.D/gnt=D

B/gnt=B

A.B.C.D/gnt=A

B.C/gnt=C

B.C.D/gnt=D

C/gnt=C

A.C.D/gnt=A

A.B.C.D/gnt=B

C.D/gnt=D

D/gnt=D

A.D/gnt=A

A.B.D/gnt=B

A.B.C.D/gnt=C

Figure 11. Mealy FSM for the arbitration controller.

3.4. Controller Protection

The controllers described above were also implemented in a hardening version. The TMR
technique was chosen to protect the FSM of each controller. It consisted of replicating the component in
three units, all of them operating over the same input signals. Afterward, the output of each controller
is compared by a single major voter, which elected the most common output value, as illustrated in
Figure 12.

The TMR technique was selected because it was widely used in reliable systems and due to its
ability to mask an error transparently [2]. This technique implied a high resource overhead if applied
to complex structures. Meanwhile, in the case of components with few interface signals and few
registers, as the focus of this work, it could represent a good trade-off.

Controller

Controller

Controller

Voter
Input Output

Figure 12. Triple modular redundancy on controllers.

4. Fault Injection

This section first describes the combinations of the router architecture submitted to verification.
Then, it presents the fault injection method and the fault model used for the experiments.

4.1. Router Verification

In our study, a workload was generated for the evaluation of the router and the fault injection
campaign. This workload was designed to inject packets continuously to a fixed set of non-concurrent
paths of input and output channels. Thus, it enabled obtaining metrics for the router operating at
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its highest possible load. The following channel combinations were assigned to comply with the XY
routing algorithm requirements: Local→ East; East→West; West→ South; South→ North; North→
Local. Figure 13 illustrates the connections within the crossbar of the router.

Local

North

EastWest

South

Local

North

EastWest

South

Figure 13. Verification scenario [11] (©2019 IEEE).

The packet format used for verification is shown in Figure 14. It consisted of a single bit to perform
flow control, a single flit as the header, two payload flits, and a trailer. The header flit was used solely
to address the coordinates of the destination router. Both the header and the last payload flit (trailer)
used “1” as the frame bit, while the regular payload flits used “0”.

Xdst Ydst
Payload[0]

1
0

32 bits

Payload[1]0
Trailer1

Figure 14. Packet format for verification.

In the designed workload, each communication flow comprised the transfer of 4-flit packets, each
one composed of a header, a 2-flit payload, and a trailer. Packets of this length are typically used for
the transfer of a 128-bit cache line in 32-bit systems.

4.2. Fault Injection Environment

There are several different fault injection strategies proposed in the literature. They can
be classified into hardware-based injection, software-based injection, simulation-based injection,
emulation-based injection, and hybrid injection [59].

The strategy proposed in [60] was adopted for this experiment. The solution was designed
originally to inject SEU faults into the registers of a processor and was customized to operate on the
proposed router. The technique consisted of a simulation-based fault injection that relied on the use of
built-in commands of the ModelSim® simulator. Each iteration of the fault injection strategy included
the following stages:

1. Simulating without injection of faults to obtain a golden run.
2. Listing all the registers in the circuit and choosing a random one to inject a fault in it.
3. Randomly determining when the fault will occur within the simulation time.
4. Simulating until the given injection instant.
5. Forcing a bit flip into the selected register.
6. Simulating for the predefined time interval.
7. Comparing the outputs with those from the golden run.
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In each experiment, a single fault was injected by inverting the logical value in the target
signal. If the output of any external port differed from the golden run, then it was assumed that
the fault resulted in an error. For each router configuration, 1000 simulations running for 100 µs
were performed. This approach was applied to obtain a more accurate measurement of the error
propagation rate in all scenarios. Algorithm 1 presents a pseudo-code that summarizes the steps of the
fault injection campaign.

Algorithm 1 Fault injection campaign.

1: set EndTime = 100 µs
2: set TotalRuns = 1000

3: function GOLDENRUN(arch)
4: SIMULATE(arch) until EndTime
5: return arch.outputs
6: end function

7: function FAULTINJECTION(arch, run)
8: for i = 0 to TotalRuns - 1 do
9: f lip f lop← RANDOM(arch. f lip f lop)

10: SIMULATE(arch) until RANDOM(EndTime)
11: f lip f lop←! f lip f lop
12: SIMULATE(arch) until EndTime
13: run(i)← arch.outputs
14: end for
15: end function

16: function ERRORPROPAGATION(run)
17: for i = 0 to TotalRuns - 1 do
18: if run(i)! = GOLDENRUN(arch) then
19: error ← error + 1
20: end if
21: end for
22: return error
23: end function

An architecture that requires more memory elements (i.e., registers) is more susceptible to SEU
faults, due to the increased exposure area. For this reason, the number of propagated errors was
normalized for a fairer comparison. Equation (3) shows the normalization adopted for the error
rate comparisons.

Errorrate =
|Simulation(error)|
|Simulation(total)|

×
|Register(arch)|
|Register(re f erence)|

(3)

The number of simulations that propagated an error was divided by the total number of
simulations, 1000 in this case. This ratio was then multiplied by the total number of registers in
the architecture under simulation by the registers count from a reference architecture, which was given
by the most costly one.

5. Results

We defined a set of configurations to evaluate the different approaches for implementing the
controllers, and each controller was implemented using a Moore or Mealy machine, with or without
TMR. For reference, the implementations without TMR were named STD (i.e., Standard). We then
synthesized each implementation to obtain its silicon costs, power consumption, and performance
metrics. Afterward, we applied the fault injection campaign to measure the error rate. It is worth
noting that the router was configured to use handshake flow control, XY routing, round-robin arbiter,
flits with 32-bit width, and a 128-bit input buffer.

The architectures were described in VHDL and synthesized using the Intel® Quartus Prime,
Version 18.1, targeting the 5CGTFD9E5F35C7 FPGA device of the Cyclone V family. For synthesis, all
optimization flags were de-asserted to allow the inference of redundant circuits when applying TMR
and also for a more accurate comparison.
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The simulations were run using ModelSim-Intel® FPGA Edition. The Quartus Power Analyzer
tool was used for power and energy estimation, and it was configured to use a Value Change Dump
(VCD) file from the ModelSim simulation as input stimuli.

The different architectures evaluated were identified as STD (Standard), when no fault tolerance
technique was applied, and TMR, when the triple modular redundancy technique was used.

All the experiments were conducted on an IBM PC compatible laptop with an Intel i7-4510U
processor and 8 GB of RAM, running the Ubuntu Linux 18.04 operating system. We executed
22 syntheses, one per router architecture, and each synthesis lasted about three minutes. The fault
injection experiments comprised 1000 simulations per architecture, consuming about six hours to
evaluate all the design space considered.

To evaluate the synthesis and resilience results, we employed the metrics most commonly adopted
in the literature [54]. Silicon costs are expressed by the number of Look-Up Tables (LUTs) and
Flip-Flops (FFs) occupied. Performance was given by the maximum operating frequency (Fmax),
execution time, and throughput (i.e., the rate of data delivered without errors). Energy costs are given
by the total power dissipation and the energy consumed during the time used to deliver the data
injected. Finally, the primary metric was the error propagation rate, from which we inferred the fault
coverage. The lower the error rate, the higher the fault coverage. The following subsections present
the results obtained.

5.1. Moore STD versus Moore TMR

Table 2 presents the synthesis results for the experiments that evaluated the Moore-based
implementations. As expected, the architecture that did not use redundancy in any of its controllers
required the least combinational and sequential elements. Due to a longer critical path, configurations
that used redundancy in controllers showed some degradation at the maximum operating frequency.
It was observed that the dissipated power practically did not change, even with the presence of a VCD
input file. This behavior occurred because an isolated router consumes less than 1% of the resources
available on the target FPGA, even in its most expensive configuration. However, these values were
useful in obtaining energy consumption considering the simulation time.

Table 2. Synthesis results for Moore-based implementations.

Controller LUTs FFs Fmax
(MHz)

Power
(mW)Flow Regulation Routing Arbitration

Moore STD Moore STD Moore STD 1367 750 225.33 625.01
Moore STD Moore STD Moore TMR 1474 780 195.01 625.69
Moore STD Moore TMR Moore STD 1484 790 194.82 625.38
Moore STD Moore TMR Moore TMR 1569 820 189.04 625.26
Moore TMR Moore STD Moore STD 1433 790 215.56 624.75
Moore TMR Moore STD Moore TMR 1539 820 205.51 625.27
Moore TMR Moore TMR Moore STD 1512 830 198.57 624.44
Moore TMR Moore TMR Moore TMR 1621 860 184.88 624.60

The simulation results of the Moore-based configurations are presented in Table 3. Following the
fault injection campaign, a minor change in the propagated error rate was observed. This behavior
was mainly because the controllers did not account for the largest number of registers. This cost was
due to the input buffers.

Considering the maximum operating frequency and given the simulation time, we can obtain
the total execution time (texe). This information, combined with the amount of flits transmitted by
each of the communication channels, enabled measuring the total router throughput, considering the
valid accepted traffic (with no errors). Similarly, by multiplying the total execution time by the power
obtained in synthesis, we had the energy consumed by each combination.
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In this comparison, the standard version of the router had the highest throughput and the lowest
energy consumption. These results indicated that considering the entire router, the slight increase
in reliability with protected controllers came at a high price because the performance and energy
efficiency were degraded by more than 20%.

Table 3. Simulation results for Moore-based implementations.

Controller Error
Rate

texe
(µs)

Throughput
(Gbit/s)

Energy
(µJ)Flow Regulation Routing Arbitration

Moore STD Moore STD Moore STD 13.2% 44.38 6.95 27.74
Moore STD Moore STD Moore TMR 13.5% 51.28 6.00 32.09
Moore STD Moore TMR Moore STD 13.1% 51.33 6.01 32.10
Moore STD Moore TMR Moore TMR 13.0% 52.90 5.84 33.08
Moore TMR Moore STD Moore STD 12.6% 46.39 6.70 28.98
Moore TMR Moore STD Moore TMR 13.1% 48.66 6.34 30.43
Moore TMR Moore TMR Moore STD 13.1% 50.36 6.13 31.45
Moore TMR Moore TMR Moore TMR 12.5% 54.09 5.75 33.78

5.2. Mealy STD versus Mealy TMR

The results obtained from the evaluation of Moore-based controllers showed that the application
of redundancy produced a slight reduction in error propagation, but at the price of degrading
performance and energy efficiency. Looking for better results, we developed a Mealy variation
of each controller.

Table 4 presents the synthesis results for the Mealy-based controllers. As observed in the previous
section, the use of TMR led to an increase in the use of combinational and sequential logic and a
subsequent reduction in the maximum operating frequency.

Table 4. Synthesis results for Mealy-based implementations.

Controller LUTs FFs Fmax
(MHz)

Power
(mW)Flow Regulation Routing Arbitration

Mealy STD Mealy STD Mealy STD 1374 729 131.77 624.90
Mealy STD Mealy STD Mealy TMR 1418 747 121.67 625.78
Mealy STD Mealy TMR Mealy STD 1486 760 120.53 624.94
Mealy STD Mealy TMR Mealy TMR 1550 780 111.63 625.50
Mealy TMR Mealy STD Mealy STD 1389 749 126.50 624.20
Mealy TMR Mealy STD Mealy TMR 1454 767 120.61 625.29
Mealy TMR Mealy TMR Mealy STD 1524 780 126.92 625.16
Mealy TMR Mealy TMR Mealy TMR 1586 800 115.69 625.33

As can be seen from Table 5, the application of the hardening technique slightly increased the
router reliability, showing a 2% error rate in a fully protected configuration. However, the highest
throughput and the highest energy efficiency came from the unprotected version. As Mealy-based
controllers had lower latency than their Moore equivalent, this ended up reducing the average latency
of packet propagation across the router. This effect occurred because reducing the time a packet stayed
on the router also reduced its fault exposure.
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Table 5. Simulation results for Mealy-based implementations.

Controller Error
Rate

texe
(µs)

Throughput
(Gbit/s)

Energy
(µJ)Flow Regulation Routing Arbitration

Mealy STD Mealy STD Mealy STD 2.8% 75.89 6.83 47.42
Mealy STD Mealy STD Mealy TMR 2.5% 82.19 6.33 51.43
Mealy STD Mealy TMR Mealy STD 2.3% 82.97 6.28 51.85
Mealy STD Mealy TMR Mealy TMR 2.2% 89.58 5.82 56.03
Mealy TMR Mealy STD Mealy STD 2.7% 79.05 6.56 49.34
Mealy TMR Mealy STD Mealy TMR 2.5% 82.91 6.27 51.84
Mealy TMR Mealy TMR Mealy STD 2.2% 78.79 6.62 49.26
Mealy TMR Mealy TMR Mealy TMR 2.0% 86.44 6.04 54.05

5.3. Moore versus Mealy

Figures 15–17 present the results of the simulation of all possible combinations of FSM (Moore
or Mealy) and implementation (STD or TMR). For instance, the configuration STD-STD-STD defined
that both the controllers for flow regulation, routing, and arbitration, respectively, did not implement
triple modular redundancy. For this configuration, as Figure 15 shows, the Moore-based controller
had an error propagation rate of 13.2%, and the Mealy-based controller had an error rate of 2.8%.
It is worth noting that all the controllers of each configuration used the same type of state machine
implementation. By analyzing the results shown in this figure, we observed that, for the same type of
FSM implementation, the error propagation rate decrease was not significant as the controllers were
being protected. However, when comparing the FSM mode, the Mealy-based approach proved to be
more resilient, propagating on average 10% fewer errors than the Moore-based implementation for the
same combination of controllers.

Figure 15. Error propagation rate in the Moore versus Mealy comparison.

Figure 16 presents the results regarding the throughput. The results showed almost no variation
between the Moore and Mealy implementations of each configuration. However, we noticed that
increasing the reliability of the routing and arbitration controllers by using redundancy resulted in
throughput degradation. On the other hand, adding TMR to the flow regulation controllers did
not degrade communication performance. On the contrary, in some cases, it could result in a slight
improvement in throughput.

Figure 17 compares the energy consumption of the different configurations. As we can notice,
the Mealy-based configurations consumed approximately 60% more energy than Moore ones in all
comparisons. From these results, we can state that the Moore-based implementations were the most
energy efficient.

The results presented show that the use of Mealy machines instead of applying TMR was a good
alternative to decrease the error propagation rate and improve throughput. However, it must be noted
that the Mealy-based controllers were less energy efficient than the ones based on the Moore machine.
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Figure 16. Performance in the Moore versus Mealy comparison.

Figure 17. Energy consumption in the Moore versus Mealy comparison.

5.4. Moore and Mealy Combined

With the low effectiveness observed in the application of TMR, along with the high energy
consumption inferred from the use of Mealy-based controllers, we looked for solutions that presented
a better trade-off. Because the router used in this work was developed focusing on flexibility, having a
well defined component interface, it was possible to use mixed Moore and Mealy controllers within the
router. Thus, we configured architectures combining the standard (non-protected) versions of Moore
and Mealy controllers. Table 6 presents the synthesis results for each one of these combinations.

Table 6. Synthesis results for Moore and Mealy combined implementations.

Controller LUTs FFs Fmax
(MHz)

Power
(mW)Flow Regulation Routing Arbitration

Moore Moore Moore 1367 750 225.33 625.01
Moore Moore Mealy 1353 744 200.64 624.50
Moore Mealy Moore 1412 745 150.53 625.14
Moore Mealy Mealy 1370 739 133.53 624.61
Mealy Moore Moore 1364 740 223.71 625.86
Mealy Moore Mealy 1356 734 195.50 625.72
Mealy Mealy Moore 1420 735 153.99 624.95
Mealy Mealy Mealy 1374 729 131.77 624.90

The increase of LUTs for Mealy-based controllers was expected, due to the additional decoding of
the output signals in states. As these machines also needed to encode fewer states, they also presented
a decrease in the use of memory elements (i.e., Flip-Flops).

Increasing combinational logic implies a longer critical path of the circuit. As the critical path
increased, the maximum operating frequency reduced, which made a fully Moore approach have
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a maximum operating frequency 71% higher than a configuration using only Mealy controllers, for
instance. As explained earlier, the power dissipation remained uniform across all combinations.

Regarding the metrics obtained from simulation (Table 7), we observed a large variation on the
error propagation rate. This variation was not only due to the lower use of FFs, but mainly to the
retention of data in the input buffers.

Table 7. Simulation results for Moore and Mealy combined implementations.

Controller Error
Rate

texe
(µs)

Throughput
(Gbit/s)

Energy
(µJ)Flow Regulation Routing Arbitration

Moore Moore Moore 13.2% 44.38 6.95 27.74
Moore Moore Mealy 13.0% 49.84 6.57 31.13
Moore Mealy Moore 4.7% 66.43 5.74 41.53
Moore Mealy Mealy 3.6% 74.89 5.15 46.78
Mealy Moore Moore 13.1% 44.70 9.57 27.98
Mealy Moore Mealy 4.0% 51.15 10.01 32.01
Mealy Mealy Moore 3.8% 64.94 7.90 40.58
Mealy Mealy Mealy 2.8% 75.89 6.83 47.42

A further investigation noted that error propagation was directly related to data retention in
buffers. Analysis of previous architectures showed that the speed-up in data forwarding when using
Mealy provided increased reliability. Looking at the simulation results of the combined FSM (Figure 18),
we can see that there were other combinations besides the fully Mealy one that took advantage of
faster data forwarding.

Figure 18. Comparison of Moore and Mealy combined implementations.

We realized that the throughput was higher when using Mealy machine in the flow regulation
controller and Moore machine in the routing controller, and the way arbitration was implemented
showed no significant change in performance. The lowest energy consumption was observed when
applying Moore on both routing and arbitration controllers.

The application of TMR did not imply a good trade-off in applications with communication or
energy restrictions. However, given a router that originally had its controllers implemented through
Moore FSMs, the simple migration of the flow regulation controller to Mealy was enough to increase
throughput by 37%, with equivalent energy consumption. In reliable systems, the combination that
adopted Mealy in flow regulation and arbitration controllers and Moore in routing seemed to be a
valid alternative, as its error propagation rate was 4% and energy consumption was only 15% higher
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in comparison to the baseline version, and in addition, it was the configuration with the highest
throughput among all the architectures evaluated.

6. Conclusions

Future reliable systems, such as those used in space applications, will incorporate multiple
processing cores into an SoC. This processing power is a demand for applications that require high
performance in space due to the increasing amount of high resolution sensors and the bandwidth
requirements of satellite-ground links. NoCs are the successors of the multi-core interconnection based
on shared buses. However, their silicon costs are not negligible, and it is still challenging to provide an
architecture that meets the reliability requirements at a low area overhead.

In this context, the main goal of this work was to provide a simplified and parameterizable
router architecture and analyze the behavior of its custom architectures under the SEU fault injection.
The obtained results showed that the use of Mealy FSMs for the control structures resulted in a
significant decrease in the number of propagated errors, at a price of performance degradation and
lower energy efficiency. The lower error propagation of the Mealy-based approaches was given mainly
due to the occupation rate of the buffers. Each controller that used a Mealy implementation saved a
cycle, which sped up data forwarding and caused the packets to be stored for a shorter time.

The article showed which were the best trade-offs that could be achieved in the design of an NoC
router, combining the different implementations of its controllers. It also provided a reference for
evaluating the possible combinations of controllers when considering a specific environment or the
constraints that were more stringent for the design of a given distributed system. As far as we know,
no other work in the literature has investigated the inner mitigation of errors concerning the type of
implementation chosen for the router controllers.

As future work, we intend to evaluate the proposed router through fault injection in a particle
accelerator and then use the router to integrate reliable multi-core systems such as those needed in
satellites and other space applications. The source code of the router presented here is available in [61].
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