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Abstract

The automatic clustering of chemical compounds is an important branch of chemoinformatics. In this paper the Asymmetric
Clustering Index (ACI) is proposed to assess how well an automatically created partition reflects the reference. The
asymmetry allows for a distinction between the fixed reference and the numerically constructed partition. The introduced
index is applied to evaluate the quality of hierarchical clustering procedures for 5-HT1A receptor ligands. We find that the
most appropriate combination of parameters for the hierarchical clustering of compounds with a determined activity for
this biological target is the Klekota Roth fingerprint combined with the complete linkage function and the Buser similarity
metric.
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Introduction

The rapidly growing number of compounds with a determined

activity for a given molecular target leads to difficulties in using

full, previously explored chemical spaces in virtual screening

campaigns. Indeed, the use of a large number of ligands (e.g., the

D2 receptor has 9180 different ligands in ChEMBL database v. 16

[1]) in predictive model development usually generates substantial

computational costs. Moreover, for active compounds of any

protein target, large groups of similar ligands may significantly

disrupt the search results, limiting virtual hits to close analogs of

over-representative input structures [2,3]. As a consequence, an

appropriate clustering of the ligands’ chemical space is of primary

importance [4].

Manual (knowledge-based) clustering is usually the first choice

for small groups of ligands because it provides the most natural

partitions. However, for more abundant sets, this approach is

time-consuming and requires extensive chemical knowledge (e.g.,

the manual clustering of 3616 5-HT1A receptor ligands performed

by Warszycki et al. [5] took a couple of weeks). Therefore,

automatic clustering algorithms are frequently used for categoriz-

ing chemical compounds. Consequently, it is crucial to employ

indices that can verify how similar a numerically constructed

partition is to the reference created by experts.

Unlike experts, who intuitively recognize and classify chemical

structure, automatic clustering algorithms require molecule to be

translated into an appropriate form. This is usually achieved by

application of fingerprints which transform chemical structure on

a bitstring, where ‘‘1’’ and ‘‘0’’ correspond to a presence or

absence of a particular chemical pattern, respectively [6,7]. Next,

fingerprints can be compared using a similarity metric evaluating

how much the compounds are similar [8]. Moreover, hierarchical

clustering procedures require, the linkage function which deter-

mines the ‘‘distance’’ between two groups of compounds. Since

there are a lot of available fingerprints, metrics and linkage

functions, the number of their combinations is indeed quite high,

which makes finding the most appropriate one, for a particular

task, relatively difficult.

Several methods have been proposed to compare clusterings

[9]. The most popular techniques are based on counting pairs of

elements classified in the same way in both partitions, such as the

rand index [10] and its modifications [11,12]. Another group of

methods uses normalized mutual information to quantify the

information shared by the clusterings [13,14]. An interesting

approach for comparing partitions relies on measuring the

distance between clusterings with the use of information theory

[15]. The main feature of these indices is their symmetry, which

makes them suitable for finding the similarities between cluster-

ings.

In the present study, we introduce the Asymmetric Clustering

Index (ACI) for comparing two partitions. The asymmetry allows

the index to distinguish between the fixed reference (which by

default, denotes the expert manual partition) R and the

numerically constructed partition C. As a consequence, the ACI

is capable of measuring how well a given partition reflects the

reference (not conversely). This index is defined as the ratio of the

mutual information MI(R,C) to the entropy SE(R):

ACIR(C)~ MI(R,C)
SE(R)

:
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The ACI is reminiscent of the indices proposed in [13,14] but,

due to its different normalization factor, has an asymmetry feature.

The basic properties of the ACI are presented in Figure 1 and

are listed below:

N it takes on values between 0 and 1,

N the reference can be recovered from the partition by merging

selected groups if ACI~1,

N for the partitions that do not share any information, ACI~0.

Therefore, for successively subdivided partitions, the ACI

converges to 1, in contrast to symmetric indices. Figure 2 presents

the values of the ACI and other two similarity indices based on

mutual information for a conducted experiment. When the

number of clusters obtained in the hierarchical clustering is

greater, the reference is better reflected by the partition. As a

result, the ACI takes gradually higher values in contrast to the other

indices. This behavior allows for a straightforward interpretation

of the ACI – values close to 1 indicate that the numerically

constructed partition contains much information about the

reference.

Figure 1. Presentation of the ACI. Partition Q contains more
information than partition P; thus, P can be restored from Q by
merging four pairs of sets. In particular, ACIP (Q)~1 and ACIQ(P)~ 1

3
.

doi:10.1371/journal.pone.0102069.g001

Figure 2. Comparison between the ACI and symmetric indices
based on mutual information. These indices were evaluated based
on the reference reported by Warszycki et al. [5], and the partitions
were obtained from hierarchical clusterings performed with the Klekota
Roth fingerprint combined with the Buser similarity metric and the
complete linkage function.
doi:10.1371/journal.pone.0102069.g002

Figure 3. Illustration of the ACI. Partition C1 fully reflects the
reference, R (ACIR(C1)~1). In contrast, partition C2 is random with
respect to the reference – the two results do not share any information
(ACIR(C2)~0). Partition C3 is a combination of the two previous
situations – half of the reference can be recovered from this clustering
(ACIR(C3)~0:5).
doi:10.1371/journal.pone.0102069.g003

Figure 4. Comparison between entropy and mutual informa-
tion. Each region describes the information provided by a particular
clustering [20].
doi:10.1371/journal.pone.0102069.g004
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To determine the optimal conditions reaching the maximum

ACI values, 8 fingerprint types, 4 similarity metrics and 4 linkage

functions were applied to a hierarchical clustering of the full

chemical space of 5-HT1A receptor ligands. As a reference, the

manually constructed partition of Warszycki et al. [5] was taken,

which generally follows the classification of 5-HT1A R described in

the literature [16,17]. The best clustering was achieved for a

combination of the Klekota Roth fingerprint, the Buser similarity

metric and the complete linkage function, which was then verified

in an additional clustering experiment on a collection of

compounds belonging to two explicitly different chemical classes.

Figure 5. The results obtained by manual clustering of 5-HT1A receptor ligands. This process is described in Warszycki et al. [5].
doi:10.1371/journal.pone.0102069.g005
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Thus, in further studies, automatic clustering should be performed

with these parameters.

Materials and Methods

The ACI measures how well the automatically performed

partition C~fC1, . . . ,Cng reflects the reference R~

fR1, . . . ,Rmg. This index is obtained by normalizing the mutual

information MI(R,C) by the entropy SE(R):

ACIR(C)~ MI(R,C)
SE(R)

~

Pm

i~1

Pn

j~1

P(Ri\Cj) log2

P(Ri\Cj )

P(Ri )P(Cj )

{
Pm

i~1

P(Ri) log2 P(Ri)

, ð1Þ

where P(A) denotes the probability that an element belongs to set

A. The above metric quantifies the percent of information that R
delivers about C.

The ACI attains a maximal value of 1 if the reference and the

numerically constructed partitions are identical. However, as

shown in Figure 3, we also obtain ACIR(C1)~1 when the

reference is subdivided into smaller clusters; clearly, this automat-

ically constructed clustering contains at least as much information

as the reference. Consequently, the reference can be reconstructed

from the numerically obtained partition by merging selected

groups. In contrast, if the partition C2 is random with respect toR,

then the clusterings are completely different, which results in

ACIR(C2)~0. This case holds, for example, when every cluster of

C2 contains an equal number of elements in comparison to each

cluster of R. One can also consider a composition of these two

examples.

In the case of hierarchical clustering, for every two partitions

obtained by cutting at different levels, one partition is a subdivision

of the second. Furthermore, when a partition has as many groups

as the number of data-set elements (every cluster is a one-element

set), then it contains information about every possible partition.

Clearly, for a high number of clusters, practically all information

about the reference partition can be deduced from the partition

numerically constructed by an arbitrary clustering algorithm. In

contrast, a partition cannot fully reflect the reference if it has fewer

elements. Consequently, one of the possible methods for deter-

mining the optimal number of clusters is to maximize a selected

measure of dispersion, e.g., the standard deviation or entropy. In

other words, a given number of clusters is optimal for the ACI if it

maximally distinguishes among the partitions (with respect to the

corresponding ACI values). Numerical examples indicate that

reasonable results are obtained when approximately twice the

number of groups are taken in comparison to the reference

division (see the next section for more details).

The idea of the ACI is based on information theory; in

particular, this index involves the notions of entropy and mutual

information content. The Shannon entropy, introduced as a

measure of channel capacity in digital communications [18], is

also used to quantify the information contained in the clustering

[19]. Formally, the Shannon entropy (SE) of an n-element

partition C~fC1, . . . ,Cng is defined by

SE(C)~{
Xn

i~1

P(Ci) log2 P(Ci):

In the case of a one-element partition, the cluster of each

element is known; therefore the SE equals 0. In contrast, if no

information about the position of any element is provided (every

cluster is equally probable), then the SE attains a maximum.

To compare two clusterings, the basic idea of the SE needs to be

extended by defining the mutual information (MI). The MI

determines the amount of information shared between partitions

and is defined by [20]

MI(R,C)~
Xm

i~1

Xn

j~1

P(Ri\Cj) log2

P(Ri\Cj)

P(Ri)P(Cj)
:

The relations between the introduced quantities are presented

in Figure 4.

Table 1. The characteristics of fingerprints, with the abbreviations used in this work.

Fingerprint Abbreviation Length of fingerprint

EState fingerprint [25] estate 79

Fingerprint [26] fingerprint 1024

Extended fingerprint [27] extended 1024

Graph only fingerprint [27] graph only 1024

Klekota Roth fingerprint [28] KRFP 4860

MACCS fingerprint [29] maccs 166

PubChem fingerprint [27] pubchem 881

Substructure fingerprint [27] substructure 308

All fingerprints were generated in PaDEL software [27].
doi:10.1371/journal.pone.0102069.t001

Table 2. Linkage functions for two sets [30].

Name Formula

Average 1

DADDBD

X
a[A

X
b[B

d(a,b)

Centroid d(cA,cB)

Complete maxfd(a,b) : a[A,b[Bg
Single minfd(a,b) : a[A,b[Bg

Used marks in the formula: d – metric, cA – center of set A, DAD – cardinality of
set A.
doi:10.1371/journal.pone.0102069.t002
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It is straightforward to demonstrate that the mutual information

is symmetric [20], i.e.,

MI(R,C)~MI(C,R):

As mentioned in the Introduction, this property allows only one

to evaluate the similarity between partitions. To define an

asymmetric index that measures how well the reference can be

recovered from the numerically created partition, the normaliza-

tion by the entropy of reference partition is used, giving the

following formula:

ACIR(C)~ MI(R,C)
SE(R)

:

By [20], we have 0ƒMI(R,C)ƒSE(R), which leads to:

0ƒACIR(C)ƒ1:

Results

One of the most popular techniques used to divide chemical

compounds is hierarchical clustering [21]. The strength of this

approach lies in the deterministic nature of the algorithm and the

constructed hierarchical structure of clusters. This method

requires the specification of several input parameters, but there

is no unified methodology for determining which parameters will

provide the best results. The ACI will be applied to determine the

combination of parameters that best reflect the reference partition

of 5-HT1A receptor ligands.

As a reference, the manually constructed partition of Warszycki

[5] was utilized. All ligands (retrieved from approximately 520

published papers) used for this clustering were extracted from

ChEMBL database version 5 (August 2010) [1]. Ligands with an

inhibition constant (Ki) of less than or equal to 100 nM were

considered active; only these ligands were used for this clustering

study.

The manual clustering generally follows the classification of 5-

HT1A ligands described in the literature (9 basic classes)

[16,22,23]; however, some additional subgroups were then

created, e.g., for arylpiperazines [17]. In the case of alkylamines

(714 compounds), indole derivatives were first extracted and, with

the exception of the tetrahydropyridoindoles, were divided

depending on the distance between two crucial pharmacophore

features: an aromatic system and a basic nitrogen atom. The entire

procedure resulted in 28 clusters, each containing 17 to 605

compounds [5] (see Figure 5).

In this study, three types of hierarchical clustering parameters

were examined. The study focused on determining the optimal

ACI values from a combination of eight fingerprint representations

Table 3. Similarity metrics [8].

Name Formula

Buser
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cdð Þzc

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cdð Þzazb{c

p

Dice 2c

azb

Tanimoto c

azb{c

Yule cd{AB

cdzAB

Used marks in the formula: a – on bits in structure 1, b – on bits in structure 2, c

– on bits in both 1 and 2, d – off bits in both 1 and 2, A~a{c, B~b{c.
doi:10.1371/journal.pone.0102069.t003

Figure 6. Standard deviations of ACI values collected for the
128 combinations of hierarchical clustering parameters.
doi:10.1371/journal.pone.0102069.g006

Figure 7. Standard deviations of ACI values collected for the 12
best combinations of hierarchical clustering parameters. These
combinations correspond to the highest mean ACI values over all
possible cluster numbers. The maximum occurs for the cluster numbers
between 50 and 80.
doi:10.1371/journal.pone.0102069.g007
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(Table 1), four linkage functions (Table 2) and four similarity

metrics (Table 3). Both recently published works [8,24] and our

experience, supported by preliminary studies, indicate that these

four metrics are the most relevant for clustering purposes.

To determine the optimal number of clusters for the ACI, an

additional experiment was conducted. The ACI was evaluated for

all combinations of linkage functions, fingerprint representations

and similarity metrics (total of 128 cases). The corresponding

standard deviations for each number of clusters were calculated, as

shown in Figure 6. Because this study focuses on selecting the

optimal parameters, standard deviations were also computed for

12 combinations that provided the highest mean ACI values

(averaged over all possible numbers of groups). This restriction

reduced the number of clusters for which the maximal discrim-

ination was attained (Figure 7). As a consequence, a total of 50

groups was chosen as a reasonable compromise between accuracy

and complexity for this model.

The results (Table 4) shows that the choice of linkage function

has the most significant impact on the clustering results, regardless

of the fingerprint representation or similarity metric (clearly, this

holds only for the types of metrics employed herein). The mean

ACI values calculated for the clusterings for particular linkage

functions indicate that optimal performance is obtained with the

complete linkage function.

An analysis of the ACI values for partitions with the complete

linkage function and various fingerprint representations and

similarity metrics (Figure 8) points out the superiority of the

KRFP fingerprint for all four metrics. The impact of the similarity

metrics was then assessed by varying the number of clusters from

28 to 100 in series of experiments with the complete linkage

function and the KRFP molecular representation. This investiga-

tion (Figure 9) demonstrated the superiority of the Buser similarity

metric over the remaining three types for almost all cluster

numbers.

Next, the ability of the optimally designed hierarchical

clustering to separate compounds belonging to different chemical

classes was additionally evaluated. For this purpose, three

partitioning experiments were performed: the separation of (a)

arylpiperazines with a sulfona(i)mide fragment from aporphines,

(b) benzodioxans from benzylpiperazines and (c) N4-alkyl and N4-

unsubstituted arylpiperazines from arylalkilamines with a three-

atom linker. In the first two cases, the automatic process perfectly

or very closely (ACI~1:00 and ACI~0:93, respectively) reflected

the reference clustering. In the third case the obtained result was

highly unsatisfactory (ACI~0:006); however, increasing the

number of clusters up to three significantly improve the quality

of the separation (ACI~0:57). Fixing the number of clusters to 6

resulted in ACI~0:75, while ACI~0:86 was obtained for eight

clusters. These results confirm the need to enforce a greater

number of groups in the clustering process than expected.

In conclusion, the experiments demonstrate that the automatic

hierarchical clustering of 5-HT1A receptor ligands provides the

best results when implemented with the complete linkage function,

the KRFP fingerprint representation and the Buser similarity

metric. It is worth mentioning that satisfactory results are also

obtained with the use of three other metrics – the Tanimoto, Yule

and Dice metrics.

Conclusion

This paper introduces a straightforward asymmetric index, the

ACI, which allows one to evaluate how well a numerically

constructed partition reflects the reference. The highest ACI was

consistently obtained for hierarchical clustering based on the

complete linkage function, the Klekota-Roth fingerprint and the

Buser similarity metric, suggesting the application of these

parameters for other groups of biologically active compounds.

This approach was verified using a manually constructed partition

Table 4. Complete linkage function rankings.

Linkage function ACI

Complete 0.51

Average 0.40

Centroid 0.09

Single 0.04

Mean ACI values obtained for fixed four types of linkage functions and various
types of fingerprints and similarity metrics.
doi:10.1371/journal.pone.0102069.t004

Figure 8. ACI values for hierarchical clusterings with the
complete linkage function.
doi:10.1371/journal.pone.0102069.g008

Figure 9. ACI values for hierarchical clusterings. The number of
groups ranged from 28 to 100. Results are presented for the complete
linkage function, the Klekota Roth fingerprint and four different
similarity metrics.
doi:10.1371/journal.pone.0102069.g009
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of active 5-HT1A ligands [5].

An SDF file containing the full collection of 3616 compounds is

available free of charge via the Internet at http://skandal.if-pan.

krakow.pl/5-HT1A_ligands.sdf. To obtain a hierarchical cluster-

ing of the considered chemical space, the hclust function of R

software was used. A sample R code used for the ACI calculation is

available free of charge at http://skandal.if-pan.krakow.pl/aci.R.

Author Contributions

Conceived and designed the experiments: MŚ DW JT. Performed the
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