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INTRODUCTION 

During the passage of an impulse in Young's squid giant axon prepara- 
tion (Young, 1936), a considerable increase in the membrane conductance 
was found but relatively little if any change in the membrane capacity 
(Cole and Curtis, 1939). The conductance increase was interpreted as a 
measure of the increase of ion permeability which is commonly assumed to 
be a part of the nerve impulse. 

I t  is generally believed that when a current flows through a nerve mem- 
brane, the ion permeability is increased at the cathode and decreased at 
the anode. If this is true and the interpretation of the impedance change 
obtained during activity is correct, there should be an increase in the mem- 
brane conductance at the cathode and a decrease at the anode without a 
change in the membrane capacity during current flow. With these assump- 
tions, an apparent contradiction is then found in the observations during 
the propagation of an impulse. During the foot of the action potential 
(before the point of inflection in the rising phase) the simple cable theory 
requires that the direction of positive current flow be outward across the 
membrane, or cathodic. This would require an increase of membrane 
conductance, which was not found. At the point of inflection, where 
the current flow reverses from outward to inward, there should be a 
decrease of the membrane conductance to a value less than that at rest. 
But it was at about this point that the large and rapid increase of the mem- 
brane conductance was observed. The first step in resolving these contra- 
dictions is to investigate the validity of the assumptions. For this it is 
necessary to determine the dependence of the membrane conductance upon 
the direction and magnitude of the membrane current flow in the rest- 
ing axon. 

The polarizing current could be applied suddenly for sub-rheobase cathode 
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and all anode polarizations, but the results of this procedure might be mis- 
leading when excitation and propagation take place at  the cathode. Al- 
though the nature of the "depolarization" which occurs at the onset of 
activity is not known, it is often thought of as a breakdown or "relaxation" 
process. I t  would not be at  all unreasonable, from analogy with non- 
living systems, to expect that  a polarizing current might be able to maintain 
a depolarization originally set up by excitation. Consequently, to avoid 
ambiguity, excitation should be avoided by increasing the polarizing cur- 
rent to its maximum value slowly. Then the terminal impedance change 
could be compared with that  obtained after an excitation took place at the 
sudden make of the current to determine whether or not a depolarization 
could be maintained and whether or not the precaution of a slow rise was 
necessary. This question can also be answered, by gradually polarizing the 
nerve without excitation, and then allowing an impulse initiated at a dis- 
tance to pass through the polarized region. 

After the investigation of these steady effects of polarization, before and 
after activity, the next step is to trace the time course of the sub-threshold 
changes at the start of polarization. If we assume that  before excitation 
the membrane has reproducible and reversible electrical characteristics, it 
should be possible to determine them and so explain the sub-threshold ob- 
servations. The impedance changes at the site of excitation and during the 
passage of an impulse through a polarized region are of obvious importance 
in the quantitative description of the processes of excitation and propaga- 
tion in nerve. I t  may be expected, however, that  an explanation of these 
impedance data will itself be a rather complete theory of nerve activity. 

Material and Apparatus 

A description of the material and apparatus was given in the previous paper (Cole 
and Curtis, 1939) and only the modifications and extensions required in the present 
experiments will be given in detail. 

Axon, Measuring Cell, and Bridge.--The giant axon in the hindmost stellar nerve of 
the squid, Loligo pealii, was dissected out and placed in the measuring cell. This cell 
was a strip of insulating material with a groove, AA (Fig. 1) 550 # square, just large 
enough to accommodate the axon, cut in the top and covered with a glass cover slip. 
Sea water was circulated past the axon and the whole was usually kept at a temperature 
of about 4°C. Two platinized platinum impedance electrodes 550 ~ square were 
mounted flush with the sides of the groove and facing each other. The transverse al- 
ternating current impedance of the axon was measured between these electrodes over a 
frequency range from 1 kc. to 500 kc. in a Wheatstone bridge (Cole and Curtis, 1937) 
with heterodyne, amplifier, and cathode ray oscillograph for detector. The measur- 
ing current through the cell was kept as low as possible without undue sacrifice of over- 
all sensitivity, and in all cases the bridge balance was independent of this current. 
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Polarizing Circuit.--The current, or polarizing, electrodes were spaced as far apart  as 
possible along the length of the axon, to separate the anode and cathode regions of 
membrane current flow and allow individual investigation of each region. The maxi- 
mum membrane current density is to be found directly under an electrode and since it 
is approximately uniform only under a short electrode, the impedance should be meas- 
ured through one of the polarizing electrodes. The other impedance electrode could 
then be placed in the extrapolar region for a longitudinal measurement but  this involves 
a second membrane or an inactive end, and, in addition, a rather clumsy theoretical 
analysis. I t  is simpler to use a transverse impedance measurement where one-half 
of the polarizing current enters at each impedance electrode, E, through a resistance, 
R, and the total current leaves the measuring cell at the third, distant, electrode as 
indicated in Fig. 1. The two resistances, R, were 10,000 ohms each and this value 

A 

J 

P 
0 0 

n ?8 

I 
_--]-6 

FIG. 1. Circuit for impedance measurements during current flow. Axon was placed 
in trough A A and transverse impedance measurements made between electrodes E E 
by the alternating current bridge connected at  B and ground, G. The polarizing cur- 
rent from source P divided and flowed into this trough and axon through the two re- 
sistances R R and the electrodes E E. The current returned through the distant elec- 
trode at  the left hand end of the trough. 

was sufficiently large practically to eliminate differences of current flow in the two 
paths caused by asymmetries of the impedance electrodes, axon position, and membrane 
potential. Since a part  of the bridge current flows through these two resistances in 
series, the sensitivity of the measurement of the axon impedance was decreased but  this 
loss was not excessive. An approximately uniform current density under the electrodes 
was expected because the length of the electrodes, 0.55 mm~, was considerably less than 
the "characteristic length" of about 3 rnm. found for this axon (Cole and Hodgkin, 1939). 
I t  was found experimentally that  a current flow from the impedance electrodes to two 
remote electrodes, one at  each end of the cell, produced the same impedance change as 
was produced when this same current flowed to a single electrode at  one end of the cell. 
Since this procedure was equivalent to a 50 per cent reduction of the effective electrode 
length, the polarizing current density in the membrane was essentially uniform in the 
region where the impedance measurements were made. 

The magnitude of the polarizing current was made practically independent of the 
characteristics of the electrodes and of the nerve, by applying a sufficiently high potential 
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through a series resistance of 150,000 ohms to the terminals, P. The currents were 
varied up to a maximum of about 1 milliampere and were measured directly with a 
meter and also calculated from the resistances and potential. 

The current was controlled by the  opening of three contacts operated from motor 
driven cams, and the oscillograph sweep circuit was controlled by a fourth contact. 
The complete cycle of this contactor was usually repeated at intervals of about 1 second. 
Sudden on and off currents were easily obtained, and use of a variable shunt condenser 
gave "exponentially blunted ' ' l  currents with a range of time constants up to 100 msec. 
With well platinized impedance electrodes, the effect of the maximum polarizing current 
on the measured impedance of the cell filled with sea water was less than 0.1 per cent. 

EXPERIMENTAL 

The first experiments were made with an exponentially blunted polarizing 
current, followed by an equal and opposite current of the same duration 
and form, as shown in Fig. 2, to minimize the injury to the a~on. For this 

Io 

FIG. 2. Schematic drawing of the exponentially blunted current flow, I0, applied 
in the sequence: make, M, reverse, R, break, B, vs. time, T. 

the contactor  applied the potent ia l  to the resistance and  capaci ty  polarizing 

circuit for abou t  200 msec. in the sequence on-reverse-off. The  Whea t -  

stone bridge was first balanced a t  each f requency wi thout  the polarizing 
current  and  then a change of the axon impedance caused b y  current  flow 
gave an ou tpu t  vol tage f rom the bridge and  a band  on the oscillograph. 

Typ ica l  records are shown in Fig. 3 for 20 kc. and 125# amp.  m a x i m u m  
current.  Soon af ter  the cathode make ,  m in Fig. 3 a, there was a short  

impedance  decrease associated with  the excitation. Then  a slow decrease 
of the impedance followed, in bo th  a and  b of Fig. 3, as the current  increased 
towards  i ts  m a x i m u m  value.  After  r, where the reversal  was s tar ted,  the 
impedance  first increased to re turn  to the resting value and  then  increased 
still fa r ther  to again unbalance the bridge, bu t  in the opposi te  direction, 

during the anode current  flow. After  b the anode current  decreased to- 
wards  zero and the impedance decreased correspondingly to leave the 

1 This term is used in preference to "exponentially rising" to describe the time course 
given by 1 - e - t / r  and shown in the initial rise of Fig. 2. 
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bridge balanced finally. The bridge unbalances were found in the reverse 
order when the anode was applied first, as is seen in Fig. 3 c, and a double 
excitation took place at the reversal. The final magnitudes of the im- 
pedance changes at the cathode and anode are the same, whether the 
cathode (Fig. 3 a and b) or anode (Fig. 3 c) was applied first. Within the 
limit of sensitivity, for all frequencies and currents, the change of im- 
pedance at the cathode was a decrease from the resting value and that at 
the anode, an increase. For this axon, 125 /,amp. with a time constant of 
50 msec. gave excitation as shown in Fig. 3 a, and with an increase of the 
time constant to 80 msec. the same current was subthreshold (Fig. 3 b). 
I t  is apparent that the final impedance change was not appreciably altered 
by activity. As might then be expected, it was found that near rheobase, 
with suddenly applied polarizing current, the steady value of impedance 
change was independent of excitation, as seen in Fig. 4. In general, whether 
the current reached its maximum value very abruptly, or very slowly, the 
final change of impedance was the same. Also when a distantly initiated 
impulse was sent through the polarized region after the impedance change 
during current flow had become constant, the impedance would decrease 
during the passage of the impulse and then return to the previous level. 
We thus have evidence that the steady state effect of the polarizing currents 
employed is not altered by excitation. Consequently the use of exponential 
blunting to avoid excitation was unnecessary and sudden makes and breaks 
were subsequently used. 

After the direct-reverse polarizations described, the impedance required 
several seconds to return completely to the resting value, irrespective of 
whether cathode or anode was applied first. This effect was entirely a result 
of the anode polarization and was not reduced by an equal cathode polariza- 
tion either before or after. Since reversM technique apparently did not 
materially improve the survival of the axons, it too was an unnecessary 
complication and was abandoned in favor of the simple on and off polariza- 
tions, as shown in Fig. 4. 

Having found a change in the transverse impedance during polarization, 
the next step was to determine which component of the axon was responsible 
for it. The procedure was the same as that used for the analysis of the im- 
pedance change during activity (Cole and Curtis, 1939) with the advantage 
that we are here dealing with something more closely approximating a 
steady state. At each frequency, the bridge was balanced to give the 
resting parallel resistance, Rp, and capacity, Cp(Cole and Cole, 1936; 
Cole and Curtis, 1937). The polarizing current was then applied for in- 
tervals long enough to allow the impedance change to reach a steady value 
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FIG. 3. Oscillograph records of bridge unbalance at 20 kc. caused by make, m, 
reverse, r, and break, b, sequence in exponentially blunted current flow of 125/~amp. 
(a) Cathode first, time constant 50 msec., showing excitation near beginning. (b) 
Cathode first, time constant 80 msec., sub-threshold. (c) Anode first, time constant 
80 msec,, showing double excitation at reversal. Exponential time scale indicated by 
50 cycle timing wave below. Impedance changes at cathode, - 2  per cent; anode, +0.6 
per cent, determined by calibration. 

~t 

FIG. 4. Oscillograph records of bridge unbalance at 20 kc. caused by sudden make 
and break of cathode current flow. (a) Sub-threshold response for current just below 
rheobase. (b) Threshold response for current just above rheobase. Initial maximum 
is propagated. 
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FIG. 5. Oscillograph records of bridge balance and unbalance at 20 kc. during current 
flow of 63/zamp. Cathode, (a) with bridge balanced at rest and (b) balanced during 
current flow. Impedance decrease, 2.0 per cent. Anode, (c) with bridge balanced at 
rest and (d) balanced during current flow. Impedance increase, 1.05 per cent. 

FIG. 6. Oscillograph records of bridge unbalance at 20 kc. caused by cathode current 
flow. Currents in #amp. are; (a) 105; (b) 210; (c) 315; (d) 420 and (e) 527. Transient 
impedance changes are caused by excitation under the impedance electrodes at the 
make, and by excitation propagated from the distant anode at the break. Calibra- 
tion O r) is a 7.7 per cent impedance decrease. Maximum bridge unbalance during 
passage of a distantly initiated impulse without current flow (not shown) was -4 .3  
per cent. Timing wave, 100 cycles. 
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(Fig. 5 a and c). The bridge was then rebalanced for this steady value as 
shown in Fig. 5 b and d, to give new values of R~ and C~. 

The bridge balance usually could not be found in less than four or five 
applications of the polarizing current, and with large currents this process 
might cause irreversible changes. After sufficient bridge data had been 
taken to establish the nature of the impedance change, its dependence on 
the polarizing current was more satisfactorily obtained from oscillograph 
records of the bridge unbalance during a single polarization and a calibra- 
tion as shown in Fig. 6. 

Calculations and Results 

The observed values of parallel capacity, Cp, are corrected for the polariza- 
tion capacity of the electrodes and static capacity of the measuring cell 
(Cole and Cole, 1936; Cole and Curtis, 1937). The equivalent series re- 
sistance, R~, and reactance, X~, are then calculated from the parallel re- 
sistance, Rp, and capacity, Cp, by the equations 

2 $ ~ 2 2 2 R, = R~,/(1 + RpC~¢o ), X ,  = R~C~o~/(1 --}- RpCpoa ) 

where ¢0 = 2 ~r times the frequency. 
The values of R, and X, are then plotted as abscissae and ordinates to 

give the complex impedance locus (Cole, 1928, 1932). The loci shown in 
Fig. 7 are for an unpolarized and a cathodically polarized axon. It  will be 
seen that the membrane phase angle and the infinite frequency resistance 
are unaltered by current flow. The impedance variation at a single fre- 
quency for a range of anode and cathode polarizing currents is shown in 
Fig. 8. These data indicate that the membrane capacity is practically 
unaltered and that the impedance change during polarization may be com- 
pletely explained by a change of membrane conductance (Cole and 
Curtis, 1938). 

The change of membrane conductance, AG, for a single value of polarizing 
current is computed from the extrapolated infinite frequency specific re- 
sistance, r , ,  and the extrapolated zero frequency specific resistances, r0, 
for the unpolarized axon, and ~0 for the polarized axon, by (equation 6, 
Cole and Curtis, 1938) 

1 t o - -  r~  ro - -  ro 
AG = - ._2 2"-  

a r 0 - -  r 1 f o  - -  T ~  

where a is the radius of the axon, and rl is the specific resistance of the 
medium. 

The data shown in Fig. 7 give AG : 0.03 ohm -~ cm. -~ for a cathode 
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FzG. 7. Transverse impedance locus, series resistance, R., vs. series reactance, Xo, 
for axon at rest ( • ) ,  and during cathode current flow of 125 #amp. (O). Frequencies 
are indicated in kilocycles. The light dotted lines represent the theoretical paths of 
the impedance at each frequency for a change of membrane conductance. 
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FIG. 8. Transverse impedance locus, series resistance, R,, vs. series reactance, X,, 
at 20 kc. during current flow. (O), Cathode currents up to 250 gamp., ( o ) ,  anode 
currents up to 63 ~ m p .  The solid line is portion of the locus for frequency variation 
and resting axon. The dotted line is a portion of the theoretical locus for constant 
frequency and a variation of the membrane conductance. (X), maximum impedance 
change during passage of a distantly initiated impulse. 
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polarizing current  of 125 #amp. and three other  axons give values for 
AG of 0.017, 0.026, and 0.033 ohm -1 cm. J 

OHM -3 CM. "2 
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FIO. 9. Change of membrane conductance, AG4, vs. total current flow, I0, from two 
experiments on the same axon. 
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? 
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Fxo. 10. Equivalent circuits for transverse impedance of axon. (a) Theoretical 
circuit neglecting membrane conductance. (b) Theoretical circuit with a variable mem- 
brane conductance depending upon current flow. 

The  variat ion of AG with polarizing current  is usually obta ined from 
da ta  a t  a single frequency. The  impedance for each value of the polar- 
izing current  may  be extrapolated to zero frequency and the conductance 
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change calculated as above, but the impedance change is usually suffi- 
ciently small to be proportional to the conductance change (Cole and 
Curtis, 1939). The impedance change is then computed by 

I Azl -- ~¢ ' (~) '  + (~x,), 

or from photographic records, and ~G = --KIAZ], where the factor of pro- 
portionality, K, is obtained from one or two extrapolations. A curve 
of ~G vs. [0 (Fig. 9) shows values obtained by both methods and is typical 
of data on eleven axons. 

DISCUSSION 

To justify the interpretation of the observed impedance change on 
polarization as a change of membrane conductance, we proceed as before 
(Cole and Curtis, 1938). The circular path followed by the impedance of 
the resting fiber as the frequency is varied, seen in Fig. 7, and called the 
resting locus, is the characteristic result of many biological impedance 
measurements. On the assumption of a negligible membrane conductance 
we may calculate from theory (Cole and Curtis, 1936) the equivalent circuit 
shown in Fig. 10 a, where the condenser represents the capacity of the 
axon membrane. If the membrane capacity alone, were to change, the 
impedance at each frequency would merely move along the resting locus; 
if the resistance of the axoplasm varied, only the infinite frequency extra- 
polation would be altered; and changing either the volume of the cell or the 
resistance of the sea water would vary both the infinite and zero frequency 
extrapolations. Since Figs. 7 and 8 do not allow any single one of these 
possibilities, we turn to a variation of the membrane conductance as indi- 
cated in Fig. 10 b. I t  has been shown (Cole and Curtis, 1938, 1939) that 
with a variation of this conductance alone, the impedance would follow a 
circular arc tangent to the resistance axis at the infinite frequency extra- 
polation. This is seen to be approximately true at each frequency in 
Fig. 7 and on an enlarged scale at 20 kc. in Fig. 8, it is found to represent 
the data to within the limits of experimental accuracy. We are thus 
entitled to conclude from these data that the impedance change during 
polarization may be interpreted as a change of the membrane conductance 
alone, and that there is an kucrease of the membrane conductance at the 
cathode and a decrease at the anode. When we assume that the membrane 
conductance is proportional to the ion permeability of the membrane, the 
results demonstrate an increase of permeability at the cathode and a de- 
crease at the anode. 

I t  will be noticed in Fig. 8 that the point of maximum impedance change 
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during the passage of a distantly initiated impulse is close to the theoretical 
locus but  does not lie on it. This is the type of departure found in the 
previous work (Cole and Curtis, 1939) and was believed then to be caused 
by the amplifier characteristics. This hypothesis has been supported, al- 
though not yet proven, by further work, and even if it is not valid, the 
difference between this aspect of cathode polarization and propagated 
activity is very slight. 

On the basis of the local circuit theory of excitation and propagation, 
at least a part  of the membrane conductance increase during activity may 
be a result of membrane current flow, but  in the previous discussions (Cole 
and Curtis, 1938, 1939) the implications of this possibility were avoided. 
Since a membrane conductance change is brought about by current flow 
and independently of excitation, it is now necessary to consider the method 
of measurement more carefully. As a result of a current flow, i, the po- 
tential difference across the membrane is altered in some way by an amount,  
v. When v -- Ri  the membrane obeys Ohm's law and R is its resistance. 
The alternating-measuring current, i,, and the direct-polarizing current, 
id, were applied simultaneously in these experiments and the resulting 
alteration of the potential difference across the membrane at any time 
depends upon the instantaneous sum of these two currents, so v = f( ia + i,,). 
If now the maximum value of the conduction component of the alternating 
current, ia, is small compared to the direct current, ia, we have by Taylor's 
expansion, approximately 

df(id) .i- 

where the part  of the potential difference caused by the polarizing current 
is vd and by the measuring current is v~. Since we are considering only the 
conduction component of the measuring current we have 

gf(i~)/~ = ( " )  • 

where r is the "variational" resistance of the membrane as measured by a 
small alternating current. If now the membrane obeys Ohm's law, v = ri, 
we have ~a = ria; ~, = rio, and r is independent of the current. In graphical 
form, for Ohm's law, we have a straight line relation between the current 
and voltage and the variational resistance, or the slope of the line, remains 
unchanged for all values of current. In the present case, r, or the slope, 
depends upon the current, i, and Ohm's law certainly is not valid except as 
an approximation for the small variations of current which we have applied 
by the bridge. 
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Since we have now found that the membrane does not follow Ohm's 
law, some specifications of its conductive properties must be given in place 
of the resistance. The most obvious possibility is the potential difference 
as a function of the current which is obtained by the integration 

g ,  

for both anode and cathode. Our present data, however, only give changes 
of the membrane conductance such as Fig. 9 and it is necessary to have the 
resting conductance before the integration can be carried out. The value 
of 1000 ohm cm.~ obtained by other measurements (Cole and Hodgldn, 
1939) could be used, but  there is another d{mculty. The polarizing mem- 
brane current density in the region between the impedance electrodes is also 
needed, and must be calculated from the total polarizing current. This 
may be done easily on the basis of the simple cable theory, if a constant 
membrane resistance can be assumed, but  the process is quite tedious for 
the present problem where this assumption cannot be made. Since these 
results will be very dependent upon the value assumed for the resting con- 
ductance and the information may be obtained more directly from another 
type of experiment (Cole and Curtis, 1941), the calculations have not been 
carried out. However the general form o f f  (i), or the v vs. i curve, is quite 
apparent. At the origin its first derivative, or slope, is given by the resting 
resistance, and on the anode side this slope increases with increasing current 
until a large limiting slope is reached. On the cathode side, the slope 
continually decreases until a small limiting slope is obtained for large 
currents. Then for a potential applied across the membrane with the 
anode outside, the current flow will be less than for the same potential with 
the cathode outside. I t  is then perfectly obvious that  the axon membrane 
not only acts as a rectifier but probably also as a rather efficient rectifier. 

Returning to the conductance change, it is seen that the maximum 
increase under the cathode (Figs. 8 and 9) is of the same order of magnitude 
as that found during the passage of an impulse. This condusioa may be of 
considerable significance, but  it should not be emphasized at the present 
time because the cathode polarization currents necessary to give the maxi- 
mum conductance change were used in only a few experiments. The maxi- 
mum decrease of conductance at the anode in Fig. 9 is about 0.005 ohm -1 
cm. -~- and this is close to the average value found for four axons. If the 
resting membrane resistance were 200 ohm cm. 2, corresponding to a con- 
ductance of 0.005 ohm -1 cm. -2, such a change would mean that  the mem- 
brane becomes non-conducting under the anode and ff the resting resistance 
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were greater than 200 ohm cm. 2 and, consequently, the conductance less 
than 0.005 ohm -I cm. -2, the resistance calculated during current flow 
would be negative. Since we are not prepared to deal with the latter 
concept, we should conclude that the resting resistance was less than 200 
ohm cm. 2. This is, however, much lower than the values of 400 to 1100 
ohm cm. ~ obtained by longitudinal measurements (Cole and Hodgkin, 
1939), and no reason can be given for this discrepancy. The axons used 
for the transverse measurement were apparently in as good condition and 
survived at least as well as those used for the longitudinal measurements. 
The types of analysis used for the interpretation of the data are very dis- 
similar in the two cases, but no fundamental errors of assumptions or 
derivation have as yet been uncovered. I t  is felt, at  present, that this 
disagreement is probably not a serious matter and that the results may be 
taken to indicate a very low limiting conductance under the anode. 

On the basis of the present data, any discussion of the mechanisms of 
excitation and propagation is little more than speculation, but attention 
may be called to a few observations. One of these is the oscillation of the 
impedance change seen in Fig. 4 a, just below threshold. This is a char- 
acteristic of the responses at the cathode, down to about half threshold, and 
is not found at any anode polarization. There is then the further observa- 
tion that the first maximum of this oscillation clearly becomes the all-or- 
nothing response at threshold (Fig. 4 b). 

The change of membrane conductance has been determined as a function 
of the current in the steady state, but we have no evidence at present to 
indicate that this relation between current flow and membrane conductance 
remains unaltered during excitation and recovery. However, let us assume 
for the moment that with these data we may calculate the current flow 
through the rectifier element from the conductance change during the 
passage of an impulse. There is no change up to the point of inflection of 
the rising phase of the action potential. This corresponds to no current 
flow through the element and requires that the change of membrane po- 
tential difference occur elsewhere in the membrane. Such a conclusion 
seems reasonable and can probably be verified by a careful consideration 
of the conductance change after the application of a polarizing current. On 
the other hand, the increased conductance after the point of inflection would 
require an outward current flow in the rectifier element during all of the 
time that the total membrane current flow is inward and this will involve 
more detailed assumptions. Indeed from the steady state characteristics 
one would say that the only current flow through this element during the 
entire action would be outward, which would correspond to a net transport 
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of positive ions outward across the membrane. This is in the proper direc- 
tion to recharge the membrane during the recovery phase and might lead 
us to conclude that the conductance increase is concerned primarily with 
recovery. Such a conclusion would agree with the observation that an 
axon nearly always failed to conduct soon after the impedance change 
during the passage of an impulse became too small to measure. However, 
these conclusions are not justified unless it can be shown that during ex- 
citation and recovery the dependence of the membrane conductance on 
current is the same as for a constant current flow. 

SUMM~LRy 

The change in the transverse impedance of the squid giant axon caused by  
direct current flow has been measured at frequencies from 1 kc. per second 
to 500 kc. per second. The impedance change is equivalent to an increase 
of membrane conductance at the cathode to a maximum value approxi- 
mately the same as that obtained during activity and a decrease at the 
anode to a minimum not far from zero. There is no evidence of appreciable 
membrane capacity change in either case. I t  then follows that the mem- 
brane has the electrical characteristics of a rectifier. Interpreting the 
membrane conductance as a measure of ion permeability, this permeability 
is increased at the cathode and decreased at the anode. 
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