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Real protection for IPV victims

Intimate Partner Violence (IPV) has become a problem of a great magnitude as it is a leading cause of death 
for women according to the World Health Organization. This paper presents a novel Early Warning System 
(EWS) for locating and protecting potential victims of IPV in which the victims’ environment plays a central 
role. Specifically, based on Markov random fields, our EWS measures the danger through the perception that the 
victims’ surroundings have. This new standpoint is of particular relevance since most of the IPV victims do not 
have a clear perception of the approaching danger.

The EWS has been designed without geographical constrains to be appropriate for use in every country of the 
world (universal EWS). Importantly, it may be rewritten into computational terms thereby providing a real tool 
for police investigations. Connections with text mining and sentiment analysis may provide additional devices 
based on this model.
1. Introduction

Intimate partner violence (IPV)1 is defined as any behaviour which 
includes “physical violence, sexual violence, threats of physical or sex-

ual violence, stalking and psychological aggression (including coercive 
tactics) by a current or former intimate partner”, see [2]. Although 
most people believe that IPV is a substantial public health problem, few 
agree on its magnitude: Intimate partner violence is a leading cause 
of death for women, according to the World Health Organization: “vio-

lence against women: a global health problem of epidemic proportions”, 
see [15]. Following [16] research on IPV has focus on two lines: on one 
hand, those studies which identify the primary causes of IP violence 
(mainly asymmetrical power relationships such as control on financial 
resources) in the hope that adequate re-educating programs and po-

lices may result in changing the corresponding behaviours. On the other 
hand, those works which help women identify warning signs (red flags) 
or abusive attitudes which indicate that a relationship could become a 
toxic relationship.

Efforts of IPV awareness-raising are essential but other courses of 
action are needed in order to alert possible victims about increasing 
(which can evolve to become imminent) danger. Actually, a majority of 
potential victims are not aware of the precise level of danger they are 

* Corresponding author. Department of Applied Mathematics, Faculty of Economics and Business Sciences, Campus Cartuja s/n, 18071, Granada, Spain.
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1 Also known as Domestic or Gender Violence.

exposed to. To this regard, standard assistance (social services, legal and 
police support) must be complemented with the implication of commu-

nity, particularly of those people linked to the victims, who can detect 
some warning signs that would go unnoticed by the expert’ eye. That 
is, the assessment of IPV risks may be complemented with the stand-

point of victims’ surroundings. This is the philosophy that underpins 
the Early Warning System for IPV developed in this paper, an specific 
tool for locating and protecting IPV victims which rests on the victim-

s’environment. Any kind of support is key in IPV prevention, either in 
discouraging potential aggressors in continuing-escalating violence or 
in providing moral support. In this line, the methodology developed in 
this paper will provide victims with both material and psychological 
support, i.e., the real protection of an early alert system expressly de-

signed for IPV as well as the phychological support of being sheltered 
by their environment.

More specifically, this paper presents a novel Early Warning System 
(EWS) for Intimate Partner Violence in which the potential victims’ neigh-

bourhood plays a central role both in detecting and protecting the victims. 
By elaborating a theoretical basis on graphical models (Markov random 
fields) the victim’ environment conforms an informative network such 
that the EWS shall measure the danger throughout the perception that 
the victims’ surroundings have. On one hand, this new standpoint is 
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of particular relevance taking into account that most victims have no 
clear perception of the approaching danger. Actually, in our approach 
the environment warns of the danger even if the victims are not aware 
of it. On the other hand, to our best knowledge this is the first time 
that Markov random fields apply for designing Early Warning Systems 
aimed at protecting people. As a matter of fact, Markov random fields, 
[9], are mostly used in Computer Vision and Image Processing, [14], 
and in Geostatistics or related fields where distribution maps are re-

quired [5].

The proposed EWS has been developed through two alarm notifi-

cations: the primary one is designed aimed at covering the victims’ 
environment viewed as a spatial network (it is here that Markov ran-

dom fields play a role). Actually, the entire victims’ environment is 
monitored by an explicit joint probability function which may trigger 
an alarm whenever a threshold is exceeded. Moreover, such a function 
has the advantage of depending only on a few significant nodes, the 
cliques. This data reduction, besides reducing storage costs while pre-

serving the storage capacity for further requirements, shall result in an 
increase in decision speed. The secondary alarm notification covers the 
corresponding temporal sequences of the significant nodes thereby pro-

viding additional information as to whether the danger persists in time. 
All model variables may be freely enlarged and/or expanded to meet 
the needs of each context. Importantly, the model may be rewritten into 
computational terms thereby providing a real instrument for police in-

vestigations. Connections with text mining and sentiment analysis (see 
[1] or [3]) may provide additional devices based on this methodology.

Our objective is to develop an Early Warning System which may 
successfully protect people (women and their children) anywhere in 
the world. To this end, the current situation of fuzzyness around lo-

cal demographics may be averted. By this we mean that there are great 
differences as to how countries define demography according to local 
specifications. In consequence, standard early warning systems (com-

monly supported by Geographical Information Systems) which mainly 
rely on local specifications, must be avoided. Under the objective of 
working on a universal basis, in our EWS local parameters have been 
changed by global notions, see [6] where the author designed a uni-

versal geolocator, “local constrains-free” or [7], where the need for 
universal tools is detailed.

The truth is that, while the fight against IPV can be conducted on 
many fronts, the main strands of research address IPV from phycholog-

ical (model patterns of IPV) or medical standpoints (violence exposure 
to health-related outcomes, costs of IPV medical care). A more limited 
number of studies treats the problem from a computational/mathemati-

cal point of view. Amongst them, in the paper [10] the author designs a 
perpetrator’s loss of control parameter based on a difference equation. 
Others are [11] where authors compare text exploration instruments 
(MDS -Multi-dimensional scaling- and ESOM -Emergent self organiz-

ing map) for automating the detection of domestic violence from the 
unstructured texts comprising the police reports. Or [4] where authors 
provide a quantitative approach of Intimate Partner Violence based on a 
system of difference equations. Apart from the present study, the author 
could not find any references of mathematical/computational method-

ologies on the IPV prevention and protection aimed at becoming real 
intervention protocols.

This paper is structured as follows. Section 2 provides the back-

ground on Markov random fields. Sections 3 is devoted to fully describ-

ing the EWS mathematical fundamentals. In sections 4 and 5, protocols 
of localisation and protection of IPV victims are developed. Specifically 
in section 5 the assessment of the information from the victims’ neigh-

bourhood provides an Early Warning System capable of alerting when 
the level of danger exceeds some threshold. In section 6, application 
and results are given. Section 7 concludes the paper.
2

2. Background on MRF

In Discrete Mathematics, a graph 𝐺 = (𝑉 , 𝐸) consists of a set of ver-

tices (or nodes) 𝑉 together with a set of edges 𝐸, each connecting a 
pair of vertices. A pair of vertices 𝑢 and 𝑣 are adjacent, denoted 𝑢 ∼ 𝑣, if 
there is one edge connecting them, i.e., (𝑢, 𝑣) ∈𝐸. Undirected graphs are 
those with all the edges bidirectional while a graph with edges point-

ing in a single direction is called a directed graph. Neighbourhood of 
a node 𝑢 ∈ 𝑉 is formed by all those vertices which are adjacent to 
𝑢, 𝑁(𝑢) = {𝑣 ∈ 𝑉 |𝑢 ∼ 𝑣}. It is well known that describing a topology 
through a system of neighbourhoods is equivalent to describing a graph, 
i.e., 𝑣 ∈𝑁(𝑢) if and only if there is an edge connecting them, 𝑢 ∼ 𝑣. Fi-

nally, recall that cliques in a graph are those subsets of 𝑉 consisting on 
either a single node or a set of nodes fully connected amongst them: 
𝐶 ⊆ 𝑉 is a clique if and only if 𝐶 ⊆ {𝑢, 𝑁(𝑢)}, ∀𝑢 ∈ 𝐶 .

Graphical models are graphs where the nodes correspond to random 
variables and the edges represent the statistical relationships amongst 
the variables. When viewed as spatial stochastic processes, graphical 
models are called random fields. The most common types of graphical 
models are Bayesian networks and Markov networks (or Markov ran-

dom fields). The main difference between them is the underlying graph, 
directed for Bayesian networks and undirected for MRF. For our pur-

poses of establishing an informative network around potential victims 
of IPV, we will focus on Markov random fields. Amongst other advan-

tages, MRF (instead of Bayesian networks) will result in a reduction of 
data which provide both reduction in data storage as well as speed in-

crease. This last feature is particularly relevant when decisions have to 
be made urgently.

Let 𝑋 = {𝑋𝑣|𝑣 ∈ 𝑉 } be a random variable with values in a finite set 
𝑉 = {1, 2, … , 𝑛} × {1, 2, … , 𝑛}. 𝑃 [𝑋] stands for the joint distribution of 
𝑋 = {𝑋𝑣|𝑣 ∈ 𝑉 } in the sense that

𝑃 [𝑋] = 𝑃 [{𝑋𝑣 = 𝑥𝑣|𝑣 ∈ 𝑉 }] = {𝑃 [𝑋𝑣 = 𝑥𝑣]|𝑣 ∈ 𝑉 }.

Markov random fields (MRF) are a generalisation of the well-known 
Markov chains as long as they preserve their characteristic memory-

less property (i.e., the probability of occurrence of a state depends 
only on the immediate previous one). Thus, 𝑋 = {𝑋𝑣|𝑣 ∈ 𝑉 } is said to 
be a Markov random field relative to 𝐺 = (𝑉 , 𝐸) whenever the joint 
distribution of 𝑋, 𝑃 [𝑋], depends only on the nearest nodes with no 
inference from the more remote nodes. The specification of nearest is 
commonly done through the neighbourhood of a node 𝑣, 𝑁(𝑣). Thus 
𝑋 = {𝑋𝑣|𝑣 ∈ 𝑉 } is a MRF if

𝑃 [𝑋𝑣 = 𝑥𝑣|𝑋𝑉 −{𝑣} = 𝑥𝑉 −{𝑣}] = 𝑃 [𝑋𝑣 = 𝑥𝑣|𝑋𝑁(𝑣) = 𝑥𝑁(𝑣)].

Also, the concept of neighbourhood of a node results in the notion 
of clique 𝐶 : 𝐶 ⊆ 𝑉 is a clique if and only if 𝐶 ⊆ {𝑢, 𝑁(𝑢)}, ∀𝑢 ∈ 𝐶 . In our 
context of EWS for IPV, cliques in a Markov random field will play a key 
role in providing information for protecting IPV victims, as we shall see 
later. Let 𝑋 = {𝑋𝑣|𝑣 ∈ 𝑉 } be a MRF. Whenever the joint distribution of 
𝑋 is positive, 𝑃 [𝑋] may be expressed as a product of functions 𝜙𝐶 (𝑋𝐶 )
called clique potentials since they take only values on the cliques 𝐶 ⊂ 𝑉 :

𝑃 [𝑋] = 1
𝑍

∏
𝐶∈

𝜙𝐶 (𝑋𝐶 ).

The clique potentials can take many forms depending on needs. Their 
usual form is 𝜙𝐶 (𝑋𝐶 ) = exp(−𝑓 (𝐶)) where the function 𝑓 (𝐶) is called 
energy function over values of the clique 𝐶 and 𝑍 =

∑∏
𝐶∈ 𝜙𝐶 (𝑋𝐶 ) is 

a normalisation constant. Then, 𝑃 [𝑋] may be expressed as

𝑃 [𝑋] = 1
𝑍

exp

[
−
∑
𝐶∈

𝑓 (𝐶)

]
, provided 𝑃 [𝑋] ≥ 0. (1)

In literature, such a joint probability distribution is called a Gibbs dis-

tribution relative to the graph 𝐺 = (𝑉 , 𝐸), in a reference to the so-called 
Gibbs random fields. The equivalence between MRF and Gibbs random 
fields is given by the Hammersley-Clifford theorem, which states that 
both Markov and Gibbs random fields are essentially the same.
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Fig. 1. A potential victim ♀’ protecting network.

3. The EWS for intimate partner violence. Fundamentals

This section is aimed at developing the fundamentals of the pro-

posed EWS for protecting potential victims of intimate partner violence 
(IPV).

Let ♀ be a potential victim of intimate partner violence. For our 
purposes, we shall consider ♀ as a network, ♀ ≡ (𝑉♀, 𝐸♀), whose nodes 
consist of people which are connected to ♀ (and eventually, also con-

nected amongst them) by non-tangible links like friendship, neigh-

bourly, labour relationships etc. (see Fig. 1). Specifically,

Definition 3.1. In the network ♀ ≡ (𝑉♀, 𝐸♀), each node 𝑣 ∈ 𝑉♀ will be 
identified with a random variable called in abstract 𝑋𝑣, which describes 
the 𝑣’ feeling that ♀ is in danger.

We shall extensively describe 𝑋𝑣 by a collection of features 𝑥𝑘𝑣, 𝑘 =
1, … , 𝑛 acting as determinants of the feeling: i.e.,

𝑣 ≃𝑋𝑣 ≃ (𝑥1𝑣, 𝑥
2
𝑣,… , 𝑥𝑛𝑣)

𝑡

such that each node is identified with an 𝑛-tuple of random variables

𝑥𝑘𝑣, 𝑘 = 1, … , 𝑛. In other words, each node of the network ♀ ∼ (𝑉♀, 𝐸♀)
(which is a person who somehow knows ♀) is identified with their per-

ception that ♀ is in danger. When necessary, we refer to the random 
variable 𝑋𝑣 as 𝐷𝑣 (i.e., the 𝑣’s perception that ♀ is in danger).

The exhaustive list of either visible or non-visible signs of danger 
for intimate partner victims is incomprehensible since most of them de-

pend on the particular context. In our model they can be freely selected 
depending on needs.

The passage from the random variable to a feature vector,2

𝑋𝑣 ≃ (𝑥1𝑣, 𝑥
2
𝑣,… , 𝑥𝑛𝑣)

𝑡 → (𝑠𝑐𝑜𝑟𝑒1𝑣, 𝑠𝑐𝑜𝑟𝑒
2
𝑣,… , 𝑠𝑐𝑜𝑟𝑒𝑛𝑣)

𝑡,

may be carried out by any realization of the variable. In general, any 
process of rating/scoring the feature coordinates 𝑥𝑘𝑣, 𝑘 = 1, … , 𝑛 could be 
considered.

The graphical model {𝑋𝑣, 𝑣 ∈ 𝑉♀} would be fully defined once the 
edges are described. Recall that this task may be performed equiva-

lently through the description of the neighbouring relationship. For this, 
a definition of distance between (realization of) two nodes should be 
specified:

Definition 3.2. The distance between two nodes 𝑋𝑣𝑖
= (𝑥1𝑣𝑖 , … , 𝑥𝑛𝑣𝑖 )

𝑡, 
𝑋𝑣𝑗

= (𝑥1𝑣𝑗 , … , 𝑥𝑛𝑣𝑗 )
𝑡, 𝑖 ≠ 𝑗, written 𝑑𝑖𝑗 , is the Euclidean distance between 

their corresponding feature vectors:

2 In pattern recognition and machine learning, a feature vector is a 𝑛-

dimensional vector of numerical scores representing an object (acting as a nu-

merical label).
3

𝑑𝑖𝑗 = 𝑑(𝑋𝑣𝑖
,𝑋𝑣𝑗

) = +

√√√√ 𝑛∑
𝑘=1

(𝑠𝑐𝑜𝑟𝑒𝑘𝑣𝑖 − 𝑠𝑐𝑜𝑟𝑒𝑘𝑣𝑗
)2. (2)

The definition of distance is of free choice in such a way that it may 
be selected as the one which best suits the particularities of each case. 
Actually, the degrees of freedom of the system as those items that may 
be freely selected depending on needs are set out below:

Remark 3.3 (Levels of freedom). Following items in the model are of 
free choice:

• Vector coordinates and number of them: for the random vari-

able 𝑋𝑣 which describes the 𝑣’ feeling that ♀ is in danger, both 
vector coordinates themselves (i.e., the features 𝑥𝑘𝑣, 𝑘 = 1, … , 𝑛) and 
number of them can be freely selected. Moreover, the random 
variables 𝑥𝑘𝑣, 𝑘 = 1, … , 𝑛 may be considered as weighted variables, 
𝑤𝑘 ⋅ 𝑥𝑘𝑣, 𝑘 = 1, … , 𝑛 in order to reflect those features which are trig-

gers.

• The realization of the variable (i.e., the passage from the variable 
to the numerical scores).

• The definition of distance. Recall that any set (particularly the 
set of vertices 𝑉 ) is a metric space whenever it is endowed with a 
function 𝑑 ∶ 𝑉 × 𝑉 → ℝ holding the usual positivity, symmetrical 
and transitivity conditions. Thus, apart from the Euclidean one, 
any definition of such a function 𝑑 on the set of vertices 𝑉 could 
be considered as a measure of similarities amongst nodes.

Previous remark is specially necessary when an order on the set of 
nodes need not exist.3 This is the case of 𝑉♀, the set of all individuals 
who have a relationship of any kind with the potential victim. Thus, a 
metric 𝑑 on 𝑉 induces a topology on 𝑉 . Particularly, a neighbourhood

system

𝑁 = {𝑁(𝑣) such that 𝑣 ∈ 𝑉 }

can be defined, where 𝑁(𝑣) denotes the neighbourhood of a node 𝑣 ∈ 𝑉 . 
To this regard, any definition of neighbourhood of a node is allowed as 
long as the neighbouring relationship holds, i.e., the following condi-

tions must be satisfied: i) 𝑣 ∉𝑁(𝑣) and ii) 𝑣𝑗 ∈𝑁(𝑣𝑖) ⇔ 𝑣𝑖 ∈𝑁(𝑣𝑗 ).
In our context of preventing from intimate partner violence, the 

neighbourhood on a node 𝑣 ∈ 𝑉♀ is defined as follows:

Definition 3.4. The neighbourhood of a node 𝑣𝑖 ∈ 𝑉♀, 𝑁(𝑣𝑖), is defined 
as

𝑁(𝑣𝑖) = {𝑣𝑗 ∈ 𝑉♀ such that 𝑑(𝑣𝑖, 𝑣𝑗 ) ≤ 𝑘, 𝑘 ∈ℝ, 𝑘 ≠ 0},

where the indicator 𝑘 should be specified for each case. Note that this 
definition meets the neighbouring relationship due to 𝑘 ≠ 0 and the 
symmetry of the distance. Hence, for 𝑣𝑗 ∈𝑁(𝑣𝑖) an edge will join them 
(𝑣𝑖, 𝑣𝑗 ) if 𝑑(𝑣𝑖, 𝑣𝑗 ) ≤ 𝑘 ≠ 0.

Let us consider that the feeling “someone is in danger” is quantified 
in increasing levels. Accordingly, the neighbourhood of a node may be 
detailed:

Proposition 3.5 (Neighbourhoods). The neighbourhood of any node 𝑣 ∈ 𝑉♀
consists of those people linked to 𝑣 who has the same level 𝑘 of perception 
that 𝑣 is in danger. That is, those individuals who somehow know 𝑣 and they 
have a very similar feeling that 𝑣 is in danger.

3 When the ordering of the elements in 𝑉 is specified, the neighbourhood can 
be determined more explicitly, as in Fig. 1.



J.G. Cabello Heliyon 6 (2020) e03211
Proof. From Definition 3.4, it is straightforward that both 𝑣𝑖 and 𝑣𝑗 ’ 
feeling that 𝑣 is in danger are very similar since the distance between 
𝑞𝑣𝑖 , 𝑞𝑣𝑗 is as short as it is 𝑘:

𝑁(𝑣𝑖) = {𝑣𝑗 ∈ 𝑉 such that (𝑣𝑖, 𝑣𝑗 ) ∈𝐸♀} =
= {𝑣𝑗 ∈ 𝑉 such that 𝑑(𝑣𝑖, 𝑣𝑗 ) ≤ 𝑘, 𝑘 ∈ℝ, 𝑘 ≠ 0}. □

The neighbourhood of a potential victim shall play a key role in 
protecting her. Let us detail who compose this security shield:

Corollary 3.6. For a potential victim of intimate partner violence ♀, her 
neighbourhood 𝑁(♀) is formed by people with any type of relation, collabo-

ration or interdependence on ♀ with the same level 𝑘 of perception that ♀ is 
in danger.

The neighbourhood of a node allows to consider the notion of cliques

as maximally connected subgraphs of the graph. Recall that the 𝐶 ⊆ 𝑉 is 
a clique iff 𝐶 ⊆ {𝑢, 𝑁(𝑢)}, ∀𝑢 ∈ 𝐶 . That is, cliques are groups with differ-

ent number of members connected amongst them: they may consist of

either a single-node 𝐶1 = {𝑐𝑖}, a pair of neighbouring nodes 𝐶2 = {𝑐𝑖, 𝑐𝑗}, 
a triple of neighbouring nodes 𝐶3 = {𝑐𝑖, 𝑐𝑗 , 𝑐𝑘} in such a way that the col-

lection of all cliques is 𝐶 :

𝐶 = 𝐶1 ∪𝐶2 ∪𝐶3 ∪…∪𝐶𝑖 ∪…

where 𝐶𝑖 represents sets of larger cliques. Then, next result clarifies the 
notion of clique in our model:

Proposition 3.7 (Cliques). A clique 𝐶𝑖 is a group of individuals linked 
somehow to ♀ who agree on the level 𝑘𝑖 of danger to which ♀ is exposed. 
Importantly, such degree of similarity 𝑘𝑖 will vary for each 𝐶𝑖, i.e., nodes 
𝑐𝑖1, 𝑐

𝑖
2 ∈ 𝐶𝑖 have the same degree 𝑘𝑖 while 𝑐𝑗1, 𝑐

𝑗

2 ∈ 𝐶𝑗 would have a different 
degree of similarity 𝑘𝑖 ≠ 𝑘𝑗 whenever 𝑖 ≠ 𝑗.

Proof. In general, a clique 𝐶 is a set of nodes such that every two dis-

tinct vertices are adjacent. Hence, such nodes are in their corresponding 
neighbourhoods and, from Definition 3.4 for nodes 𝑐1, 𝑐2 ∈ 𝐶𝑖, it follows 
that 𝑑(𝑐𝑖1, 𝑐

𝑖
2) ≤ 𝑘 for 𝑘 =𝑚𝑎𝑥{𝑘1, 𝑘2}. □

Although in colloquial language cliques comprise all sort of individ-

uals whom have a closer relationship amongst them, it is important to 
remark that in our model, neither neighbourhood nor cliques in (𝑉♀, 𝐸♀)
consist of people who better know about ♀ but those with the same

feeling about she is in danger, no matter what type of relationship is in-

volved. In few words, at heart this theoretical framework granulates the 
neighbourhood of ♀ into subsets of levels of perception of the danger. 
Moreover,

Corollary 3.8. Since cliques are connected groups within the network, each 
choice of the feature coordinates 𝑥𝑘𝑣, 𝑘 = 1, … , 𝑛 (see Remark 3.3) simulates 
grouping the nodes under a different criterium.

Corollary 3.8 has significant implications as far as it makes possi-

ble to perform sensitivity analysis with respect to different criteria of 
grouping people who know ♀ in order to improve the EWS efficiency. 
Furthermore, it is remarkable that the computation regarding these dif-

ferent possibilities may be executed in parallel thereby reinforcing the 
system’ capability of making good decisions.

Once the basic notions of neighbourhood and clique have been clar-

ified, we can prove the main results. On one hand, following lemma is 
very useful in practice:

Lemma 3.9. Cliques in a network, considered as networks themselves, are 
MRF.
4

Proof. The result follows from the definition of clique since they are 
subsets of some neighbourhood: 𝐶 ⊆ 𝑉 is a clique if and only if f 
𝐶 ⊆ {𝑣, 𝑁(𝑣)}, ∀𝑣 ∈ 𝐶 . Hence, inside cliques, the (Markov) local prop-

erty holds trivially. □

At this point, recall that the joint distribution of the network is 
𝑃 [𝑋] = 𝑃 [{𝑋𝑣 = 𝑥𝑣|𝑣 ∈ 𝑉 }] = {𝑃 [𝑋𝑣 = 𝑥𝑣]|𝑣 ∈ 𝑉 } or, with a more 
specific notation, 𝑃 [𝐷] = 𝑃 [{𝐷𝑣 = 𝑥𝑣|𝑣 ∈ 𝑉♀}] = {𝑃 [𝐷𝑣 = 𝑥𝑣]|𝑣 ∈ 𝑉♀}. 
Independent variables have a joint probability distribution equal to 
the product of marginal distributions. However, since nodes in the 
same clique have a very similar perception of danger, the variables 
{𝐷𝑣|𝑣 ∈ 𝐶𝑖} (danger as perceived by the nodes in the ith-clique) are 
not independent. Nevertheless, by previous lemma, the joint probabil-

ity distribution of each clique 𝐶𝑖, 𝑃𝐶𝑖
[𝐷] = 𝑃 [{𝐷𝑣 = 𝑥𝑣|𝑣 ∈ 𝐶𝑖}], is itself 

a clique potential function 𝜙𝐶𝑖
(𝐷𝐶𝑖

), taking a more concrete form (e.g., 
quadratic functions) depending on each context. Usually, each 𝜙𝑐(𝐷𝐶𝑖

)
is written in terms of energy functions 𝑓 (𝐷𝐶𝑖

) such as

𝜙𝑐(𝐷𝐶𝑖
) = 𝑒

−1
𝑇

𝑓 (𝐷𝐶𝑖
)
.

Thus, the level of danger for ♀ as perceived by ith- clique is given by

𝑃𝐶𝑖
[𝐷] = 𝜙𝑐(𝐷𝐶𝑖

) = 𝑒

−1
𝑇

𝑓 (𝐷𝐶𝑖
)
. (3)

Either way, as such functions express the level of danger for ♀ as per-

ceived by her environment, this is the proof of the main results of the 
section:

Theorem 3.10. Let ♀ a potential victim of intimate partner violence. Then, 
each clique (i.e., each group of people with the same level of perception of 
danger) has associated a function which measures the danger to which ♀ is 
exposed. When executed in parallel, once a given threshold is exceeded, they 
alert to the imminent danger.

Corollary 3.11. In the proposed EWS, the potential victim’ environment 
warns of the danger even if the potential victim is not aware of it.

The practical value of Theorem 3.10 and Corollary 3.11 is that they 
provide a simple way of specifying the joint probability 𝑃 [𝐷] by choos-

ing appropriate energy functions 𝑓 . Moreover, the measure of danger 
by the potential victim’ environment is of particular relevance for those 
potential victims who have no clear perception of approaching danger. 
Hence, previous results thereby reflect the spirit of the model by em-

phasizing the role of the potential victim’ environment in alerting when 
danger is coming. It is also remarkable that both Theorem 3.10 and 
Corollary 3.11, may be rewritten in terms of a protocol of action.

On the other hand, let us pay attention to the whole. In contexts 
when the whole network is a MRF, the joint probability distribution 
may be computed in terms of clique potentials:

Theorem 3.12. Let us suppose that ♀ ≡ (𝑉♀, 𝐸♀) is a MRF. Thus, the joint 
distribution 𝑃 [𝐷], 𝐷 = {𝐷𝑣, 𝑣 ∈ 𝑉♀} may be expressed as a function of 
clique potentials:

𝑃 [𝐷] = 1
𝑍

∏
𝐶∈

𝜙𝐶 (𝐷𝐶 ) =
1
𝑍
𝑒

−1
𝑇

∑
𝑐∈𝐶 (𝐷𝐶 )

(4)

where 𝑇 is the temperature (often 𝑇 = 1) and 𝐶 represent cliques.

Proof. The Hammersley-Clifford theorem establishes the equivalence 
between Gibbs distributions and Markov random fields. Particularly, 
𝐷 = {𝐷𝑣, 𝑣 ∈ 𝑉♀} obeys a Gibbs distribution and the result follows. □

In contexts when the whole network is a MRF an extra-information 
should be provided. For instance, this allows to weight each clique (see 
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Table 1

Signs of that someone is potentially threatened.

Visible signs

Reductions in social functioning

(derived from social self-isolation: from family, friends and community)

Reduction in purchasing habits

(caused by financial control)

Increase in medical-care visits

(perceived Health and medical itinerary)

Changes in the daily normal routes

(to avoid being localised)

Physical changes

Makeup to hide injuries

Deterioration of the state of health

(thinness, anxiety, depression)

Hao, Z. et al., 2018): specifically, a weight 𝑤 may assigned to each 
clique 𝐶𝑖 by comparing the joint distribution of each clique to the dis-

tribution of the whole network:

𝑤𝐶𝑖
=

𝑃 [{𝐷,𝑣 ∈ 𝐶𝑖}]
𝑃 [{𝐷,𝑣 ∈ 𝑉♀}] . (5)

4. Localisation of potential victims

Section 3 provides a fruitful methodology for both localising and 
protecting potential victims of intimate violence. Particularly, this sec-

tion will be focus on setting a procedure for locatising potential victims. 
To this regard, the original random variable 𝑋 =𝐷 (perception of dan-

ger) might be replaced by a more suitable one: a random variable 
whose corresponding list of features allows people to discover signifi-

cant changes in habits related to the emergence of a threat. This new 
variable shall be called 𝐶𝐻𝐻 .

The localisation procedure comes from a direct application of the 
theoretical framework developed in section 3. To this end, let 𝐶𝐻𝐻 be 
the selected variable, aimed at gathering the most significant changes 
in habits related to the emergence of a threat (changes in behaviour, 
physical changes etc.). Hence, 𝐶𝐻𝐻 stands for “changes in habits” and 
𝐶𝐻𝐻𝑣 represents changes in habits as perceived by 𝑣, where 𝑣 represents 
an individual.

For our purposes, we will make use of (some of) visible signs of being 
potentially threatened provided by Social and Psychological literature 
on IPV victimisation (see for instance [8] and [13]): warning signs of 
changes in habits which may be detected by outsiders are in Table 1.

On one hand, these visible signs may be considered as significant 
features for the variable 𝐶𝐻𝐻 , amongst many others, thereby provid-

ing a complete list of features:

𝐶𝐻𝐻 = (𝑐ℎℎ1, 𝑐ℎℎ𝑛,… , 𝑐ℎℎ𝑛)𝑡.

On the other hand, it should be noticed that the highest scores for 
“changes in habits” 𝐶𝐻𝐻 shall correspond to situations where the po-

tential victim is being suffering the highest degrees of control.

To complete the process of localising potential IPV victims, the steps 
to be taken are the following.

• According to Proposition 3.7, cliques must be extracted from the 
population under study.

The process of identification of cliques corresponds to a clustering 
process on all available data. This gives rise a data granulation into 
groups (i.e., the cliques) composed by people for whom the variable 
𝑋𝑣 = 𝐶𝐻𝐻𝑣 changes in habits as perceived by an individual 𝑣 takes 
similar values. Let it be noticed that, depending on the benchmark 
𝑘 (see Definition 3.4), the initial population is divided into groups 
of people who present different levels 𝑘 of agreement.

• An assessment on the outcomes in order to sort out the highest ones 
should be made.
5

For this, Theorem 3.10 has to be applied. Accordingly, each clique 
(i.e., each group of people with similar values for changes in habits) 
has associated a function which measures the likelihood of having 
recently experimented relevant changes in behaviour (in respond-

ing to a potential threat, according to the Social and Psychological 
literature). This shall reveal the highest degrees of control which 
shall point out the potential victims in consequence.

Importantly, due to the specific weight of the selected random vari-

able into the overall structural functioning of the model, slight changes 
either in it or in its features, may result in new information. Since 
more than one choice of the random variable could be appropriate, that 
suggests that many variations of the stated model may be executed in 
parallel in order to cross-reference the outcomes. The result is that dif-

ferent visible signs as features of 𝐶𝐻𝐻 may be run in parallel in order 
to get extra information.

5. Protection of potential victims

The theoretical setting of section 3 will enable a protocol to be devel-

oped for taking action in situations that IPV victims require protection. 
Once an IPV potential victim ♀ has been identified, the following pro-

tecting scheme is launched. At heart, the protection of IPV victims relies 
on two alarm notifications, an spatial alarm and a temporal one sup-

ported by a visual system. These are fully described next.

5.1. The spatial monitoring system: primary alarm notification

The primary alarm notification comes from the spatial model and it 
consists of the following steps.

i) The system starts by firstly identifying people who formed ♀’ envi-

ronment, i.e., people with any type of relation (friendship, neigh-

bourly, labour relationships), collaboration or interdependence on ♀, either or not connected amongst them (as in Fig. 1). That gives 
raise the graphical model (𝑉♀, 𝐸♀).

ii) Next, the corresponding information about the proximity of danger 
has to be collected from the environment, i.e., all data about the 
range of values of the random variable “𝑣’s perception that ♀ is in 
danger” for every node 𝑣 in 𝑉♀. To this regard, recall that variations 
either in the random variable itself or in its features would produce 
extra-information. Hence, it is advisable to conduct more than one 
process. After rating/scoring the information, the neighbourhood 
of ♀ becomes granulated into the different cliques in the network.

iii) The system proceeds by computing the corresponding distribution 
function for each clique: the more valuable information shall cor-

respond to the higher values. Since variations this information may 
be processed in parallel, these indicators can be cross-referenced. 
The highest outcomes shall point out the riskiest stages.

To clarify further the point iii), some remarks have to be made. In 
Decision Making, an assessment process in a group of 𝑛 people aimed at 
reaching an agreement is usually divided into two main strands: first, 
an individual assessment for each member of the group and second, an 
aggregation process of all individual decisions (for instance, an ordered 
weighted averaging aggregation operator, OWA). Such aggregation op-

erator may be generally described as a function 𝐹 ∶ℝ𝑛 →ℝ which maps 
lists of real numbers (the 𝑛 individual decisions) into a single outcome. 
As a result, a single score is obtained for the whole group, as shown in 
Fig. 2.

Note that the point iii) is equivalent to an assessment process over 
a clique: first, the information about the perception of danger is previ-

ously collected for individual nodes in the clique (point ii)) and second, 
the clique’ distribution function works as an aggregation method label-

ing the clique with a single score. These marks (one for each clique) 
point the best way ahead as illustrated the following example:
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Fig. 2. Assessment process scheme in a group.
Example 5.1. Let us suppose that our universe is composed by 100 in-

dividuals, divided into 3 groups: 𝐺𝑙 with 20 people, 𝐺𝑚 with 30 people 
and 𝐺ℎ with 50 people. Suppose as well that people in 𝐺1 are sure that 
there is a low level of danger, people in 𝐺𝑚 agree that there is a medium 
level while people in 𝐺ℎ believe that the level of danger is high. Thus, 
these data would mean that

𝐺𝑙 with 20 people

𝐺𝑚 with 30 people

𝐺ℎ with 50 people

⇒

⎧⎪⎨⎪⎩
20% people believe that the level of danger is low

30% people believe that the level of danger is medium

50% people feel that there exists a high the level of danger,

what should point the way forward. The same happens when cliques 
𝐶1, 𝐶2, 𝐶3 are considered with distribution functions

𝑃𝐶1
[𝐷] = 𝑒

−1
𝑇

𝑓 (𝐷𝐶1 ), 𝑃𝐶2
[𝐷] = 𝑒

−1
𝑇

𝑓 (𝐷𝐶2 ), 𝑃𝐶1
[𝐷] = 𝑒

−1
𝑇

𝑓 (𝐷𝐶1 ),

given by equation (3): the highest probability should point the action 
programme.

It is remarkable that the whole process occurs at some instant of time 
𝑡. That is, it is a dynamic process that may suffer from fluctuations. We 
will return to this point in subsection 5.3. Thus, in order to determine 
its behaviour in time, a sufficiently large number of trials should be 
performed over time.

5.2. Visual support: the colour-coding system

Usually EWS are equipped with a colour-coding system thereby al-

lowing to visualize the current state of alarm by triggering a different 
visual signal corresponding to a probability of occurrence. To this re-

gard, many procedures may be used in order to link certain probability 
with the desired colour. For simplicity, we use LATEX, a wordproces-

sor mainly employed for technical documents. This editor shall assign a 
different colour to each range of probabilities.

Since any probability 𝑃 [−] should hold 0 ≤ 𝑃 [−] ≤ 1, a partition 
of [0, 1] should be taken. That is, an ordered 𝑛-tuple of real numbers 
 = (𝛼0, 𝛼1, … , 𝛼𝑛) such that 0 = 𝛼0 < 𝛼1 <… < 𝛼𝑛 = 1,

[0,1] = [0 = 𝛼0, 𝛼1] ∪ [𝛼1, 𝛼2] ∪…∪ [𝛼𝑛−2, 𝛼𝑛−1] ∪ [𝛼𝑛−1, 𝛼𝑛 = 1],

such that the editor maps values to colours by assigning warm colours4

in the scale to those probability values which are approaching or ex-

ceeding some threshold. The output is a colour area which correspond 
to the partition of the interval [0, 1]:

[0,1] = [0, 1
4
]

⏟⏟⏟
green

∪ [ 1
4
,
1
2
]

⏟⏟⏟
yellow

∪ [ 1
2
,
3
4
]

⏟⏟⏟
orange

∪ [ 3
4
,1]

⏟⏟⏟
red

4 While the colour meanings vary drastically across languages, certain terms 
are prevalent like red, which is perceived as a potential danger.
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5.3. The temporal monitoring system: secondary alarm notification

In real-life, situations which are potentially at risk require ongoing 
and careful monitoring. For this reason the proposed EWS has to be 
complemented with a temporal follow-up. To do so, those high-risky 
events detected by the spatial monitoring system has to be recorded.

Specifically, while the spatial monitoring system deduces informa-

tion about the perception that the ♀’ environment has on the proximity 
of the danger (as described in section 5.1), the colour-coding system 
(section 5.2) helps in visualising those events with highest levels of 
danger. Such events happen at a certain time instant 𝑡 but the dynam-

ics of this process may fluctuate over periods of time. In order to assess 
whether it is just an off-chance event or whether there is real danger 
coming, a temporal monitoring system should provide evidence of this 
based on a sufficiently large number of trials should be performed over 
time.

On this assumption, we proceed as follows: for those nodes with 
warm colours events in their track records, register the temporal se-

quence formed by their probability values over time, starting from an 
initial time instant 𝑡0. Such lists-in-time of probabilities (each for each 
clique) are computed through equation (3) once some thresholds 𝑡ℎ𝑖
have been fixed, as follows:

𝑃𝐶𝑖
[𝐷 ≤ 𝑡ℎ1] =

∑
𝑖≤𝑡ℎ1

𝑃 [𝐷 = 𝑖]

𝑃𝐶𝑖
[𝑡ℎ1 <𝐷 ≤ 𝑡ℎ2] =

∑
𝑖≤𝑡ℎ2

𝑃 [𝐷 = 𝑖] −
∑

𝑖≤𝑡ℎ1
𝑃 [𝐷 = 𝑖]

𝑃𝐶𝑖
[𝐷 > 𝑡ℎ2] = 1 − 𝑃𝐶𝑖

[𝐷 ≤ 𝑡ℎ2] = 1 −
∑

𝑖≤𝑡ℎ2
𝑃 [𝐷 = 𝑖]

(6)

Over time, all of these results in a collection of temporal sequences 
which display how danger is evolving from the behaviour of those time 
instants associated to potential dangerous situations. Hereinafter such 
series are referred to as danger series. Let it be noticed that associated to 
each potential IPV victim ♀, there are as many danger series as cliques 
in the network. The analysis of such series (for instance, whether the 
number and frequency of high-risky values increase or decrease) would 
indicate the evolution of the frequency and duration of exposure to the 
hazard and whether there is a need for action. In Table 2, the evolution 
of the danger series is displayed for the case of 4 cliques, where the 
corresponding distributions functions come from equation (3).

For a potential victim ♀, it is normally the case that there exists a 
high degree of coincidence amongst her danger series. Otherwise, the 
weight assigned to each clique when applicable (see equation (5)) will 
allow to evaluate and decide which danger series should be given high 
priority compared with others.

Besides the weight assigned by the model through equation (5), 
other forms of weighting cliques may be provided in order to set prior-

ities and make choices: by considering the number of members in the 
clique (the higher number, the higher weight), the degree of connec-

tion with the victim (the closer connection, the higher weight) amongst 
others.
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Fig. 3. Assessment of danger by cliques.
Table 2

Evolution of danger in time for 4 cliques.

Cliques’ Probability 
Distribution

Evolution in Time

𝜙𝑐1
(𝐷𝐶1

) = 𝑒

−1
𝑇

𝑓 (𝐷𝐶1
)

𝜙𝑐2
(𝐷𝐶2

) = 𝑒

−1
𝑇

𝑓 (𝐷𝐶2
)

𝜙𝑐3
(𝐷𝐶3

) = 𝑒

−1
𝑇

𝑓 (𝐷𝐶3
)

𝜙𝑐4
(𝐷𝐶4

) = 𝑒

−1
𝑇

𝑓 (𝐷𝐶4
)

6. Application and results

To validate the methodology, an empirical evaluation of the good-

ness of its performance is needed. To this end, recall that in the network ♀ ≡ (𝑉♀, 𝐸♀), each node 𝑣 ∈ 𝑉♀ has been identified with the variable 
perception that ♀ is in danger, called in abstract 𝑋𝑣. Recall also that 
such perception of danger 𝑋𝑣 is described by a collection of features 
𝑥𝑘𝑣, 𝑘 = 1, … , 𝑛,

𝑣 ≃𝑋𝑣 ≃ (𝑥1𝑣, 𝑥
2
𝑣,… , 𝑥𝑛𝑣)

𝑡.

Now, it may be assumed that the features 𝑥𝑘𝑣, 𝑘 = 1, … , 𝑛 are discrete 
variables taking values in a set {0, 1, … , 10}.

Let us evaluate the perception of danger of a clique as a whole. Fol-

lowing the remark made in subsection 5.1 (illustrated by Fig. 2), the 
corresponding distribution function in a clique works as an aggrega-

tion operator. Moreover, an assessment of single nodes in the clique is 
previously needed. To do so, there are many procedures to assess the

overall perception of danger as perceived by a node 𝑣 when it is disag-

gregated into its features 𝑣 ≃ 𝑋𝑣 ≃ (𝑥1𝑣, 𝑥2𝑣, … , 𝑥𝑛𝑣)𝑡. The one which it is 
assumed here is that the node is scored through a realisation of each 
𝑥𝑘𝑣, 𝑘 = 1, … , 𝑛 which converts variables into numerical outcomes. This 
is shown in Fig. 3.

Let us now proceed with the overall evaluation of danger by cliques. 
For this, the random variable 𝐷 (perception of danger) may be assumed 
to be a discrete variable taking values in a set 𝑆,

𝑆 = {0,1,… , 𝑑𝑝𝑟,… , 𝑑𝑖𝑚,… , 𝑑𝑖𝑚 + 𝜖} 𝜖 ∈ℤ+,

where 𝑑𝑖𝑚 represents the level of imminent danger for ♀ -red flag- and 
𝑑𝑝𝑟 stands for the level of probable aggression -yellow/orange flag. To 
this regard, we can suppose without loss of generality that, despite 
the probable existence of differences in values 𝑑𝑖𝑚, 𝑑𝑝𝑟 amongst cliques, 
there is a global scale: actually, this can be done by taking as 𝑑𝑖𝑚, 𝑑𝑝𝑟 the 
7

minimum of the cliques’ maximum perception of aggression. Thus, the 
set {𝑑𝑖𝑚, … , 𝑑𝑖𝑚 + 𝜖, 𝜖 ∈ ℤ+} gathers the levels of maximum likelihood 
of aggression -when urgent actions must be taken- while {𝑑𝑝𝑟, … , 𝑑𝑖𝑚}
includes those levels in which interventions are advisable.

In general the danger between (above, below) two benchmarks is 
measured by the corresponding cumulative distribution,

𝑃𝐶𝑖
[𝐷 ≤ 𝑑𝑝𝑟] =

∑
𝑖≤𝑑𝑝𝑟

𝑃 [𝐷 = 𝑖]]

𝑃𝐶𝑖
[𝑑𝑝𝑟 < 𝐷 ≤ 𝑑𝑖𝑚] =

∑
𝑖≤𝑑𝑖𝑚

𝑃 [𝐷 = 𝑖]] −
∑

𝑖≤𝑑𝑝𝑟
𝑃 [𝐷 = 𝑖]]

𝑃𝐶𝑖
[𝐷 > 𝑑𝑝𝑟] = 1 − 𝑃𝐶𝑖

[𝐷 ≤ 𝑑𝑝𝑟] = 1 −
∑

𝑖≤𝑑𝑝𝑟
𝑃 [𝐷 = 𝑖]],

where the level of danger in a specific level 𝑑 ∈ 𝐶𝑖 is computed as 

𝑃𝐶𝑖
[𝐷 = 𝑑] = 𝑒

−1
𝑇

𝑓 (𝑑)
. That is, once thresholds of imminent and prob-

able danger 𝑑𝑖𝑚, 𝑑𝑝𝑟 are set by the user, the above expressions foresee 
approaching danger.

As for the possible actions to be taken in order to protect IPV victims, 
note that as long as the probabilities 𝑃𝐶𝑖

[𝐷] reach higher levels, the 
likelihood of aggression increases. Hence, from a partition of the unit 
interval such as [0, 1] = [0, 𝛼1] ∪… ∪ [𝛼𝑛−2, 𝛼𝑛−1] ∪ [𝛼𝑛−1, 𝛼𝑛 = 1] the user 
should set the subintervals which correspond to each kind of action, 
e.g., [𝛼𝑛−2, 𝛼𝑛−1], yellow/orange flag, [𝛼𝑛−1, 𝛼𝑛 = 1], red flag.

Back to the assessment of danger by cliques, let it be noticed that in 

the computation of 𝑃𝐶𝑖
[𝐷 = 𝑑] = 𝑒

−1
𝑇

𝑓 (𝑑)
, the energy functions 𝑓 may 

be freely selected as long as they are non-negative functions of its ar-

guments. The choice of such functions 𝑓 should be made according to 
the context requirements through sensitivity analysis in such a way that 
each choice of the energy functions would give raise to an specific con-

figuration of the measurement of danger for ♀. Some instances of energy 

functions are 𝑓 (𝐷𝐶𝑖
) =

(𝐷𝐶𝑖
− 𝜇𝑖)2

𝜎2
𝑖

(Gaussian with 𝜇𝑖, 𝜎2𝑖 the mean and 

the variance in the 𝑖th-clique) or 𝑓 (𝐷𝐶𝑖
) = (𝐷𝐶𝑖

)𝑡𝐴𝐷𝐶𝑖
(quadratic form), 

both non-negative in their arguments.

We focus here in the Gaussian distribution mainly because it covers 
several contexts: not only those considered as standard but also those 
where the binomial and the Poisson distributions (for large values of the 
mean) play a role. A second reason is that it is the most important dis-

tribution in the statistical inference processes. Thus, the corresponding 
measurement of danger (with temperature value 1) is

Energy function Measurement of danger

𝑓 (𝐷𝐶𝑖
) =

(𝐷𝐶𝑖
− 𝜇𝑖)2

𝜎2
𝑖

𝑃𝐶𝑖
[𝐷 = 𝑑] = 𝑒

−(𝐷𝐶𝑖
− 𝜇𝑖)2

𝜎2
𝑖

In order to cover the majority of situations, we categorize the IPV 
contexts into two main groups: those where danger exposure is con-

stant in time (probably with small variations in the risk intensity) and 
those which randomly combine extreme risk exposures with periods of 
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Fig. 4. Evolution of probable aggressions under 𝜎2
𝑖

small.

Fig. 5. Evolution of probable aggressions under 𝜎2
𝑖

high.

Fig. 6. Evolution of imminent aggressions under 𝜎2
𝑖

small.

relative calm. For both, we analyse how the risk of aggression should 
evolve in time by using the Gaussian measurement of danger.

Since variance measures how far data are spread out, situations of 
constant exposure to danger are characterised by a variance 𝜎2

𝑖
taking 

low values. On the contrary, those scenarios with big fluctuations in 
danger exposures (risk curves with peaks and troughs) correspond to 
higher values for the variance 𝜎2

𝑖
as a result of a higher dispersion. This 

is illustrated in the graphics below (Figs. 4 and 5).

From Figs. 4 and 5 (probable levels of aggression) the conclusion 
is that the evolution of risk exposure appears as an increasing function 
(under similar conditions of proportion) of 𝜎2

𝑖
for either small or high 

values. It is noteworthy that, in Fig. 5 (high level of dispersion), both 
curves are quite the same. As for imminent levels of danger, the trend 
remained the same for the case of small dispersion (Fig. 6). However, 
Fig. 7 seems to indicate that, the more dispersion, the lower probability 
of imminent aggression.
8

Fig. 7. Evolution of imminent aggressions under 𝜎2
𝑖

high.

7. Conclusions

This paper presents an early warning system for IPV which turns 
into numerical scores the perception of nearing danger that the victims’ 
surroundings have, thereby enabling for preventive actions. This new 
standpoint of using the information from the victims’s neighbourhood 
is of particular relevance for those potential victims who have no clear 
perception of approaching danger (actually, most of the IPV victims 
do not have awareness of an imminent danger) in such a way that the 
information from the environment warns even if the victims are not 
fully aware of the coming danger.

To our best knowledge, this is the first attempt in literature of artic-

ulating a mathematical/computational-based model for police investi-

gations in preventing IPV. The practical value of the results of the paper 
(Theorem 3.10 and Corollary 3.11) is that they provide a simple way 
of specifying the level of danger (through the joint probability distribu-

tion of the selected random variable 𝑋 ≡𝐷 “someone’ perception that ♀ is in danger”) by just choosing appropriate potential functions. These 
results call attention to the spirit of the proposed model by emphasizing 
the role of the potential victims’ environment in alerting when danger 
is coming (Fig. 8).

The mathematical framework presented in this paper is the technical 
support which underlies an integral IPV Information System (Location 
and Protection System) for police interventions. As a matter of fact, 
this project underway -with the support of social, psychological and 
sentiment analysis expertise (see [1], [12] for related texts in sentiment 
analysis)- is the ultimate aim of such a new methodology. This new 
approach, after all, may assess any variable (detailed by means of its 
features) through each clique’ assessment and convert these evaluations 
into a global numerical score which allows to make decisions (see [7]). 
This is of particular interest when applied to variables as “change in 
habits” (section 4) or “perception of being in danger” (section 5) as 
perceived by the neighbourhood of IPV potential victims.

Although the proposed Early Warning System was in its early days 
designed for the Spanish case, it is appropriate for preventing IPV in 
any country of the world since it has been designed under a univer-

sal premise (see [6]) in the sense that it does not depend on any local 
geographical constrains. To stay within that line (universality), all envi-

ronmental factors could be incorporated to the system by means of a(n 
additive) corrective coefficient 𝑐 within a range of values [𝑐𝑚𝑖𝑛, 𝑐𝑚𝑎𝑥] and 
which should be added to the final likelihood. In order to comprise all 
possible variables concerning environmental factors, the variables will 
take value 1 if applies and 0 otherwise. Thus, several variables5 may be 
taken into account but only those which apply in each case are going to 
be considered. This fine-tuning results in extra-attributes for the system 
which could be valuable in certain cases.

5 Both variables themselves and the number of them may be freely selected.
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Fig. 8. Integral IPV Location-Protection System.
This methodology can be easily re-written into computational terms 
thereby providing an easy-to-handle system. It is remarkable that the 
computation regarding different possibilities (for instance, changes in 
the random variable) may be executed in parallel thereby reinforc-

ing the system’ capability of making decisions. Moreover, the use of 
cliques instead of the whole data set ensures that the system which 
could operate under a reduced version of data (only the most signifi-

cant information). Such data reduction scope will increase the speed of 
the model, which will be determinant when urgent decisions have to be 
made.

Declarations

Author contribution statement

The unique author of this paper, Julia García Cabello, did everything 
(from 1) to 5)):

1) conceived and designed the experiments;

2) performed the experiments;

3) analyzed and interpreted the data;

4) contributed reagents, materials, analysis tools or data;

5) wrote the paper.

Funding statement

The author received no funding from an external source.

Competing interest statement

The sole author declares no conflict of interest.

Additional information

No additional information is available for this paper.

References

[1] J. Bernabé-Moreno, A. Tejeda-Lorente, C. Porcel, H. Fujita, E. Herrera-Viedma, 
Quantifying the emotional impact of events on locations with Social Media, Knowl.-

Based Syst. 146 (2018) 44–57, https://doi .org /10 .1016 /j .knosys .2018 .01 .029.

[2] M.C. Black, K.C. Basile, M.J. Breiding, S.G. Smith, M.L. Walters, M.T. Merrick, 
J. Chen, M.R. Stevens, the National Intimate Partner and Sexual Violence Survey 
(NISVS) Summary Report, 2011.

[3] M.J. Cobo, W. Wang, S. Laengle, J.M. Merigó, D. Yu, E. Herrera-Viedma, Co-words 
analysis of the last ten years of the international journal of uncertainty, fuzziness 
and knowledge-based systems, in: International Conference on Information Pro-

cessing and Management of Uncertainty in Knowledge-Based Systems-IPMU, 2018, 
pp. 667–677.

[4] E. De la Poza, L. Jodar, S. Barreda, Modeling of hidden intimate partner violence in 
Spain: a quantitative and qualitative approach, Abstr. Appl. Anal. (2016) 8372493.

[5] C. Diaz Avalos, Spatial modeling of habitat preferences of biological species using 
Markov random fields, J. Appl. Stat. 34 (7) (2007) 807–821.

[6] J. García Cabello, A model towards global demographics: an application – a uni-

versal bank branch geolocator based on branch size, Soft Comput. 23 (16) (2019) 
7193–7205.

[7] J. García Cabello, E. Herrera-Viedma, A universal decision making model for re-

structuring networks based on Markov random fields, in: Conference of the Spanish 
Association for Artificial Intelligence, 2018, pp. 164–173.

[8] M. Garrido-Macías, I. Valor-Segura, F. Expósito, Atribución de responsabilidad ante 
la violencia sexual: efecto del tipo de táctica, el género y el sexismo benévolo, Acción 
Psicol. 14 (2) (2017) 69–84.

[9] R. Kindermann, J.L. Snell, Markov Random Fields and Their Applications, American 
Mathematical Society, 1980.

[10] L. Leal-Enríquez, Mathematical modeling of intimate partner violence: simulations 
of loss of control scenarios, J. Comput. Appl. Math. 330 (2018) 1052–1062.

[11] J. Poelmans, M.M. Van Hulle, S. Viaene, P. Elzinga, G. Dedene, Text mining with 
emergent self organizing maps and multi-dimensional scaling: a comparative study 
on domestic violence, Appl. Soft Comput. 11 (2011) 3870–3876.

[12] J. Serrano-Guerrero, J.A. Olivas, F.P. Romero, E. Herrera-Viedma, Sentiment analy-

sis: a review and comparative analysis of web service, Inf. Sci. 311 (2015) 18–38.

[13] I. Valor-Segura, F. Expósito, M. Moya, Gender, dependency and guilt in intimate 
relationship conflict among Spanish couples, Sex Roles 70 (11–12) (2014) 496–505.

[14] Ch. Wang, N. Komodakis, N. Paragios, Markov random field modeling, inference & 
learning in computer vision & image understanding: a survey, Comput. Vis. Image 
Underst. 117 (2013) 1610–1627.

[15] http://www .who .int /news -room /fact -sheets /detail /violence -against -women, 2017.

[16] Health World, Organization (WHO) Promoting Gender Equality to Prevent Violence 
Against, Women: Series of Briefings on Violence Prevention: the Evidence-Overview, 
World Health Organization, 2010.
9

https://doi.org/10.1016/j.knosys.2018.01.029
http://refhub.elsevier.com/S2405-8440(20)30056-6/bibE90DFB84E30EDF611E326EEB04D680DEs1
http://refhub.elsevier.com/S2405-8440(20)30056-6/bibE90DFB84E30EDF611E326EEB04D680DEs1
http://refhub.elsevier.com/S2405-8440(20)30056-6/bibE90DFB84E30EDF611E326EEB04D680DEs1
http://refhub.elsevier.com/S2405-8440(20)30056-6/bib23D6EB83CA2C86EA0F7765447FA59B6Cs1
http://refhub.elsevier.com/S2405-8440(20)30056-6/bib23D6EB83CA2C86EA0F7765447FA59B6Cs1
http://refhub.elsevier.com/S2405-8440(20)30056-6/bib23D6EB83CA2C86EA0F7765447FA59B6Cs1
http://refhub.elsevier.com/S2405-8440(20)30056-6/bib23D6EB83CA2C86EA0F7765447FA59B6Cs1
http://refhub.elsevier.com/S2405-8440(20)30056-6/bib23D6EB83CA2C86EA0F7765447FA59B6Cs1
http://refhub.elsevier.com/S2405-8440(20)30056-6/bib503531D84807C17B6294E9BCA2130A10s1
http://refhub.elsevier.com/S2405-8440(20)30056-6/bib503531D84807C17B6294E9BCA2130A10s1
http://refhub.elsevier.com/S2405-8440(20)30056-6/bib8D2EBF10FE2DF760D11AE70731F5EDB6s1
http://refhub.elsevier.com/S2405-8440(20)30056-6/bib8D2EBF10FE2DF760D11AE70731F5EDB6s1
http://refhub.elsevier.com/S2405-8440(20)30056-6/bib223EF8A0C8D937EEBB669A804C49FD35s1
http://refhub.elsevier.com/S2405-8440(20)30056-6/bib223EF8A0C8D937EEBB669A804C49FD35s1
http://refhub.elsevier.com/S2405-8440(20)30056-6/bib223EF8A0C8D937EEBB669A804C49FD35s1
http://refhub.elsevier.com/S2405-8440(20)30056-6/bibABD596DB923F8DB674A0BC7606BEDB18s1
http://refhub.elsevier.com/S2405-8440(20)30056-6/bibABD596DB923F8DB674A0BC7606BEDB18s1
http://refhub.elsevier.com/S2405-8440(20)30056-6/bibABD596DB923F8DB674A0BC7606BEDB18s1
http://refhub.elsevier.com/S2405-8440(20)30056-6/bibDDA91E72CAD3A8C07A8E39587CB7917Bs1
http://refhub.elsevier.com/S2405-8440(20)30056-6/bibDDA91E72CAD3A8C07A8E39587CB7917Bs1
http://refhub.elsevier.com/S2405-8440(20)30056-6/bibDDA91E72CAD3A8C07A8E39587CB7917Bs1
http://refhub.elsevier.com/S2405-8440(20)30056-6/bib85E551F0994145BE11DFFD946CC951C6s1
http://refhub.elsevier.com/S2405-8440(20)30056-6/bib85E551F0994145BE11DFFD946CC951C6s1
http://refhub.elsevier.com/S2405-8440(20)30056-6/bibDC1B8DC14AA3BDAE342C158BF4D70DA2s1
http://refhub.elsevier.com/S2405-8440(20)30056-6/bibDC1B8DC14AA3BDAE342C158BF4D70DA2s1
http://refhub.elsevier.com/S2405-8440(20)30056-6/bib095133A91F6B1DBF40D437C1D073B225s1
http://refhub.elsevier.com/S2405-8440(20)30056-6/bib095133A91F6B1DBF40D437C1D073B225s1
http://refhub.elsevier.com/S2405-8440(20)30056-6/bib095133A91F6B1DBF40D437C1D073B225s1
http://refhub.elsevier.com/S2405-8440(20)30056-6/bib3EE4C75902309B1057D5EC4E8B0344EEs1
http://refhub.elsevier.com/S2405-8440(20)30056-6/bib3EE4C75902309B1057D5EC4E8B0344EEs1
http://refhub.elsevier.com/S2405-8440(20)30056-6/bibC55E0976A4F45CED356F8775D550307Es1
http://refhub.elsevier.com/S2405-8440(20)30056-6/bibC55E0976A4F45CED356F8775D550307Es1
http://refhub.elsevier.com/S2405-8440(20)30056-6/bibEA9D6D1C6A1509092F5A6A2A359E3353s1
http://refhub.elsevier.com/S2405-8440(20)30056-6/bibEA9D6D1C6A1509092F5A6A2A359E3353s1
http://refhub.elsevier.com/S2405-8440(20)30056-6/bibEA9D6D1C6A1509092F5A6A2A359E3353s1
http://www.who.int/news-room/fact-sheets/detail/violence-against-women
http://refhub.elsevier.com/S2405-8440(20)30056-6/bib0F51D76507C17B3F6651CDFC80559D6Es1
http://refhub.elsevier.com/S2405-8440(20)30056-6/bib0F51D76507C17B3F6651CDFC80559D6Es1
http://refhub.elsevier.com/S2405-8440(20)30056-6/bib0F51D76507C17B3F6651CDFC80559D6Es1

	Intimate partner violence: A novel warning system in which the victims’ environment alerts to the danger
	1 Introduction
	2 Background on MRF
	3 The EWS for intimate partner violence. Fundamentals
	4 Localisation of potential victims
	5 Protection of potential victims
	5.1 The spatial monitoring system: primary alarm notification
	5.2 Visual support: the colour-coding system
	5.3 The temporal monitoring system: secondary alarm notification

	6 Application and results
	7 Conclusions
	Declarations
	Author contribution statement
	Funding statement
	Competing interest statement
	Additional information

	References


