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Background. Anaemia in children is a significant health problem that receives little attention. This study aimed at determining the
factors significantly associated with anaemia in children aged 6 to 59 months in Kenya, Malawi, Tanzania, and Uganda while
accounting for the spatial heterogeneity within and between the districts of the four countries. In addition, the performance of the
districts with regard to their impact on anaemia was assessed and ranked. Methods. A generalised additive mixed model with a
spatial effect based on the geographical coordinates of the clusters was used. A district-level random effect was included to further
account for the heterogeneity as well as to rank the performance of the districts based on the best linear unbiased prediction
(BLUP). Results. The results depicted significant spatial heterogeneity between and within the districts of the countries. After
accounting for such spatial heterogeneity, child-level characteristics (gender, malaria test result, and mother’s highest education
level), household-level characteristics (household size, household’s wealth index Z-score, the type of toilet facility available, and
the type of place of residence), and the country of residence were found to be significantly associated with the child’s anaemia
status. There was a significant interaction between the type of place of residence and the country of residence. Based on the BLUP
for the district-level random effect, the top 3 best- and worst-performing districts within each country were identified. Conclusion.
The ranking of the performance of the districts allows for the worst-performing districts to be targeted for further research in order
to improve their anaemia control strategies, as well as for the best-performing districts to be identified to further determine why
they are performing better and then to use these districts as role models in efforts to overcome childhood anaemia.

1. Introduction

Identifying significant factors associated with an in-
creased risk of anaemia in children is relevant to de-
veloping appropriate and effective interventions. Such
studies aid in identifying subpopulations that are most at
risk, which assists in creating a more efficient delivery
system of limited national resources [1]. However, studies
identifying these factors should account for spatial het-
erogeneity and spatial autocorrelation in the observations.
Failure to do so may produce inaccurate estimates and
thus misleading results and ineffective anaemia control
programs [2, 3].

Spatial autocorrelation arises when observations close in
proximity tend to be more alike than those further apart and

is present even if the observations have been recorded in a
standardised way [4]. Spatial heterogeneity refers to the
spatial variation or uneven distribution of attributes across a
region [5]. Climatic and environmental factors, such as
temperature, rainfall, and proximity to waterbodies, among
others, are largely responsible for such spatial heterogeneity
as its effects are usually only partially explained by the
covariates that are available in a model [4]. Indeed, many
other factors that vary geographically can also contribute to
spatial heterogeneity in observations, such as the availability
and distance to quality child health care, access to a rea-
sonable transport system, culture, and the cost of living, all of
which may not always be fully explained by the available
covariates. Various methods of accounting for spatial au-
tocorrelation and spatial heterogeneity have been well
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established due to the increased accessibility of spatially
indexed data [4, 6, 7].

There have been a considerable number of studies
assessing the risk factors and determinants of anaemia in
children ([8-11] and references therein), some of which have
also assessed the spatial variation of anaemia [2, 12-14].
However, few studies have focused on countries in eastern
sub-Saharan Africa which experiences a high burden of
childhood anaemia [15].

This study aims at determining the factors significantly
associated with anaemia in children aged 6 to 59 months in
Kenya, Malawi, Tanzania, and Uganda while accounting for
the spatial heterogeneity within and between the districts of
the four countries. In addition, as local health matters are
planned at district level in these countries, the performance
of the districts is considered in order to assess and rank the
“best” and “worst” performing districts with regard to their
impact on childhood anaemia based on the best linear
unbiased prediction (BLUP) technique. Such a district effect
appraisal on anaemia will aid in providing a wider and richer
insight in the effort to overcome childhood anaemia by
prioritising the worst-performing districts for action. Fur-
thermore, it enables one to identify key differences between
the best- and worst-performing districts compared to na-
tional and global levels. Identifying factors that contribute to
these differences can aid in targeting the correct set of in-
terventions in the districts where it is much needed. This
BLUP technique is primarily used in animal and plant
breeding for estimating and ranking genetic merit [16-18];
however, to our knowledge, such a method has not been
used for the appraisal of administrative levels in epidemi-
ological studies. Individual studies on childhood anaemia
have been carried out in Kenya [19], Malawi [6, 13], Tan-
zania [20], and Uganda [9]. All these studies differ in scope
and coverage. The advantage of focusing on multiple
countries that form contiguous regions is to be able to in-
vestigate the spatial heterogeneity of childhood anaemia
between the countries. This assists in determining whether
the significant drivers of childhood anaemia are country
specific or whether they cross the borders of the countries
and are thus shared between neighbouring countries.

2. Materials and Methods

2.1. Study Area and Data. This study utilised nationally
representative Demographic and Health Surveys (DHS) and
Malaria Indicator Surveys (MIS) from Kenya, Malawi,
Tanzania, and Uganda, in particular, the 2015 Kenya Malaria
Indicator Survey (KMIS2015), the 2017 Malawi Malaria
Indicator Survey (MMIS2017), the 2015-2016 Tanzania
Demographic and Health Survey and Malaria Indicator
Survey (TDHS2015), and the 2016 Uganda Demographic
and Health Survey (UDHS2016). The surveys were a national
sampling design of stratified two-stage cluster sampling. The
geographical coordinates of the sampled clusters, which
made up the primary sampling units, were recorded during
all the surveys. However, in order to ensure confidentiality of
the respondents, the coordinates were randomly displaced,
although the region and type of residence (urban/rural) of
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the coordinates were maintained [21]. Three questionnaires
were carried out in the sampled households in order to
collect information regarding the household characteristics
and eligible men and women. Furthermore, all children
under the age of five years in the sampled households were
tested for malaria and anaemia with the consent of a parent
or guardian. The final dataset consisted of 18247 children
from 1595 clusters with valid geographical coordinates
within 370 administrative areas, which consisted of all 47
counties or districts for Kenya; 26 out of 28 districts for
which data were available for Malawi; 176 out of 184 districts
for which data were available for mainland Tanzania; and
121 out of 122 districts for which data were available for
Uganda. These administrative levels were chosen based on
the levels for which public health decisions are made within
each country.

2.2. Study Variables. A portable HemoCue analyser was
used to measure the haemoglobin (Hb) concentration in the
sampled children’s finger- or heel-prick blood specimens.
Based on the altitude adjusted Hb levels and the World
Health Organization (WHO) definitions for anaemia in
children aged 6 to 59 months [22], the outcome variable for

the k™ child in the j household within the i cluster and A
district was dichotomised as

{ 1, if Hblevel <11 g/dl(anaemic), "
Ihijh = 0, if Hblevel>11 g/dl(nonanaemic).

The risk factors considered in this study comprise in-
dividual-, household-, and community-level variables given
in Figure 1. These variables included gender and age of the
child, the child’s malaria rapid diagnostic test (RDT) result,
the mother’s highest education level, the number of mem-
bers in the household (size of the household), the type of
place of residence (rural or urban), the cluster altitude, the
household’s wealth index Z-score, the type of toilet facility,
the age and gender of the head of the household, as well as
the country of residence (Kenya, Malawi, Tanzania, or
Uganda). Furthermore, two environmental factors, average
day land surface temperature (LST) and the average En-
hanced Vegetation Index (EVI) for 2015, were also con-
sidered as they serve as proxies for intestinal parasites, which
is a risk factor for childhood anaemia [23-25]. The values of
these environmental factors were extracted based on the
geographical coordinates of the clusters, and thus, they are
regarded as cluster level.

2.3. Statistical Methods. We adopted generalised additive
mixed models (GAMMs) for the hierarchical and spatially
correlated data [26]. GAMM is an additive extension of
generalised linear mixed models and uses additive non-
parametric functions to model covariates and geospatial
effects while accounting for correlation by adding random
effects to the additive predictors [27, 28]. The fitted GAMM
for P(Yj; =1) = myj with a logit link function is as
follows:
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Environmental and community-
related variables

Cluster altitude
Enhanced Vegetation Index (EVI)
Land surface temperature (LST)

Household-related variables

Wealth index
Mother’s educational level
Household size
Type of toilet facilities
Age and gender of head of
household
Type of place of residence
(rural/urban)

Anaemia

A4

Individual and health-related
variables

Age in months
Gender
Malaria RDT result

FI1GURE 1: Potential risk factors of childhood anaemia.

p
logit(”hijk) = Xj1P + Uy, + Z fr(zhijk) + f spat (lon;, laty),
r=1
(2)

where P is the linear fixed effects and Uj,, h = 1,...,370, is
the district-level random effect modelled parametrically;
f,(), r=1,..., p, are the unknown smooth functions that
represent the nonlinear effects of the p covariates which are
modelled nonparametrically, and the nonlinear term
fspar (lon;, lat;) is a function of the geographical coordinates
of the i cluster where lon; and lat; are the longitude and
latitude, respectively.

Estimation of the smooth functions f, was based on
penalised splines (P-splines) [29]. This approach assumes that
the unknown functions can be approximated by a polynomial
spline of degree I with equally spaced knots z!™™ < (/< (,,
<o <8<, =2z™ which are within the domain of
the covariate z,. The spline can be written in terms of a linear
combination of M, = n, + I B-spline basis functions, B,,,, and
regression coefficients «,,, as follows:

R
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The choice in the number of knots is important as too
few results in a spline that may not be flexible enough to
capture the variability in the data; however, too many knots
may result in estimated curves that overfit the data, which
leads to functions that are too rough [30]. To overcome this
problem, a moderately large number of equally spaced knots
of between 20 and 40 are used to ensure flexibility [29]. In
addition, a roughness penalty is defined based on first- or
second-order differences of adjacent B-spline coeflicients
which guarantee sufficient smoothness of the fitted curves
[29]. This leads to penalised likelihood estimation with
penalty terms given by
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where A, is the smoothing parameter and A" is the differ-
encing operator of order v. First-order differences penalise
abrupt jumps «,,, —«,,, , between successive parameters,
while second-order differences penalise deviations from the
linear trend 2« ,, | — «,,, , [30]. In this study, a choice of 20
knots was used.

The effect of the i cluster location, given by f spat (lon,
lat;), i=1,...,1595, was estimated based on a two-di-
mensional P-spline, which itself is based on the tensor
product of one-dimensional B-splines:

1595 1595

fspat (loni’ lati) = Z Z ‘xmlszml (loni)Bmz (lati)' (5)

m;=1m,=1

The stochastic formulation of f,, (lon; lat;) represents
the realisation of a spatially correlated stochastic process,
which assists in accounting for spatial correlations in the
data [4]. The B-spline basis functions are now spatially
aligned along the x- and y-axes, and thus, a suitable dif-
ference penalty is then constructed based on squared de-
viations of a,,, ,, from the regression coeficients of the four
nearest neighbours [4].

Furthermore, in order to account for the correlation in
the responses due to unmeasured district-specific factors, an
independently and identically distributed random effect was
included in the model based on the district in which the child
resided. This is represented by the term U, in the model
given in equation (2). This function for the random effect can
also be approximated by a linear combination of B-spline
basis functions given in equation (3). However, the re-
gression coeflicients «,,, are i.i.d. random effects [30].

GAMMs can be represented as GLMMs after appro-
priate reparameterisations of the smoothing splines [30].
Based on the GLMM representation, regression parameters
and variance components can be estimated using iteratively
weighted least squares (IWLS) and restricted maximum-
likelihood (REML) estimation, respectively. The mixed-
model methodology permits the estimation of the fixed
effects, as well as the prediction of the random effects using
the BLUP procedure by solving a generalized form of mixed-
model equations [31]. BLUP values are realised values of the



random effect [32, 33]. BLUP provides an unbiased method
by adjusting for known sources of individual, household,
cluster, geospatial, and environmental variation [34]. Fur-
thermore, BLUP is an appropriate technique for the ideal
ranking or selection criteria that involve a random effect. It is
well established on theoretical grounds that these properties
can result in increased accuracy in ranking and selection
[16, 34, 35]. In other words, the ranking of the best linear
predictors produces the same order as the true values of the
random effects [36]. Thus, inclusion of the district-level
random effect enables one to rank and select the “best” and
the “worst” performing districts with regard to the odds of
anaemia based on the obtained BLUP estimates for each
district.

The estimation approach used in this study is referred to
as an empirical Bayes approach. Empirical Bayes inference
assumes that the regression and variance parameters are
unknown constants, where the estimates are obtained by
maximising an objective function. Thus, the usual questions
about convergence of MCMC samples or sensitivity on
hyperparameters do not arise and the estimates can be
interpreted as penalised likelihood estimates from a fre-
quentist perspective [30]. The model was fitted using the
R2BayesX package in R [37]. The estimates of the district-
level random effect (the BLUP estimates for each district)
and cluster-level spatial effect were imported into ArcGIS
10.6 and mapped.

3. Results

The final dataset of 18027 children was made up of 3389
(18.8%) children from Kenya, 2271 (12.6%) from Malawi,
7747 (43.0%) from Tanzania, and 4620 (25.5%) from
Uganda. The overall observed prevalence of anaemia was
52.5% with lowest in Kenya at 38.30%, and the other
countries having a higher observed prevalence ranging from
52.53% to 58.26%.

The age of the head of household was not significantly
associated with a child’s anaemia status at a 10% level of
significance in a univariate analysis and therefore was the
only variable not entered into the fitted GAMM. Out of the
continuous covariates considered in this study (child’s age in
months, household size, household wealth index Z-score,
cluster altitude, EVI, and LST), only the child’s age in
months displayed a significant nonlinear effect on the log-
odds of anaemia; thus, it was the only nonlinear effect in-
corporated into the GAMM, with the rest of the covariates
entered into the model as linear fixed effects. To avoid
possible confounding effects, all two-way interactions of the
fixed effects were explored. The only significant interaction
was found between the type of place of residence (rural/
urban) and the country, which is not a surprising result as
the coverage and classification of rural/urban areas within a
country differ from country to country. This significant
interaction effect suggests that the effect that an urban or
rural area has on anaemia in children differs across the four
countries. Furthermore, the total effect that the place of
residence and country has on the odds of anaemia is made
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up of their individual main effects as well as the simulta-
neous/interaction effect between the two variables.

Table 1 displays the results of the adjusted odds ratios
and their 95% confidence intervals for the final model.
Female children had significantly lower odds of anaemia
compared to males (AOR=0.876; 95% CI: (0.820, 0.935)).
The odds of anaemia were significantly higher for children
who tested positive for malaria based on the RDT result
compared to those who tested negative (AOR = 4.315; 95%
CI: (3.895, 4.781)). The odds of anaemia increased with an
increase in household size (AOR =1.014; 95% CI: (1.003,
1.025)); however, the odds decreased with an increase in the
household wealth index Z-score (AOR=0.847; 95% CI:
(0.797, 0.901)). Children whose mother had at least a pri-
mary level of education were associated with lower odds of
anaemia compared to those whose mother had no education
(AOR=0.843; 95% CI: (0.760, 0.935) for primary level;
AOR=0.794; 95% CI: (0.693, 0.911) for secondary or higher
education level). Moreover, children in households with
improved toilet facilities had lower odds of anaemia com-
pared to those in households with no toilet facilities
(AOR=0.780; 95% CI: (0.694, 0.877) for PIT latrine;
AOR=0.725; 95% CI: (0.591, 0.889) for flush toilet). The
gender of the head of household, cluster altitude, EVI, and
LST were not significantly associated with the child’s
anaemia status.

While the adjusted odds ratios for the main and in-
teraction effects of the type of place of residence and country
of residence are presented in Table 1, they cannot be
interpreted separately. Rather, their total effect on the log-
odds of anaemia should be considered. Thus, Figure 2
presents the total estimated log-odds of anaemia for each
type of place of residence across the four countries. This
figure clearly displays a difference in the effect of the type of
place of residence on the log-odds of anaemia between the
four countries. Without the inclusion of this interaction
effect, it would be assumed that the effect of the type of place
of residence is constant for all the countries. While the log-
odds of anaemia for children residing in rural areas were
lower than that for children residing in urban areas in
Malawi, Tanzania, and Uganda, only Malawi displayed a
considerable difference between urban and rural areas.
Furthermore, Uganda and Kenya displayed decreased log-
odds of anaemia in both urban and rural areas, while Malawi
and Tanzania displayed increased log-odds in both urban
and rural areas.

The child’s age in months had a fairly significant non-
linear effect on the log-odds of anaemia with its nonzero
variance estimate (Table 2). Similarly, the variance estimates
for the district-level random effect and cluster-level spatial
effect were nonzero. Figure 3 displays the nonlinear effect of
the child’s age in months on the log-odds of anaemia. The
effect increased from 6 to 10 months of age, after which there
was a decline in the effect. Children from about 25 months of
age displayed a negative effect and thus were associated with
decreased odds of anaemia.

The estimated cluster-level spatial effect, which accounts
for spatial autocorrelation, is presented in Figure 4. The
clusters in shades of blue had a negative effect on the log-
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TaBLE 1: Adjusted odds ratio estimates (AOR) and 95% confidence
intervals (CI) for the fixed effects.

AOR (95% CI)

Main effects
Gender (ref = male)
Female 0.876 (0.820, 0.935)*
Malaria RDT result (ref =negative)
Positive 4.315 (3.895, 4.781)*

Household size 1.014 (1.003, 1.025)*

Type of place of residence (ref=urban)
Rural

Mother’s education level

(ref=no education)

0.738 (0.582, 0.936)"

Primary 0.843 (0.760, 0.935)*

Secondary and higher 0.794 (0.693, 0.911)*

Unknown 0.845 (0.742, 0.962)*
Gender of household head (ref=male)

Female 1.016 (0.939, 1.100)

Type of toilet facility (ref=no facilities)
PIT latrine
Flush toilet
Others

Wealth index Z-score

Country (ref = Malawi)

0.780 (0.694, 0.877)"
0.725 (0.591, 0.889)
0.663 (0.357, 1.230)
0.847 (0.797, 0.901)*

Kenya 0.316 (0.160, 0.622)*
Tanzania 0.639 (0.355, 1.150)
Uganda 0.433 (0.214, 0.874)

Cluster altitude (in 100 metres) 0.986 (0.969, 1.004)
EVI (in 1000's) 1.026 (0.865, 1.217)
LST 1.015 (0.969, 1.063)

Interaction effects
Type of place of residence and country
(ref =urban and Malawi)
Rural and Kenya
Rural and Tanzania
Rural and Uganda

1.376 (1.037, 1.825)*
1.237 (0.942, 1.624)
1.119 (0.826, 1.514)

*Significant at 5% level of significance.

odds of anaemia and thus were associated with a decreased
risk, whereas those in shades of yellow to red had a positive
effect and were therefore associated with an increased risk of
childhood anaemia. Uganda, which consisted of clusters
with both positive and negative effects, displayed the largest
spatial variation. Throughout all four countries, the majority
of neighbouring clusters resulted in similar effects. In Kenya,
Tanzania, and Uganda, some areas displayed clusters with a
positive effect and clusters with a negative effect within the
same district. Clusters surrounding Lake Victoria, which lies
across the border between Uganda and Tanzania, had a
positive effect and thus were associated with increased odds
of anaemia. Malawi was fairly homogeneous as it consisted
of clusters with only negative effects.

Figure 5 displays the estimated district-level random
effect based on the BLUP estimates, where the shades of blue
had a negative/decreased effect on the log-odds of anaemia
and the shades of beige to red had a positive and therefore
increased effect on the log-odds of childhood anaemia. There
was significant heterogeneity between and within the
countries, with each country consisting of districts with both
positive and negative effects. Kenya, Tanzania, and Uganda
each contained an isolated district with a considerably lower
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FIGURE 2: Log-odds of anaemia associated with the type of place of
residence and country.

TABLE 2: Variance estimates of nonlinear terms.

Variance estimate
0.0127

0.1516
0.6904

Child’s age in months
District-level random effect
Cluster-level spatial effect

1.5

1.0

0.5

Age effect

0.0 1

0.5

-1.0

10 20 30 40 50
Age in months

F1GURE 3: Estimated nonlinear effect of the child’s age in months on
the log-odds of anaemia together with the 95% confidence interval.

negative effect. Unlike the cluster-level spatial effect, Malawi
displayed significant heterogeneity in this district-level
random effect, with one district displaying a notably higher
positive effect compared to the rest of the country.

Based on the standardised BLUP estimates, the districts
were ranked. A negative BLUP is associated with decreased
odds of anaemia in the district, while a positive BLUP is
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FIGURE 4: Estimated cluster-level spatial effect on the log-odds of anaemia (top left: Uganda; top right: Kenya; middle: Tanzania; and bottom:

Malawi).

associated with increased odds of anaemia in the district. The
top 3 “best” performing districts (those with the lowest
standardised BLUP values) and the top 3 “worst” performing
districts (those with the highest standardised BLUP values)

were determined for each country (Figure 6). The best-
performing district or county in Kenya was Taita-Taveta
County, in Malawi was Mulanje, in Tanzania was Bariadi,
and in Uganda was Kiruhura. However, the worst-
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FI1GURE 5: Estimated district-level random effect on the log-odds of anaemia (top left: Uganda; top right: Kenya; middle: Tanzania; bottom:

Malawi).

performing district or county in Kenya was West Pokot
County, in Malawi was Chikwawa, in Tanzania was Ngor-
ongoro, and in Uganda was Kyenjojo.

4. Discussion

Based on the structure of the surveys and data used in this
study, a generalised additive mixed model was employed to
assess the association between a child’s anaemia status and
potential individual, household, and community-level risk
factors in Kenya, Malawi, Tanzania, and Uganda while

accounting for spatial heterogeneity of childhood anaemia.
The study revealed significant spatial heterogeneity of
childhood anaemia within and between the districts of the
four countries. Two sources of spatial heterogeneity were
accounted for, that due to spatial dependence of the ob-
servations between the sampled clusters and that due to
district-specific factors via the inclusion of a random effect
based on the district of residence. The random and spatial
effects are surrogates for influences of unmeasured factors,
which may be local (district specific) or global (common
between neighbouring clusters or districts), respectively [13].
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FiGuRre 6: Top 3 districts within each country performing the best (in blue) and the worst (in black) with regard to the odds of anaemia in
children (top left: Uganda; top right: Kenya; middle: Tanzania; bottom: Malawi).

In this study, the heterogeneity in the district-specific
random effect suggests that there are local unobserved
factors within each district contributing to anaemia in
children. A further benefit of adding the district of residence
as a random effect is that it allows for the ranking of the
performance of the districts on the log-odds of anaemia
based on the BLUP estimates, after controlling for potential
risk factors of anaemia and spatial autocorrelation [33]. In
other words, the BLUP values can be regarded as the esti-
mated effect that a district has on the log-odds of anaemia
due to unmeasured factors. It would not have been possible
to rank the performance of the districts if the district of
residence was added as a fixed effect, which would have
resulted in 369 indicator variables for the 370 districts in the
model. Not only does this ranking procedure allow for the
worst-performing districts to be targeted in order to improve

their anaemia control strategies, but it also allows for the
best-performing districts to be identified in order to further
determine why they are performing better and then to use
these districts as examples in efforts to overcome childhood
anaemia.

The cluster-level spatial effect allows one to observe any
spatial dependence or heterogeneity within the districts of
the countries, where many of the districts had more than one
sampled cluster. An advantage of incorporating this spatial
effect at a cluster level rather than at a district level is that a
district-level spatial effect aggregates the effect of spatial
autocorrelation, which may result in missing some impor-
tant information. This was evident by some districts within
Kenya, Uganda, and Tanzania containing clusters associated
with both a lower and a higher risk of childhood anaemia.
This is a clear indication that strategies for anaemia control
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should be tailored to what is happening within a specific
district.

After accounting for the apparent spatial heterogeneity,
child-level characteristics (gender, malaria RDT result, and
mother’s highest education level), household-level charac-
teristics (household size, household’s wealth index Z-score,
the type of toilet facility available, and the type of place of
residence), and the country of residence were found to be
significantly associated with the child’s anaemia status. These
findings are generally in agreement with that in the literature
[2,8,10,12, 14, 38-40]. Female children were less likely to be
anaemic compared to males. Children with malaria were
associated with significantly higher odds of anaemia com-
pared to those that did not have malaria, which is un-
surprising as anaemia is a clinical consequence of malaria
[41]. Young children are particularly vulnerable as they are
yet to build up immunity to malaria, whether in a setting of
higher or lower malaria transmission [41]. There were in-
creased odds of anaemia in children with less educated
mothers. Besides education being associated with one’s
earning potential, educated individuals are also associated
with the ability to have more awareness and understanding
of health- and nutrition-related issues. Furthermore, the
odds of anaemia also increased with a decrease in the
household’s wealth index Z-score. Individuals with low
wealth are often subjected to economic constraints where
they are not able to afford the dietary and sanitation needs of
themselves and their family. Moreover, children in house-
holds with no toilet facilities were associated with signifi-
cantly higher odds of anaemia. Poor sanitation can aid in the
development of a number of infectious and parasitic dis-
eases, which indirectly contribute to childhood anaemia
[42]. This study revealed increased odds of anaemia in
children aged 6 to 10 months. As children in this age group
experience accelerated growth during that stage of their
lives, they can be more susceptible to anaemia if they do not
meet their required nutritional intake of iron-rich food [8].

This study is not without its limits. Due to the cross-
sectional nature of the data, the temporal relationship be-
tween the child’s anaemia status and the covariates could not
be determined. Furthermore, the effect of nutritional de-
ficiencies, particularly iron deficiency, on childhood anae-
mia could not be assessed as no information regarding these
factors was available.

5. Conclusion

As this study revealed significant evidence of variation be-
tween the districts of Kenya, Malawi, Tanzania, and Uganda,
further research into the local district-specific drivers of
childhood anaemia should be focused on, especially as a one-
size-fits-all strategy for anaemia control would not benefit
these countries with such spatial variation present. One of
the novelties in this study is the introduction of BLUP for
accurate assessment and ranking of each district’s perfor-
mance with regard to their impact on childhood anaemia,
after controlling for known sources of individual, household,
and spatial variation. Based on the best- and worst-per-
forming districts identified in this study, we recommend

turther investigation into these districts to determine what is
unique about them.
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