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Abstract

Adoptive therapy of malignant diseases with tumor-specific cytotoxic T cells showed remarkable efficacy in recent trials.
Repetitive T cell receptor (TCR) engagement of target antigen, however, inevitably ends up in hypo-responsive cells with
terminally differentiated KLRG-1+ CD57+ CD72 phenotype limiting their therapeutic efficacy. We here revealed that hypo-
responsiveness of CMV-specific late-stage CD8+ T cells is due to reduced TCR synapse formation compared to younger cells.
Membrane anchoring of TCR components contributes to T cell hypo-responsiveness since dislocation of galectin-3 from the
synapse by swainsonine restored both TCR synapse formation and T cell response. Transgenic expression of a CD3-zeta
signaling chimeric antigen receptor (CAR) recovered hypo-responsive T cells to full effector functions indicating that the
defect is restricted to TCR membrane components while synapse formation of the transgenic CAR was not blocked. CAR
engineered late-stage T cells released cytokines and mediated redirected cytotoxicity as efficiently as younger effector T
cells. Our data provide a rationale for TCR independent, CAR mediated activation in the adoptive cell therapy to avoid hypo-
responsiveness of late-stage T cells upon repetitive antigen encounter.
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Introduction

Adoptive T cell therapy recently showed significant success in

the treatment of malignant diseases [1,2]. Upon adoptive transfer

tumor-specific T cells migrate to the tumor tissue, engage antigen

and mediate a pro-inflammatory anti-tumor response. At the

molecular level, the TCR components form an immunological

synapse at the interface of the effector T cell to the peptide-MHC

complexes of the antigen-presenting cell to initiate T cell activation

by downstream signaling [3]. Lipid rafts in the membrane

substantially impact this process and the distribution and the

amount of lipid rafts substantially changes during T cell

differentiation. In particular there are clear differences in the lipid

raft distribution and TCR synapse formation between naı̈ve and

effector memory cells; naı̈ve T cells have fewer rafts in their

plasma membrane and require CD28 costimulation to amplify

TCR signaling whereas effector memory T cells have more rafts

and the signal amplifies in the absence of costimulation [3,4]. At

the moment several companies are developing drugs targeting

molecules at the immunological synapse. Some biochemical

substances or monoclonal antibodies are currently tested in

clinical studies to improve the efficacy of immunological synapse

formation for cancer immunotherapy [5]. Success in these studies

was already reported, since ipilimumab, a monoclonal antibody

against CTLA-4, produces durable, complete responses in a small

but consistent proportion of melanoma patients [5].

With respect to the therapeutic efficacy central memory T(CM)

showed superior over effector memory T(EM) cells by proliferating

more rapidly upon antigen encounter and by persisting longer

upon adoptive transfer, thereby promoting repetitive migration

into the draining lymph node and re-entering circulation [2,6].

Repetitive antigen engagement, however, drives T cells to progress

in the differentiation pathway inevitably ending up in terminally

differentiated cells with the KLRG-1+ CD45RObright CD57+

CD72 late-stage phenotype [7,8]. T cells in this stage show a high

activation threshold, a high propensity to undergo activation

induced cell death (AICD) [9] and a hypo-responsiveness upon

TCR stimuli [10]. A hypo-responsive TCR, however, limits the

therapeutic efficacy of adoptive T cell therapy [11].

To engraft adoptive T cell therapy with defined specificity,

patient’s T cells are ex vivo engineered with a transgenic TCR or

alternatively with a chimeric antigen receptor (CAR) that in

contrast to the TCR consists of a single polypeptide chain with an

extracellular antibody-derived binding domain and the intracel-

lular CD3-zeta signaling moiety [12]. While a transgenic TCR

with CD3-zeta signaling domain forms synapses and initiates

downstream signaling and effector functions independently of the

endogenous TCR/CD3 complex [13], the functional activity of a
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transgenic CAR depends on the interaction with the signaling

components of the endogenous TCR complex in the Jurkat T cell

model [14]. No data, however, are so far available for engineered

peripheral blood T cells, in particular for those T cells that

experienced repetitive antigen engagement. The issue is consid-

ered critical for the success of clinical T cell therapy in order to

control tumor growth by adoptively transferred T cells in long-

term.

We here elucidated that the hypo-responsiveness of the

physiological TCR in terminally differentiated, late-stage T cells

is due to membrane anchoring of TCR components whereas the

down-stream signaling pathway is still functional. Consequently,

late-stage T cells are susceptible to CAR CD3-zeta-mediated

activation resulting in cytokine release and redirected cytotoxicity

despite hypo-responsive TCR. Our data provide a rationale for

CAR redirected T cell activation in the adoptive immunotherapy

to avoid hypo-responsiveness upon repetitive antigen encounter.

Results

Late-stage T cells are hypo-responsive to TCR stimulation
To record TCR mediated activation of terminally differentiated

T cell subsets we isolated CMV-specific CD8+ T cells from CMV

infected, HIV2, HLA-A2+ individuals. CMV-specific T cells,

identified by pp65 tetramer binding, predominantly consist of late-

stage KLRG-1+ CD57+ CD72 T cells and a minor subset of

intermediate-stage KLRG-12/low CD572 CD7+ cells (Fig. S1).

Cells of both subsets expressed TCR-alpha/beta and CD3-epsilon

at similar levels and equally bound pp65 CMV tetramers

indicating similar amounts of CMV-specific TCR molecules on

their cell surface (Fig. S1).

CMV pp65-driven T cell activation, indicated by increase in

IFN-gamma expression, was substantially reduced in T cells of the

CD72 late-stage subset compared to CD7+ intermediate-stage T

cells (Fig. 1A). Activation was CMV-specific since HIV peptide as

control did not induce IFN-gamma in those T cells. Antigen-

independent TCR cross-linking moreover resulted in less activa-

tion of late-stage T cells compared to T cells in intermediate-stage

of terminal differentiation. CD107a staining was reduced in late-

stage T cells compared to intermediate-stage T cells upon pp65

CMV mediated activation indicating diminished cytolytic degran-

ulation (Fig. 1B). As controls no increase in degranulation was

monitored in CMV-specific T cell subsets when activated without

CD49d/CD28 costimulation or in absence of antigen. Repression

of T cell response is not restricted to CMV-specific T cells since

polyclonal T cells in late-stage differentiation showed the same

hypo-responsiveness after CD3 stimulation in presence of CD28

costimulation or IL-2 (Figs. S2A & B). Taken together we conclude

that late-stage T cells are hypo-responsive in TCR mediated

activation compared to intermediate-stage T cells.

Late-stage T cells are deficient in TCR synapse formation
We asked whether hypo-responsiveness of late-stage T cells is

due to impaired TCR synapse formation. T cells were stimulated

with the immobilized agonistic anti-CD3 antibody, alternatively

with anti-CD2 antibodies, in presence of CD28 costimulation and

TCR synapse formation was recorded by confocal microscopy.

Within 5 min upon stimulation intermediate-stage T cells showed

coalescence of TCR components into lipid rafts and TCR synapse

formation in the contact region to antigen (Fig. 2). Late-stage T

cells, in contrast, formed synapses with substantial delay, i.e., after

10 min, and with lower densities. No synapse formation was

observed in T cells incubated on poly-L-lysine coated surfaces as

control (data not shown). Both T cell subsets, however, recruited

CD2 into lipid rafts within the same time upon CD2/CD28

stimulation indicating that impaired TCR synapse formation in

late-stage T cells is restricted to TCR components and not due to

an overall decrease in membrane fluidity.

We asked whether impaired TCR synapse formation is due to

reduced membrane mobility of TCR components as a conse-

quence of galectin-3 binding to branched sugar residues as

reported for other T cell subsets [15]. As shown in Fig. 3A,

galectin-3 was located in the cytoplasm of resting late-stage T cells

and translocated to the cell membrane upon CD3/CD28

stimulation where it co-localized with CD3-epsilon and TCR-

alpha/beta. In contrast, intermediate-stage T cells showed no co-

localization of galectin-3 with CD3-epsilon or TCR-alpha/beta.

Galectin-3 was moreover expressed at higher levels and further-

more increased after CD3/CD28 activation in late-stage T cells

compared to intermediate-stage T cells.

To revert galectin-3 block of TCR components, cells were

treated with swainsonine that inhibits alpha-mannosidase II

leading to impaired N-glycosylation and loss of branched sugar

structures required for galectin-3 binding [15]. After treatment of

late-stage T cells with swainsonine, galectin-3 no longer translo-

cated to the cell membrane. TCR synapse formation upon antigen

engagement occurred with similar efficiency and time frame in

swansonine treated late-stage T cells as in intermediate-stage T

cells (Fig. 3B). Treated late-stage T cells accordingly showed

improved activation with respect to the secreted IFN-gamma

levels, the number of IFN-gamma+ cells and the cytolytic

degranulation of cells indicated by CD107a staining (Fig. 3C).

Data indicate that impaired TCR synapse formation of late-stage

T cells can be restored by preventing galectin-3 mediated

membrane anchoring of TCR components.

Transgenic expression of a CD3-zeta signaling CAR
overcomes hypo-responsiveness of late-stage T cells

Based on the assumption that hypo-responsiveness of late-stage

T cells is exclusively due to impaired synapse formation without

additional impairments, we hypothesized two fundamental

consequences: (i) the TCR down-stream signaling pathway is

functional and (ii) a CD3-zeta signaling CAR bypasses the TCR

hypo-responsiveness redirecting late-stage T cells to a full anti-

tumor cell response. We therefore engineered those T cells with a

CAR with MHC-independent binding specificity for carcinoem-

bryonic antigen (CEA) and the CD3-zeta signaling endodomain

for T cell activation. Upon retroviral transduction T cells of the

CD72 late-stage and CD7+ intermediate-stage subset expressed

the CAR with nearly same efficiencies (Fig. 4A). Life imaging

revealed that late-stage T cells as efficiently formed CAR synapses

as did intermediate-stage T cells upon CAR engagement of

antigen. CAR synapse formation occurred with similar time

kinetics in both T cell subsets (Fig. 4B). Galectin-3 remained in the

cytoplasm upon antigen engagement without translocation to the

cell surface (Fig. 4C) No co-localization of galectin-3 with the TCR

occurred in those cells. Accordingly, CAR engagement of CEA+

target cells activated late-stage T cells equally efficiently as

intermediate-stage T cells indicated by increase in IFN-gamma

secretion and induction of redirected cytolysis (Fig. 4D). CAR-

mediated T cell activation was antigen-triggered since co-

incubation with CEA2 tumor cells did not induce IFN-gamma

secretion or cytolysis. Incubation of non-modified T cells with

tumor cells did not induce T cell activation. We conclude that

TCR hypo-responsiveness of late-stage T cells can be circumvent-

ed by a transgenic CAR that triggers the TCR/CD3-zeta down-

stream signaling pathway.

CAR Overcomes TCR Unresponsiveness
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Discussion

Repetitive antigen engagement of adoptively transferred T cells

will inevitably end in terminally differentiated late-stage T cells

[2,16] which are functionally exhausted und dampen the

therapeutic efficacy [10,17,18]. This phenomenon is of particular

relevance when redirecting T cells with defined specificity towards

target cells. While reduced response of early-stage CD45RO+ T

cells is due to down-regulated expression of TCR components,

especially the CD3-gamma chain, following ligand triggering [19],

we here revealed that T cells in more differentiated stages, in

particular in the KLRG-12/low CD572 CD7+ intermediate and

KLRG-1+ CD57+ CD72 late-stage of terminal differentiation,

express the TCR and bind specific tetramers with similar

efficiencies; CD72 T cells, however, respond less efficiently with

IFN-gamma and cytolytic degranulation than the CD7+ KLRG-

12/low CD572 T cells. While hypo-responsiveness of intermediate-

stage T cells is due to blockade through PD-1/PD-1L interaction,

Figure 1. CMV-specific, late-stage T cells are hypo-responsive upon TCR stimulation compared to intermediate-stage T cells. (A)
Freshly isolated PBMC’s from CMV patients were activated by incubation with CMV pp65 peptide or for control with the HIV peptide or Cytostim,
respectively, for 6 hrs. CMV-specific cells were identified by staining them with the PE-conjugated MHC tetrameric complexes and mAbs specific to
CD8, CD7, CD45RO and subsequently recorded for IFN-gamma production by staining the with anti-human IFN-gammamAb. The number of
tetramer-positive cells of the CD72 and CD7+ cells of the CD8+ CD45RO+ subset with and without IFN-gammaproduction was recorded by flow
cytometry. Histograms of one representative donor from five CMV patients is shown. Overlays of control peptide stimulated (thin line), Cytostim-
activated (dotted line), and CMV peptide-stimulated (bold line) cells are shown. (B) CD107a was monitored by flow cytometry of CMV-specific CD8+

CD45RO+ T cells of the CD72 and CD7+ subsets after or without CD49d/CD28 stimulation in presence or absence of CMV peptide. Histograms of one
representative donor from five CMV patients is shown (CD107a: bold line; isotype control: thin line). Data in Fig. 1 A & B represent mean values 6
standard error of the mean (SEM) of five donors and were compared using a paired t-test. * p,0.05.
doi:10.1371/journal.pone.0030713.g001

CAR Overcomes TCR Unresponsiveness

PLoS ONE | www.plosone.org 3 January 2012 | Volume 7 | Issue 1 | e30713



this is not the case for late-stage T cells (unpublished data). Those

T cells show impaired TCR synapse formation, which is due to a

selective immobility of the TCR components in the cell membrane

and likely mediated by galectin-3. Our conclusion is sustained by

the observation that swainsonine, which prevents galectin-3

mediated anchoring of membrane proteins by preventing

branched sugar formation [15], restored the TCR synapse

formation and T cell response. Hypo-responsiveness of late-stage

T cells thereby seems to be due to the same mechanism as

described for memory CD4+ and CD8+ T cells, not classified

further in these manuscripts according to the distinct stages of T

cell differentiation [15,20,21]. In this context it is of interest for

adoptive T cell therapy that galectin-3 does not co-localize with

and does not block the transgenic CAR in those T cells; CAR

synapse formation occurs in both T cell subsets with same

efficiencies and within the same time frame. Although late-stage T

cells are hypo-responsive to TCR signals, CAR engagement of

antigen mediates effector functions with equal efficiencies as in

Figure 2. TCR synapse formation is impaired in late-stage T cells. CD8+ CD45RO+ T lymphocytes were incubated on coverslips coated with
the agonistic anti-CD3 mAb (UCHT-1) plus anti-CD28 mAb (CD28.2) or with the anti-CD2 mAbs (L303.1) and (L304.1) plus the anti-CD28 mAb
(CD28.2). Cells were activated for various time intervals (1 min until 20 min), incubation was stopped by addition of paraformaldehyde, and cells were
stained with TCR-alpha/betamAb (green) plus CD7 mAb (blue) or alternatively with CD2 mAb (blue) plus CD7 mAb (green) together with cholera
toxin B (CtxB) (white) for lipid raft staining. Cells were analyzed on a LSM 510 with 6306microscope magnification. A minimum of 100 cells for each
data point was recorded. Representative images after 0 min, 1 min, 5 min, 10 min and 20 min stimulation out of five independent experiments are
shown. Synapse formation intensity (CTxB intensity) was quantified as described in Materials and Methods. A minimum of 100 cells of each cell
population on each coverslip was recorded. Data represent mean scores from five experiments 6 standard error of the mean and were compared
using a paired t-test. * p,0.05. FU: fluorescence unit.
doi:10.1371/journal.pone.0030713.g002
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Figure 3. Galectin-3 prevents TCR synapse formation in late-stage T cells. (A) CD72 and CD7+ T cells were activated by incubation with anti-
CD3 mAb plus anti-human CD28 mAb or as control by an isotype-matched IgG1 (medium). Cells were stained for TCR-alpha/beta (green), CD7 (blue),
CD3 (red) and for galectin-3 (yellow). Immunofluorescence was visualized by a LSM. Alternatively cells were stained with mAbs specific to CD7 and
subsequently recorded for gal-3 expression by staining with the anti-human gal-3mAb or as control by an isotype-matched IgG and analyzed by flow

CAR Overcomes TCR Unresponsiveness
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intermediate stage T cells. The CAR obviously bypasses

insufficient TCR synapse formation on the membrane level

through recruitment of the TCR downstream signaling leading to

restoration of a functional T cell response. Experimental data from

other groups help to understand our observations, since it was

published that galectin-3 binds to the TCR-alpha, TCR-beta and

CD3-epsilon chains, but not to the CD3-zeta chain of the TCR

[22,23]. Therefore our data strongly suggest, that a transgenic

CAR, which utilizes a CD3-zeta chain for signal transduction, is

not hampered by galectin-3 interaction with the TCR signal

transduction machinery after antigen recognition. Life imaging

moreover implies that the TCR and the CAR independently form

synapses that is in contrast to the transgenic expression of a

recombinant TCR that can form heterodimers with the physio-

logical TCR [24,25]. Even a modified transgenic TCR that does

not pair with the endogenous TCR localizes in close vicinity to the

endogenous TCR/CD3 in Jurkat T cells [13]. In late-stage T cells

common synapses between physiological and transgenic TCR

likely lead to unresponsiveness of the recombinant TCR making

the redirected T cell response less effective. A single-chain

chimeric antigen receptor, in contrast to the TCR, does not form

common synapses with the physiological TCR although a CAR

makes use of the TCR downstream signaling machinery. This may

not be the case in Jurkat cells as recently reported [14]; those cells,

however, exhibit altered TCR proximal signaling compared to

blood T cells [26].

A significant proportion of T cells from the peripheral blood of

tumor patients and from tumor lesions belong to the terminally

differentiated late-stage T cell subset [16,27]. The number of those

T cells increases with progression of the disease [28]. Current

improvements in adoptive cell therapy therefore aim to prevent

the generation of terminally differentiated T cells by providing a

short-term TCR stimulus to naive CD8+ T cells sufficient to

induce clonal proliferation, acquisition of effector functions, and

entry into the memory pool in the absence of additional stimuli

[2]. Other approaches make use of pharmacological agents, like

rapamycin, to improve memory formation and to expand the

absolute numbers of both central and effector memory T cells [2].

These strategies may be combined with transgenic expression of a

CAR that circumvents TCR hypo-responsiveness of late-stage T

cells. Late-stage T cells are not only an inevitable result of

repetitive antigen stimulation but also lack CCR7 [7] which has

the advantage that those cells show reduced capability to re-enter

lymph vessels and to re-circulate and are thereby trapped in the

periphery [29] where most tumors are located.

Various physiological T cell subsets are impaired in TCR

synapse formation including orally tolerized T cells [30], T cells

from healthy elderly individuals [31] or T cells under chronic

stimulatory conditions including rheumatoid arthritis or systemic

lupus erythematosus [31]. While hypo-responsiveness in these

lesional T cells is predominantly based on PD-1 - PD-L1/PD-L2

mediated repression [32], it is so far unknown whether the T cell

response in those cells can also be rescued by transgenic CAR

expression.

While late-stage T cells can be rescued for use in the adoptive

immunotherapy, their reduced proliferative capacity and their

accelerated entry into apoptosis need to be addressed. In this

regard CAR-redirected T cell therapy may be combined with

recently developed strategies to sustain telomerase activity, which

leads to improved cytotoxic capacities, cytokine and chemokine

production. Alternatively, TNF-alpha production may be inhib-

ited, which increases the proliferative potential and telomerase

activity in those cells, or transgenic CD28 may be expressed,

which retards replicative senescence [33].

Materials and Methods

Blood samples and cell lines
Buffy coats from healthy young volunteers (n = 30) (mean

30610 years) were obtained from the blood bank facilities of the

University Hospital Cologne, Germany. Volunteers who were

taking immunosuppressive drugs or who had a disease potentially

affecting the immune system were excluded. Peripheral blood

from 8 patients (31–74 years) with confirmed diagnosis of active

CMV and lack of HIV infection was analyzed. None of the CMV

patients was on therapy at the time of sampling. All blood samples

were taken after patients gave their written, informed consent.

This study was performed in conformity with the Declaration of

Helsinki of the World Medical Association and approved by the

institutional review committee of the University of Cologne

(reference no 02-041). 293T cells are human embryonic kidney

cells that express the SV40 large T antigen (ATCC CRL 11268).

LS174T (ATCC CCL 188) is a CEA+ colon carcinoma cell line,

and Colo320 (ATCC CCL 220.1) is a CEA2 cell line. OKT3

(ATCC CRL 8001) is a hybridoma cell line that produces the anti-

human CD3 monoclonal antibody (mAb) (OKT3); 15E8 hybrid-

oma cells produce the anti-human CD28 mAb (15E8) (obtained

from Dr. Rene van Lier, Red Cross Bloodbank, Amsterdam, The

Netherlands). All cells were cultured in RPMI 1640 medium

(Invitrogen, Karlsruhe, Germany) containing 100 U/ml penicillin,

100 mg/ml streptomycin, 2 mM L-glutamine, and 10% (v/v)

heat-inactivated fetal calf serum (FCS) (Invitrogen).

Antibodies and cytokines
The following antibodies were used: APC-conjugated anti-

TCR-alpha/beta(IP26) (Biolegend, Eching, Germany), PE-Cy7-

conjugated anti-CD8 mAb (RPA-T8) (BD Biosciences, Heidel-

berg, Germany), APC-conjugated anti-CD45RO mAb (UCHL-1)

(BD Biosciences), FITC-conjugated anti-CD7 mAb (4H9) (BD

Biosciences), APC-conjugated anti-CD7 mAb (MEM-186) (Exbio,

Eching, Germany), APC-Cy7-conjugated anti-CD45RO mAb

(UCHL-1) (BD Biosciences), APC-Cy7-conjugated anti-CD3

mAb (UCHT-1) (BD Biosciences), Alexa-488-conjugated anti-

KLRG-1 mAb (13A2) (kindly provided by Dr. H.P. Pircher,

Freiburg, Germany), APC-Cy7-conjugated anti-CD8 mAb (SK1)

cytometry. A representative experiment out of five is shown. Galectin-3 specific signals were quantitatively recorded by a LSM as described in
Materials and Methods. A minimum of 100 cells for each data point was recorded. (B) To monitor location of galectin-3 in lipid raft formation, isolated
CD72 and CD7+ subsets of CD8+ CD45RO+ T cells were incubated with or without swainsonine for 24 hrs and then activated for various time intervals
(1 min until 20 min) on coverslips coated with the agonistic anti-CD3 mAb plus anti-CD28 mAb. T cell stimulation was stopped with
paraformaldehyde and cells were stained with anti-TCR-alpha/betamAb (blue), anti-CD7 mAb (red) and anti-galectin-3 mAb (yellow) together with
CtxB (green) for lipid rafts staining. Immunofluorescence was visualized by a LSM and quantified as described in Materials and Methods. T cell staining
after 5 min stimulation of one representative experiment out of five is exemplarily shown. (C) CD72 and CD7+ subsets of CD8+ CD45RO+ T cells were
incubated with or without swainsonine and activated as described in (B). Frequencies of cells producing IFN-gamma and showing degranulation
indicated by CD107a was monitored by flow cytometry. Data in Fig. 3 represent the mean 6 SEM of five experiments and were compared using a
paired t-test. * p,0.05. FU: fluorescence unit; MFI: mean fluorescence intensity.
doi:10.1371/journal.pone.0030713.g003
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(BD Biosciences), APC-conjugated anti-CD57 mAb (TB03)

(Miltenyi Biotec, Bergisch Gladbach, Germany), PE-Alexa-750-

conjugated anti-CD7 mAb (CD7-6B7) (Caltag, Hamburg, Ger-

many), and PE-Cy7-conjugated anti-CD45RO mAb (UCHL-1)

(BD Biosciences). To monitor intracellular galectin-3 expression T

cells were stained with PE-conjugated anti-CD7 mAb (4H9) (BD

Biosciences), fixed and permeabilized, and subsequentially stained

with FITC-conjugated anti-galectin-3 mAb (gal-3) (Mabtech,

Hamburg, Germany). Appropriate isotype antibodies (BD Biosci-

ences) were used as controls. 15E8 and OKT3 mAbs were affinity

purified from hybridoma supernatants utilizing goat anti-mouse

IgG2a antibodies (Southern Biotechnology, Birmingham, Ala-

bama, USA) immobilized on N-hydroxy-succinimid-ester-(NHS)-

activated sepharose (Amersham Biosciences, Freiburg, Germany).

Cells were analyzed by flow cytometry using a FACS Calibur or

FACSCanto cytometer (BD Biosciences), equipped with Cell

Quest or FACS DIVA software (BD Biosciences). Viable

lymphocytes were gated according to forward/side scatter and

lack of 7-AAD (BD Biosciences) staining. Human recombinant

interleukin-2 (IL-2) and interferon-gamma (IFN-gamma) were

purchased from R&D Systems (Wiesbaden, Germany). IFN-

gamma in the culture medium was recorded by ELISA utilizing

matched pairs of specific antibodies (clones NIB 42 and B133.5,

BD Biosciences). The detection limit of the assay is 15 pg/ml IFN-

gamma.

Cell sorting
CD8+ CD45RO+ T cells were obtained from peripheral blood

mononuclear cells by negative depletion magnetic cell sorting

(MACS) (Miltenyi Biotec) using the ‘‘CD8+ T cell isolation kit’’

and anti-human CD45RA microbeads. CD8+ CD45RO+ T cells

were separated into CD7+ and CD72 subpopulations by using the

FITC-conjugated anti-human CD7 antibody (4H9) (BD Biosci-

ences) and anti-FITC microbeads (Miltenyi Biotec). CD8+ T cells

were obtained from peripheral blood mononuclear cells by

positive selection using anti-human CD8+ microbeads (Miltenyi

Biotec). The purity of the isolated T cell subpopulations was

routinely .95%.

CAR mediated T cell activation
The generation of the retroviral expression cassettes for the

CEA-specific CAR BW431/26scFv-Fc-CD3-zeta(#439) and ret-

roviral transduction of T cells was described in detail [34]. Briefly,

retroviral vector DNA was cotransfected with the helper plasmid

DNAs pHIT60 and pCOLT (each at 1 mg DNA/105 cells) into

293T cells for virus production. T cells were activated by addition

of IL-2 (1,000 units/ml) and OKT3 mAb (100 ng/ml) for 48 hrs

and incubated with retroviruses for additional 48 hrs. CAR

expression was monitored by flow cytometry using a PE-

conjugated F(ab9)2 anti-human IgG1 antibody (1 mg/ml) (South-

ern Biotechnology), which recognizes the extracellular IgG1

CH2CH3 domain of the CAR, and a FITC-conjugated anti-

human CD3 mAb (UCHT-1) (BD Biosciences). After 24 hrs

without stimuli redirected cytolysis was recorded by incubating T

cells in increasing numbers with tumor cells (2.56104 per well) for

48 hrs in round-bottom 96-well plates, specific cytotoxicity

monitored by a XTT-based colorimetric assay (Roche Applied

Science, Mannheim, Germany) and the viability of tumor cells was

calculated as follows:

viability %½ �:

OD experimental wells{corresponding number of effector cellsð Þ½ =

OD tumor cells without effector cells{mediumð Þ�|100:

CMV specific T cells
CD8+ T cells from CMV infected, HIV2 donors were stained

for HLA-A2 with mAb (BB7.2) (BD Biosciences). Tetramer-

binding T cells were detected by incubation with the PE-

conjugated MHC tetrameric complexes HLA-A*0201/pp65495–

503 (Sanquin, Amsterdam, The Netherlands). Intracellular IFN-

gamma was detected in PBMC’s from CMV patients stimulated

for 6 hrs in presence with PE-conjugated MHC tetrameric

complexes HLA-A*0201/pp65495–503 (Sanquin) together with

CMV peptide NLVPMVATV (‘‘CMV pp65 Peptide Mix’’) or

the TCR cross-linking reagent ‘‘Cytostim’’ (both from Miltenyi

Biotec) or HIV peptide SLYNTVATL (JPT, Berlin, Germany),

respectively, and stained for CD8, CD7 and CD45RO. During the

final 5 hrs, brefeldin A (5 mg/ml) (BD Biosciences) was added to

avoid release of cytokines from the Golgi apparatus, respectively,

and cells were subsequently stained for IFN-gamma using the

clone 25723.11 mAb (BD Biosciences). Alternatively, lymphocytes

were activated for 6 hrs in presence of FITC-conjugated anti-

CD107a mAb (H4A3) (BD Biosciences), the CMV peptide, and

the agonistic anti-CD49d mAb (L25) (1 mg/ml) plus the anti-CD28

mAb (L293) (1 mg/ml) (both from BD Biosciences).

Synapse formation
T cells (105 cells) were placed on cover slips coated with poly-L-

lysine (0.1 mg/ml) (Sigma Aldrich, Deisenhofen, Germany), the

anti-CD3 mAb (UCHT-1) and the anti-CD28 mAb (CD28.2) or

with the anti-CD2 mAbs (L303.1) and (L304.1) and the anti-CD28

mAb (CD28.2), or as control by an isotype-matched IgG1 (all from

BD Biosciences; 10 mg/ml each). Alternatively, cover slips were

coated with the BW2064/36 mAb (10 mg/ml), which is an internal

image anti-idiotypic antibody, directed against the anti-CEA scFv

BW431/26 [35]. Cells were activated for various time intervals

(1 min until 20 min) and incubation was stopped by addition of

Figure 4. CAR triggered activation is as efficient in late-stage as in intermediate-stage T cells. (A) Isolated CD72 and CD7+ subset cells of
CD8+ CD45RO+ T cells were engineered with the CEA-specific CAR BW431/26scFv-Fc-CD3-zeta by retroviral gene transfer. CAR expression was
monitored by flow cytometry with a PE-conjugated anti-IgG1 mAb and a FITC-conjugated anti-CD3 mAb. Dot plots of one representative
transduction of CD72 and CD7+ T cells from five independent experiments is shown (B) CAR modified T cells were activated for various time intervals
(1 min until 20 min) on coverslips coated with the BW2064/36 mAb. The incubation was stopped with paraformaldehyde and cells were stained for
TCR (green), CD7 (blue), CAR (red) and CtxB (yellow). Imaging after 5 min of activation is exemplarily shown. Synapse formation intensity (CTxB
intensity) was quantified as described in Materials and Methods. (C) To monitor location of galectin-3 upon CAR-mediated activation, engineered
CD72 and CD7+ T cells were activated by the BW2064/36 mAb or an isotype-matched control antibody of irrelevant specificity as described in (B).
Cells were stained for TCR-alpha/beta(green), CD7 (blue), CAR (red) and for galectin-3 (yellow). Imaging after 5 min of T cell activation of one
representative experiment out of five is exemplarily shown. (D) To monitor CAR-mediated effector functions, CAR engineered CD72 and CD7+ T cells
in increasing numbers were co-incubated with CEA+ LS174T and CEA2 Colo320 tumor cells, respectively. IFN-gamma in the culture supernatants after
48 hrs was monitored by ELISA. Viability of tumor cells was colorimetrically determined by XTT assay. Data in Fig. 4 represent the mean of five
experiments 6 SEM and were compared using a paired t-test. * p,0.05. FU: fluorescence unit.
doi:10.1371/journal.pone.0030713.g004
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3.75% (w/v) paraformaldehyde. Cells were washed and blocked

with 2% (v/v) human AB serum (PAA Laboratories, Coelbe,

Germany) for 20 min. Synpase formation was recorded as

described [36]. Briefly, cells were stained with Alexa 647- or

Alexa-488-labeled cholera toxin B subunit (CTxB) (Invitrogen) for

staining lipid rafts (GM1) and stained for TCR-alpha/beta(IP26)

(Biolegend), CD7 (MEM-186) (Exbio), CD2 (TS1/8) (Biolegend),

IgG to indicate the CAR (Medac, Hamburg, Germany), CD3

(UCHT-1) (Biolegend) and galectin-3 (M3/38) (Biolegend).

Formation of synapses was indicated by accumulation of CTxB

at the cell-cover slip interface as assessed by confocal laser

scanning microscopy using the LSM 510 (Karl Zeiss, Oberkochen,

Germany) equipped with Zen 2009 software with 6306 micro-

scope magnification. A region with accumulated TCR or CAR

molecules together with an accumulation of CTxB was considered

a synapse. To quantitate the recruitment of TCR and CAR to the

immunological synapse, gates were automatically drawn around (i)

the immunological synapse, (ii) the regions of the T cell not in

contact with agonistic antibodies, and (iii) a background area. The

relative recruitment index (RRI) shown in figures as CTxB

intensity (relative mean fluorescence of synapse formation) was

calculated as indicated: (mean fluorescence intensity (MFI) at

synapse – background)/(MFI at all the cell membrane not in

contact with agonistic antibodies – background). Quantitative

analysis of MFI was performed automatically with the Image J

programme (NIH, Maryland, USA). A minimum of 100 cells for

each data point was examined quantitatively for each experiment.

To block alpha-mannosidase II, T cells were incubated with

swainsonine (0.5 mM) (Calbiochem, Darmstadt, Germany) for

24 hrs. Specificity of staining was assayed by incubation with the

respective isotype-matched control antibody (BD Biosciences).

Finally, all slides were coverslipped with Entellan (ProSciTec,

Thuringowa, Australia) and analyzed by laser scan microscopy

(LSM).

Statistical analyses
Results are presented as means 6 standard error of the mean

(SEM). A paired and unpaired two-tailed t-test was used; p,.05

was considered significant.

Supporting Information

Figure S1 CMV-specific T cells in late-stage and
intermediate-stage of terminal differentiation equally
bind pp65 CMV tetramers. CMV-specific CD8+ T cells in

late or intermediate stage of terminal differentiation were

identified in the peripheral blood from CMV patients with acute

virus reactivation by incubation with PE-conjugated CMV peptide

loaded tetramers HLA-A*0201/pp65495–503 and staining for CD8,

CD7, CD45RO, CD57, KLRG-1, CD3 and TCR-alpha/beta as

described in Materials and Methods. Cells were analyzed by flow

cytometry. One representative donor out of five CMV patients is

shown.

(PDF)

Figure S2 CD72 late-stage T cells are hypo-responsive
to TCR/CD3 stimulation. The CD72 and CD7+ subsets of

CD8+ CD45RO+ T cells were isolated from the peripheral blood

and cultured (105 cells/100 ml) with or without the agonistic anti-

CD3 mAb (OKT3) (5 mg/ml), the anti-CD28 mAb (15E8) (5 mg/

ml), or with IL-2 (50 U/ml). (A) IFN-gamma in the culture

supernatant at day 6 was detected by ELISA. (B) To monitor

CD107a+ IFN-gamma producing cells, cells were monitored by

flow cytometry by staining with the PE-conjugated anti-IFN-

gamma mAb (25723.11) and the FITC-conjugated anti-CD107a

mAb (H4A3). Assays (Figs. S2A & B) were performed five times

and the mean values 6 SEM are shown. Statistical analyses were

made using a paired t-test. * p,0.05, CD72 cells compared with

the corresponding CD7+ T cells.

(PDF)
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