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Human rotavirus (HRV) is the leading worldwide cause of acute diarrhea-related death in
children under the age of five. RV infects the small intestine, an important site of
colonization by the microbiota, and studies over the past decade have begun to reveal
a complex set of interactions between RV and the gut microbiota. RV infection can
temporarily alter the composition of the gut microbiota and probiotic administration
alleviates some symptoms of infection in vivo, suggesting reciprocal effects between
the virus and the gut microbiota. While development of effective RV vaccines has offered
significant protection against RV-associated mortality, vaccine effectiveness in low-
income countries has been limited, potentially due to regional differences in the gut
microbiota. In this mini review, we briefly detail research findings to date related to HRV
vaccine cohorts, studies of natural infection, explorations of RV-microbiota interactions in
gnotobiotic pig models, and highlight various in vivo and in vitromodels that could be used
in future studies to better define how the microbiota may regulate RV infection and host
antiviral immune responses.
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INTRODUCTION

Prior to the introduction of rotavirus vaccines (RVVs) in 2006, human rotavirus (HRV) was the
leading global cause of mortality due to acute gastroenteritis in children under the age of five
(Rodriguez et al., 1980; Tate et al., 2016). Despite successful implementation of the vaccine, RV still
accounts for the higest numbers of death due to gastroenteritis globally. RV is a double-stranded
RNA virus in the Reoviridae family. RV virions are non-enveloped and composed of three
concentric protein layers, which contain a genome of 11 segments of dsRNA encoding 6
structural proteins and 6 non-structural proteins (Desselberger, 2014). RV predominantly targets
mature enterocytes in the small intestine, and infection is regulated by both innate and adaptive
immune responses (Greenberg and Estes, 2009). The RVV has significantly decreased HRV-
associated mortality rates but both the efficacy and effectiveness of RVV in preventing severe
gastroenteritis in children is significantly lower in low-income vs high-income settings (Parashar
et al., 2003; O’Ryan, 2017). As one of the possible etiologies contributing to this variation in RVV
effectiveness, a number of recent studies have suggested a potential role for the commensal gut
microbiota in regulating RVV responses (Harris et al., 2017a; Harris et al., 2017b; Harris, 2018;
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Harris et al., 2018). This review details what is currently
understood about the complex interactions between RV
infection and immunity and the gut microbiota, summarizing
the evidence to date as well as clarifying the in vitro and in vivo
systems available to explore these interactions.
INTERACTIONS BETWEEN HUMAN
ROTAVIRUS AND THE GUT MICROBIOTA

HRV infects the intestine, which also hosts the human body’s
largest collection of microorganisms. As understanding of the
broad physiological importance of the commensal gut
microbiota has grown (Kennedy et al., 2018), so has interest in
its interactions with pathogens. Enteric viruses, including RV,
norovirus, adenovirus and astrovirus, induce diarrhea, which can
alter the human gut microbiome by shifting the dominant
phylum from Bacteroidetes to Firmicutes, decreasing bacterial
diversity and increasing opportunistic pathogens, such as the
genera Shigella (Ma et al., 2011). HRV-induced gastroenteritis
has been specifically shown to temporarily decrease the diversity
of and significantly alter the microbiota composition after
infection, though recovery is associated with return to a level
of diversity that reflects the non-infected state (Chen et al., 2017;
Dinleyici et al., 2018). In addition to broad phylogenetic changes,
species-specific shifts after HRV infection have also been
reported, such as a transition from Bacteroides vulgatus and
stercoris to Bacteroides fragilis, suggesting structural changes to
the gut microbiota at all taxonomic levels (Zhang et al., 2009).
Thus, HRV infection and associated diarrheal illness clearly
affect the intestinal bacterial microbiota. Importantly, however,
there is increasing appreciation that the interactions between
HRV and the gut microbiota are bidirectional, and that the gut
microbiota can also influence the intensity and duration of HRV
infection (Saavedra et al., 1994; Fang et al., 2009; Teran et al.,
2009; Grandy et al., 2010; Huang et al., 2014; Lee et al., 2015).

There have been persistent efforts to define the effects of the
gut microbiota on human RV infection. Several clinical trials,
either conducted pre-RVV in the United States or post-RVV in
Bolivia, Taiwan, and Korea, have investigated the effects of
probiotic administration on infants and children with natural
symptomatic RV infection (Saavedra et al., 1994; Fang et al.,
2009; Teran et al., 2009; Grandy et al., 2010; Huang et al., 2014;
Lee et al., 2015). In these studies, probiotics including
Lactobacillus rhamnosus, Saccharomyces boulardii, and
Bifidobacterium longum resulted in mild to moderate reduction
of RV-associated symptoms, such as duration of diarrhea and
fecal RV levels. However, another prospective, randomized,
double-blind trial conducted post-RVV in the United States
failed to identify a protective effect for L. rhamnosus GG in
protecting children against acute gastroenteritis (Schnadower
et al., 2018). Probiotic administration, in conjunction with
traditional treatment such as oral rehydration, may thus have
potential as a therapeutic intervention for RV-induced
gastroenteritis in some settings, but the mechanisms by which
these bacterial taxa affect RV infection in humans remain
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
unclear. Studies using an in vivo model of HRV infection have
the potential to shed additional light on these interactions.

Neonatal gnotobiotic pigs recapitulate many physiological
factors of human infants (Meurens et al., 2012) and are
susceptible to HRV infection (Saif et al., 1996), making them a
useful animal model to investigate the interactions between the
gut microbiota and HRV (Yuan and Saif, 2002; Zhang et al.,
2008a; Kandasamy et al., 2016; Paim et al., 2016; Kumar et al.,
2018). Transplantation of the gut microbiota of human infants to
neonatal gnotobiotic pigs permitted evaluation of the impact of
diet on both the gut microbiota composition and HRV disease
severity (Kumar et al., 2018). Post-transplant, the piglets shared
the majority of bacterial taxa identified in the original sample,
and colonized piglets were observed to have reduced HRV-
induced diarrhea and viral shedding compared to their
noncolonized germ-free counterparts. In addition, a protein-
sufficient diet further limited the severity of infection compared
to a protein-deficient diet, suggesting that proper nutrition can
also be protective, potentially via maintenance of the microbiota
(Kumar et al., 2018). Similar to the human cohort studies
discussed above, neonatal gnotobiotic pigs have been used to
test the effects of various probiotics such as Escherichia coliNissle
1917, Lactobacillus rhamnosus GG, Lactobacillus acidophilus,
and Lactobacillus reuteri on HRV infection (Zhang et al.,
2008a; Kandasamy et al., 2016; Paim et al., 2016). In general,
these studies have supported the beneficial effects of probiotic use
in limiting the symptoms of HRV infection or enhancing B cell
responses. E. coliNissle administration has been shown to reduce
diarrhea severity and HRV shedding in pigs by both increasing
IL-6, IL-10, and IgA levels as well as potentially directly binding
RV particles (Kandasamy et al., 2016). Furthermore, E. coliNissle
altered gene expression in several enteric cell types and reduced
enterocyte proliferation, implicating the probiotic in reducing
barrier disruption and maintaining the absorptive function of the
gut (Paim et al., 2016). In contrast, colonization of germ-free
neonatal pigs with lactic acid bacteria probiotics alone was
insufficient to promote intestinal B cell responses (Zhang et al.,
2008a). An important caveat of these studies is that though
neonatal pigs recapitulate many aspects of HRV infection in
human infants, there is always the possibility that probiotic
effects observed are unique to piglets. Since enhancement of
immune responses is key for these potential therapeutic
interventions, further investigations are needed to fully resolve
the effect of these probiotics on HRV immune responses.
INTERACTIONS BETWEEN ROTAVIRUS
VACCINES AND THE GUT MICROBIOTA

Rotarix and Rotateq, two different types of live-attenuated oral
RVVs, are currently the most studied RVV. Rotarix is a
monovalent, attenuated vaccine derived from HRV strain G1P
[8] (Ward and Bernstein, 2009) and licensed by the FDA with a
dosage regimen of two oral doses at 6 and 10 weeks of age (Payne
et al., 2011). Rotateq is a pentavalent human-bovine vaccine
containing five RV reassortants derived from human and bovine
January 2021 | Volume 10 | Article 586751
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viral species (Vesikari et al., 2009) and licensed by the FDA with
a dosage regimen of three oral doses at 2, 4, and 6 months of age
(Payne et al., 2011). In high-income settings, both vaccines show
over 85% efficacy in preventing severe RV gastroenteritis in
infants, and effectively increase anti-RV serum IgA, which is
highly correlated with RVV efficacy (Vesikari et al., 2006; Patel
et al., 2013). Prior studies, examining phylum-level differences,
indicate RVV administration does not broadly affect the
microbiota (Garcia-Lopez et al., 2012; Ang et al., 2014).

In contrast, a number of recent studies exploring species-level
differences have implicated the gut microbiota in regulating RVV
efficacy. The gut microbiota factors responsible for the variation
in RVV efficacy have been explored in various clinical studies
with cohorts from different regions including Ghanaian,
Pakistani, Finnish, Indian, and Nicaraguan infants (Isolauri
et al., 1995; Harris et al., 2017a; Harris et al., 2017b; Harris
et al., 2018; Lazarus et al., 2018; Parker et al., 2018; Fix et al.,
2020). These studies suggest that geographical differences in gut
bacterial composition may contribute to RVV efficacy, and
indeed specific bacterial taxa have been associated with RVV
responses, including a positive correlation for Streptococcus bovis
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
and a negative correlation with members of the Bacteroidetes
phylum with anti-RV IgA responses (Harris et al., 2017a; Harris
et al., 2017b) (Figure 1A). In other cohorts, no association of
specific microbiota taxa with seroconversion was found. These
discrepancies may derive from differences in microbiome
sequencing methodologies, or in distinct gut microbiota
composition influenced by different geographical regions
(Parker et al., 2018; Fix et al., 2020). A proof-of-principle study
tested whether prospective alteration of the microbiota with
narrow-spectrum (vancomycin alone) or broad-spectrum
(vancomycin, ciprofloxacin and metronidazole) antibiotics
could modulate RVV immunogenicity in adults. Significantly
decreased levels of Firmicutes and increased level of
Proteobacteria in the narrow-spectrum group correlated with
enhanced anti-RV IgA, but not IgG, titer boosting as well as
increased RVV shedding (Harris et al., 2018). However, the
specific mechanism of how bacterial taxa may regulate RV
immune responses, including anti-RV IgA, has not yet
been defined.

Currently available oral rotavirus vaccine efficacy is generally
considered comparable across low- and middle-income settings.
A B

FIGURE 1 | Effects of the gut microbiota on rotavirus vaccines (RVV) and rotavirus (RV) infection. (A) Promotion of RVV Responses: Gnotobiotic pig studies have
suggested that overall, the gut microbiota and specific probiotics promote RVV efficacy and the development of protective IgA responses, which in turn limit future
RV infection. (B) Prevention of RV infection: Clinical trials as well as studies in gnotobiotic pigs and neonatal rats have shown that the commensal microbiota and
probiotics may also reduce symptoms of RV infection, partially through development of increased IL-10 levels and anti-RV IgA (1). Murine and gnotobiotic neonatal
rat models have shown probiotics may reduce RV infection by inducing mucin secretion (2). Alternately, some studies in mice have shown that bacteria may facilitate
RV infection by limiting anti-RV IgA responses and degrading mucins which potentially prevent RV-cell attachment (1, 2). Cytokines type I (IFN-a/b) and III IFNs (IFN-
l) are also antiviral (3), and virome element murine astrovirus (MuAstV) can protect against RV by inducing IFN-l, thereby upregulating interferon stimulated genes
(ISG) (4). Gnotobiotic pig studies have indicated that probiotics can inhibit RV infection and reduce disturbance of the intestinal barrier as observed through increased
Villin, Muc2, CgA, and Pcna and decreased Sox9 expression, indicating restoration of differentiated enterocyte, goblet, enteroendocrine and transient amplifying
progenitor cell function and decreased proliferation of stem cells, respectively (4). Bacteria can also directly interact with RV particles, which may reduce infection (5).
Studies in mice have shown that elements of the gut microbiota including bacterial flagellin can activate IL-18 and IL-22 signaling to protect against RV (6).
Segmented filamentous bacteria (SFB) can also prevent RV infection through immune cell-independent mechanisms (7).
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Increasing numbers of generic oral vaccines are available on the
market and they differ in terms of number of doses, timing of
doses, and cost. Choice of vaccines in low- and middle-income
settings is often driven by cost, support from the Global Alliance
for Vaccines and Immunization, feasibility of integration with
existing vaccination programs, and availability. There are many
regional factors including maternal antibodies, viral co-infection,
host genetics, diet, and other geographic differences that may
contribute to diminished RVV protection in low- and middle-
income settings along-side the microbiota. Currently, all
human studies evaluating correlations between RVV and
intestinal microbiota have evaluated RVV immunogenicity and
not vaccine efficacy against severe RV gastroenteritis. RV
immunogenicity, as measured by anti-RV IgA is an imperfect
correlate of protection and may not reflect protection
from clinically relevant disease. Additional region-specific
investigations are therefore needed, evaluating the microbiota’s
correlation with vaccine efficacy against severe RV gastroenteritis
in order to clarify the effects of the gut microbiota on RVV
performance, with subsequent validation in in vivo models
(Burke et al., 2019).

Gnotobiotic pigs have also been used to examine the effect of
the gut microbiota on RVV efficacy and vice-versa (Zhang et al.,
2008b; Vlasova et al., 2013; Kandasamy et al., 2014; Zhang H.
et al., 2014; Twitchell et al., 2016). Enhanced cell-mediated
immunity, as measured by more RV-specific IFN-g producing
T cells, in response to RVV was observed in neonatal gnotobiotic
pigs transplanted with healthy infant gut microbiota compared
to an unhealthy infant gut microbiota, though RV-specific IgA,
IgG, and virus neutralizing antibody responses were unaffected.
(Twitchell et al., 2016). L. rhamnosus GG administration to pigs,
which had also received transplanted human gut microbiota and
RVV, prevented the phylum-level shift from Firmicutes to
Proteobacteria caused by HRV challenge, but had no
significant effect on HRV infection responses (Zhang H. et al.,
2014). In contrast, other reports suggest that colonization of
neonatal gnotobiotic pigs with L. rhamnosus GG and
Bifidobacterium animalis lactis Bb12, followed by RVV
vaccination, significantly enhances RVV immunogenicity and
diminishes HRV infection responses including severe diarrhea
and viral shedding (Vlasova et al., 2013; Kandasamy et al., 2014)
(Table 1). However, these results were not fully replicated in
human clinical trials, wherein L. rhamnosus GG treatment had a
positive but very modest or no significant effect on RVV
immunogenicity (Isolauri et al., 1995; Lazarus et al., 2018). The
factors responsible for diminished probiotic effectiveness in
humans remain unresolved, and additional studies involving
transplantation of human infant gut microbiota in neonatal
gnotobiotic pigs may help to resolve which factors will help
drive immunologically relevant responses in humans.

Models for Studying Rotavirus Infection
and Immunity
Beyond gnotobiotic pig models described above, murine models
have been beneficial to understand the mechanisms through
which the microbiota interacts with RV (Figure 1B). Multiple
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
strains of murine rotavirus (mRV) are available, and adult mice
are susceptible to infection. However, only mice under 14 days of
age develop diarrhea (Greenberg and Estes, 2009), which is a
significant means by which infection can alter the intestinal
microbiota (Ma et al., 2011). BALB/c mice have been shown to be
approximately 1,000 times more susceptible to infection than
C57BL/6 mice, suggesting important, and still unclear,
mechanisms of genetic regulation of susceptibility (Blutt
et al., 2012).

MRV infection causes significant changes to the composition
of the ileal microbiota by inducing mucin secretion from goblet
cells (Engevik et al., 2020). This compositional shift favors
mucin-degrading bacteria Bacteroides and Akkermansia, which
in turn could also promote mRV infection in vitro. Furthermore,
ampicillin and neomycin administration has been linked to
protection against mRV infection and symptoms via generation
of a more robust humoral/mucosal response, further implicating
the microbiota in promoting mRV infection (Uchiyama
et al., 2014).

Conversely, probiotics Bifidobacterium bifidum, Bifidobacterium
dentium, and Bifidobacterium longum mediate protective effects
against mRV infection, potentially via increased mucin secretion,
which can prevent efficient RV cell attachment (Chen et al., 1993;
Duffy et al., 1994a; Duffy et al., 1994b; Boshuizen et al., 2005; Munoz
et al., 2011; Kawahara et al., 2017; Engevik et al., 2019). Microbes
such as Lactobacillus reuteri and Bifidobacterium species can also
hamper infection by increasing mRV-specific IgA levels (Qiao et al.,
2002; Preidis et al., 2012). Recently, segmented filamentous bacteria
(SFB) have been found to inhibit mRV infection in an immune cell-
independent manner, possibly by changes in host gene expression,
accelerated epithelial cell turnover, and/or direct neutralization (Shi
et al., 2019).

Regulation of critical antiviral cytokine pathways is an
important mechanism for microbiota-mediated regulation of
RV. Bacterial flagellin mediates antiviral effects via toll-like
receptor 5 and NOD-like receptor C4-mediated activation of
cytokines interleukin-22 (IL-22) and IL-18, which protect against
RV infection (Zhang B. et al., 2014). IL-22 has been shown to be
profoundly antiviral against RV, especially in combination with
mucosal antiviral cytokine interferon-lambda (IFN-l)
(Hernandez et al., 2015). Type I (IFN-a/b) and III IFNs (IFN-
l) are induced by RV and exert age-dependent antiviral effects
against RV (Broquet et al., 2011; Pott et al., 2011; Lin et al., 2016;
Ingle et al., 2018). We recently found that a non-bacterial
element of the microbiota, specifically chronic murine
astrovirus infection in immunocompromised mice, stimulates
high levels of IFN-l, but not type I or II IFNs, to protect mice
against RV infection (Ingle et al., 2019), indicating that the
virome can have important interactions with RV as well.
Murine models of RV are thus helpful for clarifying
mechanisms and molecular pathways by which the microbiota
can promote or prevent infection.

Neonatal rats have also been used as an animal model to study
effects of probiotics on RV infection. Rats can be readily infected
using simian RV (SRV) strain SA-11, rare reassortants of which
have been shown to infect humans (Ciarlet et al., 2002; Awachat
January 2021 | Volume 10 | Article 586751
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TABLE 1 | Effects of microbiota and probiotics, observed in individual studies, on HRV/RVV immune responses in gnotobiotic neonatal pigs.
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and Kelkar, 2005; Perez-Cano et al., 2007), and both viremia and
extraintestinal spread has been observed in rats infected with
HRV or SRV (Crawford et al., 2006). In neonatal rats, probiotic
LGG administration reduces SRV viral levels in serum and colon
samples (Ventola et al., 2012). Furthermore, both live and dead
LGG administration ameliorate the poor weight gain and colon
swelling associated with SRV (Ventola et al., 2012). Gnotobiotic
neonatal rats fed fermented milk containing probiotic
Lactobacillus casei DN-114 001 exhibit reduced clinical
measures of diarrhea, decreased vacuolation in intestinal
epithelial cells, and decreased numbers of sulfated mucin
containing cells (Guerin-Danan et al., 2001). If the rate of
mucin secretion exceeds the rate of production then the
absence of mucin containing cells are indicative of increased
mucin secretion, a mechanism through which probiotics inhibit
RV infection in mice (Kawahara et al., 2017). Bifidobacterium
breve M-16V has also been shown to reduce SRV-induced
diarrheal severity and duration (Rigo-Adrover et al., 2017;
Rigo-Adrover et al., 2018). In the absence of RV infection, B.
breveM-16V is sufficient to enhance IgA production, which may
play a role in symptom reduction (Rigo-Adrover et al., 2016). A
prebiotic mixture of short chain galactooligosaccharides and
long chain fructooligosaccharides alone or in conjunction with
B. breve M-16V also reduces SRV diarrheal severity, duration
and viral shedding, enhances early serum anti-RV IgG and
intestinal anti-RV IgA responses, and increases IL-4 and IL-10,
both of which reduce RV infection in animal models (Gandhi
et al., 2017; Rigo-Adrover et al., 2017; Rigo-Adrover et al., 2018).
Thus, data from neonatal rat models supports protective effects
of probiotics against RV.

Despite multiple human clinical studies suggesting
interactions between the gut microbiota and HRV infection,
the cellular implications of these interactions remain unclear,
supporting the utility of in vitro models. Bacterially produced or
modified metabolites may be critical for mediating the effects of
the microbiota on RV, and can be readily tested using cell culture
systems such as Caco2 or MA104 cells. Inhibitory effects of bile
acids, which are regulated by the microbiota, on RV replication
through activation of the farnesoid X receptor have been
observed in both cell lines and mice (Kim and Chang, 2011).
Indeed, exploration of how the metabolome, or the combined set
of metabolites, present in the gut regulates RV infection will be
an important area of future study.

Human intestinal organoids (HIOs) and enteroids (HIEs),
which respectively use human induced pluripotent stem cells or
culturing of epithelial crypt domains ex vivo, represent
potentially useful systems for these studies (Kim and Chang,
2011; Yin et al., 2015; Saxena et al., 2016; Yin et al., 2016; Saxena
et al., 2017). HIOs have been successfully used to cultivate HRV
for analysis of antivirals (Finkbeiner et al., 2012; Yin et al., 2015;
Yin et al., 2016), and HRV cultivation in HIEs has been used to
study cellular mechanisms of HRV-induced diarrhea (Saxena
et al., 2016) and to explore innate immune responses to HRV
(Saxena et al., 2017). These systems thus hold promise for
exploration of HRV-microbiota interactions (Blutt et al., 2018),
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
though challenges in co-culturing eukaryotic cells and
anaerobic gut microbes are non-trivial. Technical advances in
replicating intestinal conditions in vitro may make these
explorations increasingly feasible (Karve et al., 2017; Jalili-
Firoozinezhad et al., 2019; Shin et al., 2019), hopefully
yielding future insight into the mechanisms of how the gut
microbiota affects HRV.
FUTURE DIRECTIONS

Studies thus far support critical interactions between the host gut
microbiota and RV infection as well as development of effective
immune responses to RVV. However, much is still unknown
about the nature of these interactions. Key remaining questions
include: What are the key endogenous bacterial taxa influencing
HRV infection and RVV responses? Do these taxa mediate effects
via direct interactions with RV, modulation of the host
epithelium, or regulation of host cytokine pathways? Can pre-,
pro-, or postbiotic (nutritional, bacterial, or bacterial product/
metabolite) interventions be improved to limit severity of HRV
infection or enhance RVV responses?

Continued and expanded use of mouse, pig, and HIO/HIE
models will be critical to further elucidate mechanisms of RV and
microbiota interactions. Specific bacterial taxa, or other
microbiota elements, that modulate infection and immune
responses would be useful to identify in all models, as species-
specific taxa may still mediate parallel effects on RV to provide
common mechanistic insights. Further careful exploration of
geographically diverse human cohorts in the context of natural
HRV infection and RVV administration will also be critical to
understand the complex environmental factors, including the
microbiota, at play. Finally, continuous discourse between the
human clinical study arena and experimental models to carefully
test hypotheses will be key to advancing our capacity to combat
RV infection in the future.
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