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Abstract

Purpose: Preoperative three-dimensional planning is important for total hip arthroplasty. To simulate the placement
of jointimplants on computed tomography (CT), pelvis and femur must be segmented. Accurate and rapid segmen-

tation of the hip joint is challenging. This study aimed to develop a novel deep learning network, named Changmugu
Net (CMG Net), which could achieve accurate segmentation of the femur and pelvis.

Methods: The overall deep neural network architecture of CMG Net employed three interrelated modules. CMG Net
included the 2D U-net to separate the bony and soft tissues. The modular hierarchy method was used for the main
femur segmentation to achieve better performance. A layer classifier was adopted to localise femur layers among a
series of CT scan images. The first module was a modified 2D U-net, which separated bony and soft tissues; it pro-
vided intermediate supervision for the main femur segmentation. The second module was the main femur segmenta-
tion, which was used to distinguish the femur from the acetabulum. The third module was the layer classifier, which
served as a post-processor for the second module.

Results: There was a much greater overlap in accuracy results with the “gold standard” segmentation than with com-
peting networks. The dice overlap coefficient was 93.55% 4= 5.57%; the mean surface distance was 1.34 +0.24 mm,
and the Hausdorff distance was 4.194+ 1.04 mm in the normal and diseased hips, which indicated greater accuracy
than the other four competing networks. Moreover, the mean segmentation time of CMG Net was 25.87+£2.73 s,
which was shorter than the times of the other four networks.

Conclusions: The prominent segmentation accuracy and run-time of CMG Net suggest that it is a reliable method
for clinicians to observe anatomical structures of the hip joints, even in severely diseased cases.
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Introduction

Total hip arthroplasty is the most effective treatment for
severe hip osteoarthrosis [1-3]. Preoperative computed
tomography (CT)-based 3D planning is essential for total
hip arthroplasty. Precise localisation and segmentation of
the hip joint on CT images are necessary to simulate the
placement of joint implants [4, 5]. CT images from dis-
eased hips exhibit image degradation, noise, non-homo-
geneous intensities and obscure boundaries between the
femoral head and acetabulum; because of these features,
automatic CT hip-joint segmentation is challenging [6,
7]. Therefore, a computer-aided segmentation scheme
is necessary for the fully automated segmentation of hip
joints [8].

Various methods have been proposed to solve these
problems (Table 1) [4, 9, 10]. Deep learning meth-
ods, particularly deep convolutional neural network
(CNN)-based methods (e.g. V-Net and U-Net), have
been successfully applied in hip segmentation [11].
Wang et al. [12] segmented pelvises using both 2D
U-Net and 3D U-Net; they found that the dice overlap
coefficient (DOC) was >94%. Chu et al. [13] automati-
cally segmented hip CT images using Spring Spring-
Mvc MyBatis-based methods; the DOC reached 95%.
Despite improved segmentation quality, these deep
neural networks are time-consuming and demand a
large amount of pixel-labelling. Moreover, these net-
works cannot manage holes and noise in segment
results. Therefore, improvements are needed in seg-
mentation using deep learning networks. This study
aimed to develop a novel deep learning network,
namely CMG Net, that could achieve accurate seg-
mentation of femurs and pelvises.

Materials and methods

Materials

This study was approved by the ethics committee of
the General Hospital of People’s Liberation Army (IRB
number: $§2019-052-01). Demographic data are pre-
sented in Table 1. CT images were acquired using the
Phillip CT Brilliance ICT with 1.00-mm slice thick-
ness and 512 x 512 image resolution. The images were
stored as unsigned 12-bit integers from 0 to 4095. For
manual labelling of the hip joints, all images were auto-
matically segmented using the thresholding technique,
with a threshold of 200 Hounsfield units, on an in-
house software (Mimics Research 19.0). Two experts

then manually inspected the non-segmented areas of
the femur and acetabulum. Slice-by-slice manual seg-
mentation was used as the benchmark for the evalua-
tion of distinct CNN structures. The number of slices
per CT ranged between 200 and 600. Because the CT
scans had different numbers of slices, the mean seg-
mentation times per CT image were evaluated, rather
than the mean segmentation times of the whole CT
dataset.

Datasets

To validate our proposed method for hip joint seg-
mentation, we established a CT dataset consisting of
100 normal hips for segmentation (training subset: 70;
test subset: 30). The osteoarthritis (OA) hip-joint seg-
mentation dataset consisted of 100 CT images training
set: 70; test set: 30); the developmental dysplasia of the
hip (DDH) hip joint segmentation dataset consisted of
138 CT images (training set: 70; test set: 68); the femo-
ral neck fracture (FNF) hip joint segmentation dataset
consisted of 366 CT images (training set: 243; test set:
123); and the osteonecrosis of femoral head (ONFH) hip
joint segmentation dataset consisted of 111 CT images
(training set: 50; test set: 61). An overview of the data-
sets is presented in Table 2. Cases with metal compo-
nents were excluded because of the potential influence
of artefacts.

Establishment of network architecture

We proposed a new network structure for femur seg-
mentation in industrial use. The entire network was
constructed in a modular hierarchy structure (Fig. 1).
There were two main advantages. First, we embedded
dense connections in a stacked hourglass segmentation
network, which could accelerate the learning progress
using fewer parameters. The number of stacked layers
could be adjusted for tasks with different complexi-
ties. Second, we appended several different functional
modules in the hierarchical structure for intermediate
supervision to enhance the accuracy of different mod-
ules. They could be trained independently and followed
by integration, facilitating future maintenance and
model updates.

In our network, we adopted multiple new techniques
to ensure the performance of femur segmentation on
CT layer scans. We constructed the entire network in a
modular hierarchy structure [14], comprising upstream,
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Table 2 Demographic information of patients enrolled in this study
Characteristic FNF ONFH DDH OA Normal
Gender (M/F)

Male 127 78 58 56 65

Female 239 33 80 44 35

Age 71.08£15.24 5032+£14.15 5036+ 14.04 57.74£11.99 5274+£134
Stage

| 22 5 33 NA NA

Il 33 9 58 NA NA

Il 213 22 23 NA NA

v 98 75 24 NA NA

@ FNF was classified by Garden classification criteria. ONFH was classified by ARCO classification criteria. DDH was classified by Crowe classification criteria
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reprocessing

Modular Hierarchy

Acetabulum
Segmentation Mask

CT Images (40, 200)

Femur Segmentation

Segmentation CNN1 Segmentation CNN2

Femur Segmentation

CT Images (500, 1000)

| .

5
<
9
aQ
0
w
23
=
(el
=
o
=]

Hip Joint Segmentation
. Mask

and preserve bone structure as much as possible

Modular Hierarchy

Fig. 1 The flowchart of our proposed segmentation method. The input CT to the upward network has window level 40, window width 200 to
highlight all bone structure. And the CT input to femur segmentation network has window level 500, window width 1000 to remove soft tissues

midstream, and downstream layers. The upward net was
a modified 2D U-net that separated bone and soft tis-
sues; it retained only the bony areas. The modified U-net
had 2 x 2 max-pooling layers and 2 up-sample decon-
volution layers, with additional 3 x 3 convolution layers
included.

The bone and soft tissues were separated using
the upward 2D U-net. The middle segmentation net

acquired the main femur structures, while the down-
ward net was a layer classifier to localise femur layers
among multiple CT scan images. We trained these nets
independently during the training process. In particular,
we fed benchmark labels of the upward and downward
nets to the main femur segmentation net in the train-
ing process then assembled the nets during the testing
process.
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The upper net acquired the feature map of the bone
structures via separation of soft tissue and bones; it
then fused the acquired map into the main network to
increase the accuracy of bone segmentation. The loss
function of the upward segmentation network is the
combination of dice loss and softmax cross-entropy
loss, represented as L = a - diceLoss + b - crossEnropy,
where a and b are hyper-parameters. Dice loss could
benefit the overall shape integrity; pixel-wise soft-max
classification could benefit and preserve pixels in the
bone edge area.

The middle net was the main segmentation net that
constructed the femur, while the downward net was a
layer classifier to localise femur layers among multiple
CT scan images, most of which did not include femurs.
We trained upward, middle, and lower nets together
during the training process. In particular, we fed the
feature map of the upward net to the main femur seg-
mentation net during the training process to facilitate
femur segmentation net focus on bony areas. Impor-
tantly, the network structure was composed of three
modified 2D-U net models and a classification model.
Each Unet model was composed of basic convolution,
pooling, and up-sample deconvolutions. Because the
pooling layer does not participate in the backpropaga-
tion calculation, it was not included in the calculation.
Each Unet model had 18 layers, while the classification
model had 14 layers. As an alternative, the lower net
could be trained separately; thus, the structure enabled
the inclusion of more functions in the neural networks
without the loss of flexibility, and combinations of the
results of the three nets were expected to increase the
accuracy (Fig. 2A).

For the main femur segmentation network, the fun-
damental structure was an encoder—decoder with two
2x 2 pooling layers and two up-sample deconvolu-
tions. We stacked two encoder—decoder structures and
densely concatenated all corresponding layers, thus
combining the advantages of U-Net and Dense-Net
[15]. The network could focus on information of differ-
ent scales with the stacked U-net structure; the gradient
could attenuate from back to front without disappearing
or exploding because of the dense connection structure.
Dense connections required fewer parameters and lay-
ers to achieve better performance, which is important
for commercial purposes. In addition, we combined
the two losses of both decoders’ output nodes, using
the same loss of the upward network; we tuned the
weights of the losses using the intermediate supervision
to largely avoid a vanishing gradient and accelerate the
learning progress.
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The input image size was 256 x 256. We conducted
data augmentation to cut the image in the middle and
then flip the right part such that it appeared to be the
“left” part. This yielded two 256 x 128 images from one
256 x 256 image. We performed this augmentation for
both the training and testing processes. Detailed param-
eters of the hourglass-shaped architecture are shown in
Fig. 2B.

For the downward layer classification net, we mainly
used the network for two purposes. First, we located
femur layers quickly and precisely among the CT
scans (generally, only a few dozen CT layers have
femurs among hundreds of CT scans; thus, feeding the
entire data into the main segmentation network could
decrease efficiency). Second, we provided additional
classification confidence as a coefficient for the femur
segmentation map to remove false segments; if a CT
scan is not likely to have femurs in it, then the confi-
dence of all positive segmentation results should be
reduced.

Model performance evaluation and statistical analysis
Segmentation performances of these CNN structures in
different CT images were evaluated using DOCs and the
Hausdorff Distance (HD). We defined the automatically
segmented set of voxels as AS and the manually defined
ground truth as GT [16].

(1) The DOC quantified the match between two sets by
normalising the size of their intersection over the
mean of their sizes, defined as follows:

_ 2JASNGT|

DOC= ———
|AS| + |GT|

where the operator |-| returns the number of voxels
contained in a region.
(2) Distance-based metrics

Before the establishment of distance-based metrics, we
defined a distance measure for the voxel “x” from a set of
voxels “A” as:

d(x,A) = mind («x,
(5, 4) = mind(x,)
where d(x, y) is the Euclidean distance of the voxels incor-
porating the real spatial resolution of the volume data.

We then defined the directed Hausdorff measure as the

maximum distance between the point set A and the point
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Fig. 2 Establishment of network architecture. A A schematic view of the overall deep neural network architecture for the automatic segmentation
of the hip joint. B The detailed parameters of the hourglass-shaped architecture
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set B for all points in A to the closest point in B. Mathe-
matically, this was represented by the following equation:

ﬁ .
dy1(4, B) = max  min (d(x,))
Thus, HD was defined as the maximum distance
between two objects:

— —
HD = max{dy (A, B),dy(B,A)}

We compared our proposed segmentation method
with four CNN-based methods: fully convolutional
network, 2D U-Net, 2.5D U-Net, and 3D U-Net (all
popular methods for medical image segmentation).
The comparison was composed of three parts. The
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first part compared the learning curves of the five nets
by validating the loss in the training process. The sec-
ond part tested the performances of CMG Net and the
other nets in the segmentation of normal hip joints.
We used the training set of normal hip joints to train
each net and then used the test set of normal hip joints
to validate the performances of the nets. The third
part tested the performances of CMG Net and the
other nets in the segmentation of diseased hip joints,
particularly joints with severe disease. We used the
training sets of FNF, ONFH, DDH, and OA to train
each net separately and then used the test sets of each
disease to validate the performance of each net. The
training and test sets belonged to the same disease. We
compared the times that those nets consumed and the

A Normal

Training Loss
iraining Loss

i
5000

Iteration Iteration

Training Loss
Training Loss

T 1 ¥ e e
0 5000 10000 o 5000 10000
Iteration Iteration

2D-U Net 2.5D-U Net

Normal

CMG Net

versus CMG Net

Fig. 3 CMG Net is effective for segmentation of normal hip joints. A Comparison of learning curves from the training data with the proposed CMG
Net and other alternative Net (Since we tune the class weights for different networks to ensure its performance so they don't have to converge

to one loss during training process.) B Qualitative comparison of the segmentation results obtained by the automatic segmentation to manual
segmentation on a given axial slice of the normal hip joint. C Quantitative comparison of the segmentation results obtained by the automatic
segmentation to manual segmentation on the normal hip joint. D After we piled up all the segmented layers according to the original CT sequence
of a normal hip, we could rebuild an accurately segmented 3D hip model. A 3D model rebuilt by original CT images; B 3D model rebuilt by CT
images segmented by CMG Net; C the anatomical sturctures of both femur and acetabular can be observed clearly. ***p <0.001, ****p < 0.0001
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parameters mentioned above using paired ¢ tests and
multiple comparisons in the general linear model. All
analyses were performed using SPSS Statistics soft-
ware, version 23 (IBM Corp., Armonk, NY, USA); p
values < 0.05 were considered statistically significant.

Training details
We use the Tensorflow 1.15 and NVIDIA RTX 2070 to
train the network, which required 6 h, 30,000 iterations,
and 10 epochs.

Results

CMG Net is effective for the segmentation of normal hip
joints

The demographic data of all patients are shown in
Table 2. This technique can be used in preoperative
planning for total hip arthroplasty [17]. However,
the use of this technique is limited to patients with-
out metal implants because metal artefacts could
influence the segmentation process. The training

Page 8 of 17

loss of the learning curves consistently decreased,
demonstrating that there was no serious over-fitting
(Fig. 3A). Comparison analyses indicated that CMG
Net converged much faster than did the other four
nets, particularly during the early learning stage.
These results demonstrated that the proposed CMG
Net could effectively accelerate the training procedure
by overcoming optimisation difficulties via manage-
ment of training in all upper, middle, and downward
layers in the network.

Next, we used the test set of normal hip joints to
evaluate the segmentation accuracy. Manually anno-
tated boundaries were used for the benchmark. The
consistencies between the boundaries of the acetabu-
lum and femoral head were effectively labelled in most
cases (Fig. 3B). Moreover, we used DOC, ASD, and HD
to quantify the segmentation performance (Fig. 3C).
The mean DOC of CMG Net was 98.99% +0.14%,
which exceeded the performances of the other four
nets. In addition, HD was computed as the mean

Table 3 Multiple comparison of CMG Net and the order four nets of segmentation time

Disease (I) NET (J) NET Mean difference  Std. error Sig 95% confidence interval
=) Lower bound Upper bound

Multiple comparisons

Dependent variable: TIME

Least significance difference (LSD)

ONFH CMG net FCN —1066 036 <0.05 —1137 —995
2D UNET —9.87 0.36 <0.05 —10.58 —9.16
25D UNET —31.55 0.36 <0.05 —3226 —30.84
3D UNET —4133 0.36 <0.05 —42.04 —40.62

DDH CMG net FCN —10.22 0.22 <0.05 —10.66 —9.78
2D UNET —10.15 022 <0.05 —10.59 —9.71
2.5D UNET —3252 0.22 <0.05 —32.96 —32.09
3D UNET —40.69 0.22 <0.05 —41.13 —40.25

FNF CMG net FCN —9.84 0.12 <0.05 —10.07 —9.61
2D UNET —981 0.12 <0.05 —10.04 —9.58
25D UNET —3143 0.12 <0.05 —31.66 —31.20
3D UNET —3993 0.12 <0.05 —40.16 —39.69

OA CMG net FCN —863 032 <0.05 —9.25 —8.00
2D UNET — 1051 0.32 <0.05 —11.13 —9.88
25D UNET —29.66 032 <0.05 —30.29 —29.04
3D UNET —40.06 032 <0.05 —40.69 —3944

NORMAL CMG net FCN —897 0.32 <0.05 —9.59 —8.34
2D UNET —1083 032 <0.05 —1146 —10.21
2.5D UNET —3033 0.32 <0.05 —30.96 —29.70
3D UNET —40.23 032 <0.05 —40.86 —39.60
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longest distances from the surface model derived from
the associated manual segmentation. A mean HD of
5.26+0.6 mm was obtained from CMG Net, demon-
strating that HD was significantly reduced in our pro-
posed method. After the assembly of all segmented
layers according to the original CT sequence, we were
able to rebuild an accurately segmented 3D hip model;
all anatomical structures and features could be observed
clearly (Fig. 3D). Therefore, CMG Net achieved the
highest accuracy for the segmentation of normal hips
without post-processing.

Furthermore, the mean segmentation time for CMG
Net was 23.7+1.0 s on a Nvidia GeForce GTX TITAN
X GPU (Table 3), while the mean manual segmentation
time was 1612.6 270 s (Table 4). This indicated that
the hip joint segmentation times using traditional CNN
methods and manual segmentation were approximately
1.5-2.7-fold and 68.0-fold greater than the times for
CMG Net.

CMG Net ensured the overall accuracy of segmented femur
head
Figure 4A shows the axial views of typical cases. CMG
Net achieved acceptable results for the segmentation of
diseased hip joints. A comparison among methods in
terms of DOC, ASD, and HD is shown in Fig. 4B-D and
Table 5. As expected, in the diseased hip segmentation
task, CMG Net achieved a DOC of 93.55% +5.57%,
ASD of 1.344+0.24 mm, and HD of 4.194+1.04 mm.
Thus, CMG Net could significantly improve the perfor-
mance of CNN-based medical image segmentation.
Paired ¢ tests and multiple comparisons in the gen-
eral linear model showed that DOC, ASD, and HD were
significantly better when using CMG Net than when
using other methods for both diseased and normal hip
segmentation. In subgroup analysis, CMG Net per-
formed better in severe cases, including Crowe III/IV
DDH and ARCO stage III/IV ONFH and Garden III/IV
ENF (Table 6). After assembly of all segmented layers
according to the original CT sequence, all osteophytes
and defects could be observed clearly (Fig. 5).
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Discussion

In this study, we found that the novel CNN-CMG Net
could effectively and accurately segment hip joints from
CT images. To our knowledge, this study presents one
of the first examples of deep CNN for the automatic
segmentation of CT images of normal and diseased hip
joints.

A computer-aided segmentation strategy depends on
the segmentation accuracy at the edges between the fem-
oral head and acetabulum. However, the boundaries are
often ambiguous; the images are frequently affected by
degradation, noise, and non-homogeneous intensities in
diseased cases. Therefore, we combined the advantages
of U-Net and Dense-Net to accelerate the learning pro-
cess and improve the accuracy of segmentation involving
diseased hip joints, while using fewer parameters. CMG
net considers bone separation, as well as the features of
the edge between bone and soft tissue. We aimed to sep-
arate femur head and acetabulum with a high accuracy;
thus, we divided the target into two sub-tasks. First, we
separated femur head and acetabulum, both of which are
bony structures. Second, we maintained the accuracy
of the femur head during the bone structure separation
process. The bone-soft tissue boundary is critical for the
second sub-task. The CMG network utilises two paral-
lel networks to share the responsibility of the two sub-
tasks mentioned above. The upper module provides the
feature map of the bone-soft tissue interface and fuses to
the main separation network to ensure overall accuracy
regarding the segmented femur head.

Our proposed strategies for managing diseased
hips greatly increased the segmentation accuracy and
reduced the mean standard deviation. Compared to
traditional CNN nets and manual segmentation [18],
the segmentation time of the diseased hip joints using
our proposed method was significantly reduced. Shin-
ichi et al. [4] showed a coarse-to-fine hip CT segmenta-
tion framework that consisted of regional growth-based
preprocessing, conditional random field-based coarse
segmentation, and patch-based refinement. Radiology
experts expend considerable effort in completing the

(See figure on next page.)

Fig. 4 CMG network ensures the overall accuracy of segmented femur head. A Qualitative comparison of the segmentation results on a given
axial slice of the diseased hip joints (ONFH necrosis of the femoral head, FNF femoral neck fracture, DDH development dysplasia hip, OA hip
osteoarthritis). B Accuracy (DOC, %) comparison between the proposed method and four state-of-the-art methods on diseased hip joints. C
Accuracy (ASD, px) comparison between the proposed method and four state-of-the-art methods on diseased hip joints. D Accuracy (HD, px)
comparison between the proposed method and four state-of-the-art methods on diseased hip joints. **p <0.01, ***p <0.001, ****p < 0.0001 versus

CMG Net
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Table 5 Multiple comparison of accuracy between CMG Net and the other four nets

Disease Dependent (I) NET (J) NET Mean Std. error Sig 95% confidence interval
variable difference
(1-J Lower bound Upper bound

Multiple comparisons
Least significance difference (LSD)

ONFH DOC CMG net FCN 0.14 0.02 <0.05 0.10 0.19
2D UNET 0.04 0.02 <0.05 0.00 0.09
2.5D UNET 0.20 0.02 <0.05 0.16 0.24
3D UNET 0.22 0.02 <0.05 0.18 0.26
ASD CMG net FCN —0.03 0.06 0.61 —0.15 0.09
2D UNET —-0.15 0.06 <0.05 —-0.27 —0.03
2.5D UNET —0.04 0.06 0.51 —0.16 0.08
3D UNET —0.09 0.06 0.14 —0.21 0.03
HD CMG net FCN —1.28 0.36 <0.05 —1.99 —057
2D UNET —074 0.36 <0.05 —145 —0.03
2.5D UNET —5.16 0.36 <0.05 —587 —4.45
3D UNET —6.86 0.36 <0.05 —756 —6.15
DDH DOC CMG net FCN 0.15 0.02 <0.05 0.12 0.18
2D UNET 0.09 0.02 <0.05 0.06 0.12
2.5D UNET 0.24 0.02 <0.05 0.21 0.27
3D UNET 0.25 0.02 <0.05 0.22 0.28
ASD CMG net FCN —-0.19 0.03 <0.05 —-025 —-0.13
2D UNET —-0.18 0.03 <0.05 —-0.24 —-0.12
2.5D UNET —-027 0.03 <0.05 —-034 —0.21
3D UNET —-0.19 0.03 <0.05 —0.26 —-0.13
HD CMG net FCN —1.08 0.31 <0.05 —1.69 —047
2D UNET —0.80 0.31 <0.05 —141 —0.20
2.5D UNET —497 0.31 <0.05 —557 —436
3D UNET —6.60 0.31 <0.05 —7.21 —6.00
FNF DOC CMG net FCN 0.11 0.01 <0.05 0.09 0.14
2D UNET 0.04 0.01 <0.05 0.01 0.06
2.5D UNET 0.21 0.01 <0.05 0.18 0.23
3D UNET 0.19 0.01 <0.05 0.17 0.22
ASD CMG net FCN —0.21 0.02 <0.05 —0.25 —-0.17
2D UNET —0.24 0.02 <0.05 —0.27 —0.20
2.5D UNET —-0.23 0.02 <0.05 —-0.27 —-0.19
3D UNET —0.24 0.02 <0.05 —-028 —0.20
HD CMG net FCN —1.16 0.22 <0.05 —1.60 —-0.73
2D UNET 0.08 0.22 073 —036 0.51
2.5D UNET —4.88 0.22 <0.05 —532 —445

3D UNET —6.64 0.22 <0.05 —7.08 —6.21
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Disease Dependent (I) NET (J) NET Mean Std. error Sig 95% confidence interval
variable difference
(1-J) Lower bound Upper bound
OA DOC CMG net FCN 0.03 0.02 <0.05 0.00 0.07
2D UNET 0.09 0.02 <0.05 0.05 0.12
2.5D UNET 0.16 0.02 <0.05 0.12 0.19
3D UNET 0.15 0.02 <0.05 0.12 0.18
ASD CMG net FCN —0.04 0.07 0.62 —-0.18 0.11
2D UNET 0.11 0.07 0.14 —0.04 0.25
2.5D UNET —-0.10 0.07 0.16 —0.25 0.04
3D UNET —0.04 0.07 0.57 —0.19 0.10
HD CMG net FCN —263 0.22 <0.05 —3.07 —2.18
2D UNET —3.19 0.22 <0.05 —3.63 —2.74
25D UNET —4.72 0.22 <0.05 —5.17 —4.28
3D UNET —574 0.22 <0.05 —6.18 —529
NORMAL DOC CMG net FCN 0.01 0.02 0.53 —0.02 0.04
2D UNET 0.09 0.02 <0.05 0.06 0.12
2.5D UNET 0.15 0.02 <0.05 0.11 0.18
3D UNET 0.16 0.02 <0.05 0.13 0.20
ASD CMG net FCN —0.05 0.07 0.53 —-0.19 0.10
2D UNET —0.02 0.07 0.81 —0.16 0.13
2.5D UNET —0.09 0.07 0.24 —0.23 0.06
3D UNET 0.04 0.07 0.60 -0 0.19
HD CMG net FCN —2.75 0.27 <0.05 —3.28 —222
2D UNET —344 0.27 <0.05 —3.98 —291
25D UNET —461 0.27 <0.05 —5.14 —4.08
3D UNET —6.00 0.27 <0.05 —6.54 —547

training samples. Gwun Jang et al. [9] proposed a fully
automated segmentation method for hip joints using
the complementary characteristics of patient-specific
optimal thresholding and the watershed algorithm.
However, the use of primitive spheres in the proposed
method may be ineffective for CT data in cases where
the femoral head is severely deformed because of dis-
eases (e.g. avascular necrosis). Our results suggest that
CMG Net is a practical and useful instrument for the
segmentation of diseased hips, as well as the observa-
tion of all anatomical features. The results also suggest
that our proposed strategy was highly practical and
clinically useful because it rapidly achieved fully auto-
mated and accurate segmentation.

There were several limitations in the present study.
First, the overall design of the network was traditional and
lacked breakthrough innovations with respect to feature

extraction. Second, the task setting was simple, only involv-
ing segmentation of the bony parts; it did not include fur-
ther diagnosis or scoring. Third, the use of this technique
was limited to patients without metal implants because
metal artefacts could influence the segmentation process.
We plan to investigate these issues in subsequent research.

Conclusion

We present a fully automatic and accurate deep neural
network, CMG Net, which is more efficient than existing
networks. It achieved a segmentation accuracy compara-
ble to human experts with a shorter run-time. Therefore,
CMG Net is highly practical and clinically useful; it may
be extended to the segmentation of CT data involving
other anatomical structures.
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Table 6 Subgroup analysis of accuracy between CMGsNET and other four nets in segmentation of severe diseases

Disease Dependent (I) NET (J) NET Mean Std. error Sig 95% confidence interval
variable difference
(1-J) Lower bound Upper bound

Multiple comparisons
Least significance difference (LSD)

ONFH I ASD CMG net FCN —0.19 0.04 <0.05 —0.27 —-0.12
2D UNET —-0.27 0.04 <0.05 —-034 —-0.19
2.5D UNET —0.25 0.04 <0.05 —-033 —-0.17
3D UNET —-0.22 0.04 <0.05 —030 —-0.14

DOC CMG net FCN 0.10 0.03 <0.05 0.04 0.15
2D UNET 0.04 0.03 0.12 —0.01 0.10
2.5D UNET 0.20 0.03 <0.05 0.15 0.25
3D UNET 0.21 0.03 <0.05 0.16 0.26

HD CMG net FCN —1.10 046 <0.05 —2.01 -0.19
2D UNET —-033 046 047 —1.24 0.58
2.5D UNET —5.67 0.46 <0.05 —6.58 —4.76
3D UNET —6.67 046 <0.05 —7.58 —-576

ONFH IV ASD CMG net FCN 0.00 0.07 0.99 —-0.14 0.14
2D UNET —-0.09 0.07 0.20 —-023 0.05
2.5D UNET —0.09 0.07 0.19 —-023 0.04
3D UNET —0.10 0.07 0.15 —024 0.04

DOC CMG net FCN 0.14 0.03 <0.05 0.09 0.19
2D UNET 0.05 0.03 0.05 0.00 0.10
2.5D UNET 0.21 0.03 <0.05 0.16 0.26
3D UNET 0.23 0.03 <0.05 0.18 0.28

HD CMG net FCN —1.31 0.40 <0.05 —2.11 —0.52
2D UNET —-0.77 040 0.06 —157 0.02
2.5D UNET —5.10 0.40 <0.05 —589 —430
3D UNET —-7.13 040 <0.05 —792 —634

DDH I ASD CMG net FCN —-0.12 0.05 <0.05 —-023 —0.02
2D UNET —0.18 0.05 <0.05 —0.28 —0.07
2.5D UNET —-037 0.05 <0.05 —047 —-0.26
3D UNET —-0.13 0.05 <0.05 —-0.24 —0.03

DOC CMG net FCN 0.18 0.03 <0.05 0.1 0.24
2D UNET 0.07 0.03 <0.05 0.01 0.13
2.5D UNET 0.22 0.03 <0.05 0.15 0.28
3D UNET 0.26 0.03 <0.05 0.20 0.33

HD CMG net FCN — 146 0.67 <0.05 —280 —0.11
2D UNET —-0.15 067 0.83 — 149 1.20
2.5D UNET —5.06 0.67 <0.05 — 641 —372

3D UNET —6.60 0.67 <0.05 —794 —5.25
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Disease Dependent (I) NET (J) NET Mean Std. error Sig 95% confidence interval
variable difference
(1—J) Lower bound Upper bound
DDH IV ASD CMG net FCN —0.21 0.07 <0.05 —0.34 —0.08
2D UNET —0.20 0.07 <0.05 —0.34 —0.07
2.5D UNET —0.25 0.07 <0.05 —038 —-0.12
3D UNET —0.17 0.07 <0.05 —0.30 —0.04
DOC CMG net FCN 0.13 0.04 <0.05 0.05 0.20
2D UNET 0.12 0.04 <0.05 0.05 0.19
2.5D UNET 0.28 0.04 <0.05 0.21 0.35
3D UNET 0.28 0.04 <0.05 0.20 0.35
HD CMG net FCN —1.29 067 0.06 —264 0.07
2D UNET —1.50 0.67 <0.05 —285 —0.14
25D UNET —547 0.67 <0.05 —6.83 —4.12
3D UNET —6.39 067 <0.05 —7.74 —503
FHF 11l ASD CMG net FCN —0.21 0.02 <0.05 —0.26 -0.16
2D UNET —0.24 0.02 <0.05 —0.29 —0.20
2.5D UNET —0.24 0.02 <0.05 —0.28 —-0.19
3D UNET —0.24 0.02 <0.05 —0.29 —0.19
DOC CMG net FCN 0.11 0.02 <0.05 0.08 0.14
2D UNET 0.04 0.02 <0.05 0.01 0.08
25D UNET 0.20 0.02 <0.05 0.17 0.23
3D UNET 0.18 0.02 <0.05 0.15 0.21
HD CMG net FCN —1.21 0.28 <0.05 —1.76 —0.67
2D UNET 0.21 0.28 0.45 —0.34 0.75
25D UNET —453 0.28 <0.05 —5.08 —3.99
3D UNET —6.38 0.28 <0.05 —6.93 —584
FHF IV ASD CMG net FCN —0.19 0.04 <0.05 —-0.27 —-0.12
2D UNET —0.27 0.04 <0.05 —0.34 —0.19
2.5D UNET —0.25 0.04 <0.05 —033 —-0.17
3D UNET —0.22 0.04 <0.05 —0.30 —0.14
DOC CMG net FCN 0.10 0.03 <0.05 0.04 0.15
2D UNET 0.04 0.03 <0.05 —0.01 0.10
25D UNET 0.20 0.03 <0.05 0.15 0.25
3D UNET 0.21 0.03 <0.05 0.16 0.26
HD CMG net FCN —1.10 046 <0.05 —201 —0.19
2D UNET —033 0.46 047 —1.24 0.58
2.5D UNET —567 046 <0.05 —6.58 —476
3D UNET —6.67 046 <0.05 —7.58 —576
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Fig. 5 The CMG Net can accurately segment diseased hips. A 3D model rebuilt by original CT images; B 3D model rebuilt by CT images segmented
by CMG Net; C the osteophytes and defects of both femur and acetabular can be observed clearly

Acknowledgements

The English in this document has been checked by at least two professional
editors, both native speakers of English. For a certificate, please see: http:/
www.textcheck.com/certificate/bgNAYC.

Authors’ contributions

DW, X.Z.and W.C. designed and performed research. X L, Y.Z. analysed data.
Y.Z.and W.C. contributed to data interpretation. D.W. and X.Z. wrote the paper.
All authors read and approved the final manuscript.

Funding
This study was funded by National Science Foundation Project No. 81772320
and Big Data Project of PLA General Hospital (No. 2019MBD-041).

Availability of data and materials
The datasets are available from the corresponding authors on reasonable
request.

Code availability
Not applicable.


http://www.textcheck.com/certificate/bgNAYC
http://www.textcheck.com/certificate/bgNAYC

Wu et al. Journal of Orthopaedic Surgery and Research (2022) 17:164

Declarations

Ethics approval and consent to participate

All procedures performed in studies involving human participants were in
accordance with the ethical standards of the institutional and/or national
research committee and with the 1964 Helsinki declaration and its later
amendments or comparable ethical standards.

Consent for publication
Informed consent was obtained from all individual participants included in
the study.

Competing interest
The authors declare that they have no conflict of interest.

Author details

'Senior Department of Orthopedics, The Fourth Medical Center of PLA
General Hospital, Beijing, China. *National Clinical Research Center for Ortho-
pedics, Sports Medicine and Rehabilitation, General Hospital of Chinese

PLA, Beijing, China. *Longwood Valley Medical Technology Co. Ltd, Beijing,
China. “School of Life Sciences, Tsinghua University, Beijing, China. %Institute
of Biomedical and Health Engineering (iBHE), Tsinghua Shenzhen International
Graduate School, Beijing, China.

Received: 30 September 2021 Accepted: 10 January 2022
Published online: 15 March 2022

References

1. Dimitriou D, Antoniadis A, Flury A, et al. Total hip arthroplasty improves
the quality-adjusted life years in patients who exceeded the estimated
life expectancy. J Arthroplasty. 2018;33(11):3484-9.

2. Cross M, Smith E, Hoy D, et al. The global burden of hip and knee osteo-
arthritis: estimates from the global burden of disease 2010 study. Ann
Rheum Dis. 2014;73(7):1323-30.

3. Ackerman IN, Bohensky MA, Zomer E, et al. The projected burden of
primary total knee and hip replacement for osteoarthritis in Australia to
the year 2030. BMC Musculoskelet Disord. 2019;20(1):90.

4. ChangY,YuanY, Guo C, et al. Accurate pelvis and femur segmentation
in hip CT with a novel patch-based refinement. IEEE J Biomed Health
Inform. 2019;23(3):1192-204.

5. Ogawa T, Takao M, SakaiT, et al. Factors related to disagreement in
implant size between preoperative CT-based planning and the actual
implants used intraoperatively for total hip arthroplasty. Int J Comput
Assist Radiol Surg. 2018;13(4):551-62.

6. Wells J, Nepple JJ, Crook K, et al. Femoral morphology in the dysplastic
hip: three-dimensional characterizations with CT. Clin Orthop Relat
Res. 2017,475(4):1045-54.

7. Beebe MJ, Wylie JD, Bodine BG, et al. Accuracy and reliability of com-
puted tomography and magnetic resonance imaging compared with
true anatomic femoral version. J Pediatr Orthop. 2017;37(4):e265-70.

8. Chu( ChenC, LiuL, etal FACTS: fully automatic CT segmentation of a
hip joint. Ann Biomed Eng. 2015;43(5):1247-59.

9. Yokota F, Otake Y, Takao M, et al. Automated muscle segmentation
from CT images of the hip and thigh using a hierarchical multi-atlas
method. Int J Comput Assist Radiol Surg. 2018;13(7):977-86.

10. Kim JJ, Nam J, Jang IG. Fully automated segmentation of a hip joint
using the patient-specific optimal thresholding and watershed algo-
rithm. Comput Methods Programs Biomed. 2018;154:161-71.

11. HiasaY, Otake Y, Takao M, et al. Automated muscle segmentation from
clinical CT using Bayesian U-net for personalized musculoskeletal
modeling. [EEE Trans Med Imaging. 2019;39(4):1030-40.

12. Wang C, Connolly B, De Oliveira Lopes PF, et al. Pelvis segmentation
using multi-pass U-net and iterative shape estimation; 2019:49-57.

13. Chu C, Bai J, Wu X, et al. Fully automatic segmentation of hip CT
images. In: Zheng G, Li S, editors., et al,, Computational radiology for
orthopaedic interventions. Cham: Springer; 2016. p. 91-110.

14. Eppel S. Hierarchical semantic segmentation using modular convolu-
tional neural networks. 2017.

Page 17 of 17

15. Huang G, Liu Z, Van Der Maaten L, et al. Densely connected convolu-
tional networks. 2016.

16. Kamiya N, Li J, Kume M, et al. Fully automatic segmentation of
paraspinal muscles from 3D torso CT images via multi-scale itera-
tive random forest classifications. Int J Comput Assist Radiol Surg.
2018;13(11):1697-706.

17. Huo J,Huang G, Han D, et al. Value of 3D preoperative planning for pri-
mary total hip arthroplasty based on artificial intelligence technology.
J Orthop Surg Res. 2021;16(1):156.

18. Kocak B, Durmaz ES, Kaya OK, et al. Reliability of single-slice-based 2D
CT texture analysis of renal masses: influence of intra- and interob-
server manual segmentation variability on radiomic feature reproduc-
ibility. AJR Am J Roentgenol. 2019;213(2):377-83.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:

fast, convenient online submission

thorough peer review by experienced researchers in your field

rapid publication on acceptance

support for research data, including large and complex data types

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year

K BMC

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions




	Utility of a novel integrated deep convolutional neural network for the segmentation of hip joint from computed tomography images in the preoperative planning of total hip arthroplasty
	Abstract 
	Purpose: 
	Methods: 
	Results: 
	Conclusions: 

	Introduction
	Materials and methods
	Materials
	Datasets
	Establishment of network architecture
	Model performance evaluation and statistical analysis
	Training details

	Results
	CMG Net is effective for the segmentation of normal hip joints
	CMG Net ensured the overall accuracy of segmented femur head

	Discussion
	Conclusion
	Acknowledgements
	References


