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HER2-positive breast cancer is a highly heterogeneous tumor, and about 30% of patients still suffer from
recurrence and metastasis after trastuzumab targeted therapy. Predicting individual prognosis is of great
significance for the further development of precise therapy. With the continuous development of com-
puter technology, more and more attention has been paid to computer-aided diagnosis and prognosis
prediction based on Hematoxylin and Eosin (H&E) pathological images, which are available for all breast
cancer patients undergone surgical treatment. In this study, we first enrolled 127 HER2-positive breast
cancer patients with known recurrence and metastasis status from Cancer Hospital of the Chinese
Academy of Medical Sciences. We then proposed a novel multimodal deep learning method integrating
whole slide H&E images (WSIs) and clinical information to accurately assess the risk of relapse and
metastasis in patients with HER2-positive breast cancer. Specifically, we obtained the whole H&E staining
images from the surgical specimens of breast cancer patients, and these images were adjusted to size
512 � 512 pixels. The deep convolutional neural network (CNN) was applied to these images to retrieve
image features, which were combined with the clinical data. Based on the combined features. After that, a
novel multimodal model was constructed for predicting the prognosis of each patient. The model
achieved an area under curve (AUC) of 0.76 in the two-fold cross-validation (CV). To further evaluate
the performance of our model, we downloaded the data of all 123 HER2-positive breast cancer patients
with available H&E image and known recurrence and metastasis status in The Cancer Genome Atlas
(TCGA), which was severed as an independent testing data. Despite the huge differences in race and
experimental strategies, our model achieved an AUC of 0.72 in the TCGA samples. As a conclusion,
H&E images, in conjunction with clinical information and advanced deep learning models, could be used
to evaluate the risk of relapse and metastasis in patients with HER2-positive breast cancer.
� 2021 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Bio-
technology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

In 2020, breast cancer accounted for 12% of malignant tumors in
all human population, overtaking lung cancer as the most common
malignancy globally [1,2]. Breast cancer is a kind of highly hetero-
geneous tumor, of which HER2-positive breast cancer accounts for
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about 25–30% incidences. HER2-positive breast cancer is highly
aggressive, prone to brain metastasis, and poor in prognosis [3].

Recently, the emergence of trastuzumab, a kind of HER2-
targeted drug, has greatly improved the survival and prognosis of
patients with HER2-positive breast cancer [4,5]. However, 20% of
patients with HER2-positive breast cancer still develop recurrence
and metastasis after adjuvant therapy including chemotherapy and
trastuzumab [6,7]. Dozens of new drugs, such as monoclonal anti-
bodies (mAb), tyrosine kinase inhibitors (TKI) and antibody-drug
conjugate (ADC), have been used for intensive treatment of
patients with HER2-positive breast cancer, who are at a high risk
of recurrence. How to identify patients with high risk of recurrence
is a major difficulty. Currently, clinicians can only identify the risk
of recurrence and make treatment plans based on clinicopathologic
factors such as receptor expression, tumor size, lymph node metas-
tasis, and age of onset. Fortunately, the Oncotype Dx and Mamma-
Print based on high-throughput sequencing to predict the risk of
recurrence and metastasis have been verified by large-sample
phase III clinical studies [1,2], and have been written into the NCCN
guidelines (www.nccn.org/patients), which are expected to accu-
rately guide the treatment of HR-positive breast cancer.

They are only some tentative studies conducted to predict prog-
nosis HER2-positive breast cancer based on genomics or radiomics.
Cain et al. established a model to predict pathological complete
response (pCR) in triple-negative/HER2-positive breast cancer
patients through radiomics with an AUC value of 0.707 [8]. Prog-
nostic prediction models based on genomics tend to have higher
specificity and sensitivity, but they are often invasive, costly, and
time-consuming, making it difficult to popularize [1]. Up to now,
there is no mature product developed to predict the risk of recur-
rence and metastasis in patients with HER2-positive breast cancer.
Therefore, it is urgent to establish a prediction model for this speci-
fic type of cancer to avoid overtreatment or undertreatment.

Hematoxylin and Eosin (H&E) staining is one of the commonly
used staining methods in pathology. Studies have shown that the
nuclear morphological characteristics of H&E histopathological
images play an important role in the prognosis of various malig-
nant tumors [9,10]. With the continuous development of computer
technology and the advent of Whole Slide imaging (WSI),
computer-aided diagnosis and prognosis prediction based on
H&E-stained histological and other images have received more
and more attention. Because these pathological images not only
contain the pathological characteristics of tumor morphology,
growth, distribution and so on, but also have the advantages of
radiomics, such as fast speed, non-invasive and low cost [11].

There are two computational methods for pathological images:
traditional machine learning and deep learning [12,13]. Machine
learning algorithms can greatly reduce the time consuming of
the diagnostic process, which are widely used in the field of prog-
nostic prediction [14–16]. Convolutional neural network (CNN) is
the most popular deep learning model for image processing at pre-
sent [17–19]. It can be used not only for tumor detection and quan-
titative cell characteristics of pathological image analyses [20,21],
but also for the classification of small tissue images in pathological
diagnosis [22,23]. For example, Abdelzaher et al. used trained deep
belief networks (DBN-NN) with similar structure weights to initial-
ize the reverse propagation neural network to diagnose breast can-
cer [24]. Kather et al. established a deep residual learning model to
predict Microsatellite instability (MSI) from H&E-stained histolog-
ical images [25]. Zhi et al. used transfer learning with CNN to auto-
matically diagnose breast cancer from histopathological images.
They developed an ensemble model containing three customed
CNN classifiers trained using transfer learning, and achieved higher
accuracy than all other methods [26].In summary, CNN is a power-
ful algorithm that can directly process biomedical images, which
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overcomes the defects of subjective bias in the process of feature
extraction from H&E-stained histological images.

In this study, we enrolled 127 HER2-positive breast cancer
patients with known recurrence and metastasis information from
Cancer Hospital of the Chinese Academy of Medical Sciences from
2010 to 2018. A predictive framework based on pathological
images and clinical information was proposed to assess the risk
of recurrence in HER2-postive breast cancer patients. Specifically,
we first obtained whole slide images (WSIs) of H&E-stained sec-
tions from surgical specimens of the patients. These H&E WSIs
were patched into images of size 512 � 512 pixels, which were
then undergone a few image-preprocessing steps. Then, the image
features were selected through the CNN algorithm, and combined
with the original clinical data. Based on the combined features, a
novel multimodal prognostic prediction model was constructed
and validated by the 2-fold cross-validation (CV). Finally, we used
all available HER2-positive breast cancer patients from The Cancer
Genome Atlas (TCGA) as an independent test data set to evaluate
the performance of this model.
2. Results

2.1. Description of entry data

In this study, 123 HER2-positive breast cancer patients with
H&E-stained histological images were downloaded from the TCGA
database. 26% of the patients were younger than 50 years old when
breast cancer was diagnosed; 52% had positive lymph node. In
addition, 127 HRE2-positive breast cancer patients from the Cancer
Hospital of the Chinese Academy of Medical Sciences were
enrolled. 49% of the patients were younger than 50 years old when
breast cancer was diagnosed, 78% of the patients were stage I-II,
59% of the patients were ER positive, and 58% of the patients were
PR positive. 49% of patients had positive lymph node, and 27% of
patients had recurrence. All patients received radical surgery and
obtained H&E-stained slides. After annotating the tumor area, each
WSI was divided into 512x512 pixel patches. Finally, 199, 386
patches were used to train a CNN model. Clinical features of the
patients enrolled in the study were shown in Table 1.
2.2. A deep neural network framework to predict tumor recurrence

The complete process of predicting the risk of metastasis and
recurrence in breast cancer patients was shown in Fig. 1. First, clin-
ical data of breast cancer patients were downloaded from the TCGA
database. After preprocessing the data, we used the random forest
method to compare the importance of features on the clinical data
set, and then used the logistic regression model for classification.
Second, relevant case data and H&E-stained histological images
of breast cancer patients who underwent surgery at the Cancer
Hospital of the Chinese Academy of Medical Sciences from 2010
to 2018 were collected. We used CNN to build model on H&E-
stained histological images. Third, the features selected from H&E
images combined with the features of clinical data were used for
training the recurrence and metastasis prediction model. In the
process of training model, there are 4 parameters including
optimazer, learning rate, momentum, loss function chosen as
hyperparameters. According to the pytorch documentation
(https://pytorch.org/docs/stable/optim.html; https://pytorch.org/
docs/stable/generated/torch.nn.CrossEntropyLoss.html?highlight=
crossentropyloss#torch.nn.CrossEntropyLoss), they were all set to
empirical values. As a result, optimazer was set to be SGD; learn-
ing rate was set to be 0.01; momentum was set to be 0.9 and loss
function was set to be nn.CrossEntropyLoss.
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Table 1
Summary of the general clinical information of breast patients.

Clinicopathologic variable Category TCGA CAMS data

Sample type H&E 123 127
Age <50 34 63

�50 89 64
Tumor stage I 14 35

II 77 64
III 32 28

PR Positive 73 74
Negative 50 53

ER Positive 90 74
Negative 33 53

Lymph nodes status Positive (LMN+) 65 60
Negative (LMN-) 58 67

Outcome Non-recurrence 118 95
Recurrence 5 32
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2.3. Many image features have different characteristics after image
preprocessing

In the coloring process of H&E image, the color and intensity of
histopathological image often change due to specimen preparation
method, staining scheme (such as the temperature of the solution
used), fixation characteristics, imaging equipment characteristics
and other reasons. Therefore, before training the model, we nor-
malized the image, and then used the rank-sum test to test the
basic features of images before and after color normalization. The
basic features involved included ASM (angular second moment-
characteristics of gray level co-occurrence matrix), Contrast (The
total amount of local gray changes in the image), Entropy (A mea-
sure of the amount of information an image has), Homogeneity
(Inverse difference moment, a measurement of local gray level uni-
formity in image), Mean (Average value of gray scale), Dissimilarity
(Local contrast of image), and Variance (Variance of image). The
results were shown in Fig. 2. After color normalization, these basic
features of the images changed significantly.
2.4. A few clinical characteristics are strongly associated with
recurrence of breast cancer

The random forest was used to verify the importance of charac-
teristics of clinical data. Fig. 3(a) revealed the Mean Decrease Gini
of all variables. As a result, tumor stage was the most important
feature to model building. Correlation of 5 features with recurrence
of breast cancer were examined by violin graphs and p-values were
shown in Fig. 3(b). According to the characteristics of the training
data set, the patients’ tumor stage was strongly associated with the
recurrence of breast cancer, especially in stage I and III. In addition,
there were significant differences in LMN status. However, Age, ER
and PR have almost no significant effect on the recurrence and
metastasis of breast cancer. We also explored the correlation
among clinical features and H&E image features as shown in
Fig. 3(c). The results showed that some clinical features are related
to H&E image features. For example, Tumor stage have strong cor-
relation with LMN, and PR status have strong correlation with ER
status. Finally, relapse have higher correlation with Tumor stage
than with other clinical features and image features.
2.5. H&E staining image can be used to predict breast cancer
recurrence with relatively good performance

2.5.1. The integration of image features and clinical features can
improve the prediction accuracy

After downloading the H&E-stained histological images from
the Cancer Hospital of the Chinese Academy of Medical Sciences,
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we took H&E images of size 512 � 512 as the input of CNN model.
We divided the patches into two classes. Samples with tumor
recurrence labels were marked as positive samples, while those
without tumor recurrence labels were negative samples. Then
the ResNet50 model was used to train the samples, and the 2-
fold CV was used to split the samples and verify the results. The
ROC curve and AUC were revealed in Fig. 4(a) and (b). The AUC
of clinical data combined with H&E image information in training
dataset and test dataset was 0.76 and 0.72, respectively, which
was much higher than that predicted by clinical data alone. As
an indication, the information in the H&E images helps improve
the predictive power. A fitting curve for predicted breast cancer
recurrence and true condition was shown in Fig. 4(c), it also proved
that H&E image has a good performance in predicting the recur-
rence of breast cancer.
2.5.2. Survival analysis
In order to further verify the performance of the prediction

method, we conducted survival analysis on the train data set
(Fig. 5). As shown in Fig. 5(a), the survivals between recurrence
and non-recurrence samples predicted by solely clinical data were
not significantly different. However, there were significant differ-
ences after combining clinical data and H&E image information
(Fig. 5(b), p = 0.039), which further indicated that H&E image can
improve the prediction performance.
3. Discussion

As we all know, breast cancer is one of the most commonmalig-
nancies in the world, especially in women, which poses a big threat
to public health. HER2-positive breast cancer is highly invasive,
prone to recurrence and metastasis, and has a poor prognosis.
Identifying the risk of recurrence after surgical resection helps to
develop a monitoring plan and provides personalized adjuvant
treatment for them. Unfortunately, there is a lack of effective pre-
diction model to identify the risk of recurrence. With the continu-
ous development of computer technology, computer-aided
diagnosis and prognostic prediction based on H&E staining images
has attracted more and more attention because of its high speed,
no extra cost, and no trauma. CNN has been used to distinguish
benign and malignant breast tumors through imaging since the
early 1990s. In many studies, the area under ROC curve can be as
high as 0.9 [27–31]. In addition, image-based prognostic studies
have been applied to colorectal cancer [32] and glial cancer [33]
in the past, with an area under the ROC curve ranging from 0.5
to 0.8. All in all, the accuracy of image-based prognostic prediction
model needs to be further improved.

In this study, we proposed a predictive framework based on
H&E images and clinical information to assess the risk of recur-
rence in HER2-positive breast cancer patients. We used H&E
images and clinical information from 127 HER2 positive breast
cancer patients from the Cancer Hospital of China Academy of
Medical Sciences to construct a newmultimodal prognostic predic-
tion model based on combination characteristics, and evaluated
the performance of the model using HER2-positive breast cancer
patients from the TCGA database as an independent test set. H&E
staining histopathological images were first used to predict the
prognosis of breast cancer. The sensitivity and specificity were
67% and 83% respectively, and the area under the ROC curve was
0.72, which showed a strong performance in similar studies.

However, there are some limitations in this study. Firstly, clin-
ical factors were relatively limited. Secondly, the race and genetic
background between the two data sources were pretty different.
Thirdly, heterogeneity of H&E images in the same patient was
not considered and the quality of H&E images was different
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between the trainset and the test set. All the above limitations
greatly limit the accuracy and reproducibility of the research
results. Therefore, we will further optimize the following aspects
336
in the follow-up research. Firstly, more clinical factors will be
included in the modeling process, such as vascular tumor emboli,
differentiation degree and family history of tumor. Secondly, mul-
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tiple discontinuous H&E images were selected from the same
patient for training.

4. Conclusion

In summary, we provided preliminary evidence in this study
that deep learning based on H&E staining histopathological images
and clinical information can predict breast cancer recurrence and
metastasis, and provided a new direction for routine clinical appli-
cation of deep learning. However, this study is still in the research
stage. Only when the clinical effectiveness of the model is proven
more rigorously can it be widely used to assist clinical diagnosis
and treatment. In the future, we will integrate molecular biological
information such as whole exon sequencing (WES), DNA methyla-
tion and RNA sequencing results with HE images, to conduct multi-
omics analysis of the prognosis of breast cancer patients. In addi-
tion, we intend to conduct a prospective cohort study, in which
patients predicted to relapse in this study will be divided into tras-
tuzumab combined chemotherapy group and intensive targeted
therapy combined chemotherapy group according to treatment
methods. The purpose is to observe whether these patients have
relapse, so as to verify the effectiveness of the prediction model
and further promote the development of accurate treatment for
HER2-positive breast cancer.

5. Materials and methods

5.1. TCGA data

TCGA is an open large-scale cancer genome database that con-
tains many primary cancers and their pathological images, and
its digitized form matches normal samples of multiple cancer
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types. It provides researchers with public data sets that can be
searched, viewed, and downloaded to help improve diagnostic
methods, treatment standards, and ultimately prevent cancer.
We downloaded WSIs of H&E-stained sections of breast cancer
from the TCGA database (https://portal.gdc.cancer.gov/repository/).
All free breast cancer slide images were stored in SVS format. These
H&E-stained pathological sections were scanned with a
40 � objective lens. The average slide size (height � width) was
80,386 ± 36,812 � 59,143 ± 25,060 (mean ± standard deviation).
H&E-stained histological images can be opened and analyzed by
the python package OpenSlide. 1 2 3 H & E-stained histological
images downloaded from TCGA match the tags that contain infor-
mation about metastasis and recurrence. We marked those H&E
images with metastasis and recurrence risk as 1, and those without
metastasis and recurrence risk as 0. We combined H&E-stained
histological images and clinical data to study the prediction of
‘‘metastasis and recurrence of breast cancer”.
5.2. Clinical data

We collected clinical information of breast cancer patients from
Cancer Hospital of Chinese Academy of Medical Sciences. A total of
127 patients were enrolled from 2010 to 2018. Patients were
included with the following criteria: female patients undergone
surgery; patients with corresponding case data and histological
specimens; patients with primary unilateral breast cancer with
neoplasm staging I-III; patients who received adjuvant trastuzu-
mab; patients with invasive carcinoma; patients with HER2 3+
based on immunohistochemistry or HER2 gene amplification based
on fluorescence in situ hybridization (FISH). Exclusion criteria
included: male; patients with other malignant tumors; patients
with primary bilateral breast cancer; patients without tissue sec-

https://portal.gdc.cancer.gov/repository/


0.78

>=
50

Age

0.04

LM
N+

0.92 0.62

<5
0

a

b c

Importances

PR status

Age

LMN

ER status

Tumor stage

0.2 0.4 0.6 0.8 1.0

0.0075

0.16 0.078

0.0

0.4

0.8

1.2

LM
N-

PRLMN ER Tumor stage
Pos

itiv
e

Pos
itiv

e

Neg
ati

ve

Neg
ati

ve Ⅰ Ⅱ Ⅲ

*

*

* *

**

** **

**

** ** **

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

*** ***

***

***

***

***

*** ***

***

***

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

AS
M

C
on

tra
st

En
tro

py

H
om

og
en

ei
ty

M
ea

n

D
is

sm
ila

rit
y

Va
ria

nc
e

Ag
e

Tu
m

or
  s

ta
ge

ER
  s

ta
tu

s

PR
  s

ta
tu

s

LM
N

R
el

ap
se

ASM

Contrast

Entropy

Homogeneity

Mean

Dissmilarity

Variance

Age

Tumor  stage

ER  status

PR  status

LMN

Relapse

Fig. 3. Features of clinical data. (a). Mean Decrease Gini corresponding of variables. (b). Correlation of several features with recurrence of breast cancer were examined by
violin figure and p-values. (c). Correlation of image features and clinical features.

a b c

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Tu
re

 P
os

iti
ve

 R
at

e

HE+clinical AUC=0.76
HE images  AUC=0.66
Clinical       AUC=0.57
Chance

False Positive Rate

Tu
re

 P
os

iti
ve

 R
at

e

Train data ROC

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

HE+clinical AUC=0.72
HE  images AUC=0.63
Clinical       AUC=0.55
Chance

Test data ROC

0.0 0.2 0.4 0.6 0.8 1.0

R
el

ap
se

0.1

0.2

0.3

0.01 0.02 0.03 0.04
logit(p)

Fig. 4. ROC and fitting curve. (a) ROC curve of 2-fold CV in training data set. (b) ROC curve in the test data set. (c) A fitting curve for predicting breast cancer recurrence and
true condition.

J. Yang, J. Ju, L. Guo et al. Computational and Structural Biotechnology Journal 20 (2022) 333–342
tions clinical data or follow-up data; patients with severe cognitive
impairment, communication disorders and mental illness. All
patients underwent pathological examination, and the detailed
deidentified clinical information and H&E images were transferred
to the investigators.
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5.3. Image preprocessing

5.3.1. Image patching and filtering
To predict breast cancer recurrence and metastasis, an expert

pathologist first annotated the tumor area with a visual assess-
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ment. The solid blue dotted lines in the middle of Fig. 1a represent
the boundaries of the tumor area. In order to ensure the consis-
tency of the input image size, WSIs were divided into 512�512
pixel slices. Then those slides with a low amount of information
(e.g. more than 30% of filtering blank ratio was covered by back-
ground) were discarded [34].

5.3.2. Color normalization
In the coloring process of H&E-stained histological images, the

specimen preparation method, staining scheme, fixation character-
istics, imaging equipment characteristics and other factors may
make it difficult to standardize the images between different med-
ical centers, or even between samples in different experimental
periods in the same laboratory [35,36]. Therefore, after obtaining
the H&E image, we used a deep convolutional Gaussian mixture
model (DCGMM) to conduct color normalization processing on
images [37]. the (natural) log-likelihood function of the model is:

lnp Xjp;l;Rð Þ ¼
XN
n¼1

ln
XK
k¼1

pkN xjlk;Rk

� �( )

where N is the total number of pixels in the input image
(X ¼ x1; x2; � � � ; xNf g). In order to fulfill a valid probability definition,
the mixing coefficient pk must satisfy 0 � pk � 1 together withPK

k¼1pk ¼ 1. N stands for a multivariate normal distribution with
mean lk and covariance matrix Rk. The objective is to maximize
the likelihood function, all parameters of the DCGMM are jointly
optimized by minimizing the negative log-likelihood with the gra-
dient descent algorithm. After training the model, the responsibility
vector for each pixel in the image can be calculated by applying
DCGMM to any given test image.

5.3.3. The labeling of patched images
After a WSI was divided into 512x512 patches, the label of each

patch was the same as that of the WSI, and labeled recurrence as 1,
and 0 otherwise.

5.4. Definitions

Tumor recurrence included locoregional recurrence and distant
tissue or organ metastasis. Locoregional recurrence was defined as
the recurrence of ipsilateral breast, chest wall, or regional lymph
nodes. Tumor stage was determined according to the 8th edition
of American Joint Committee on Cancer (AJCC) staging system
[38]. All the patients with positive lymph nodes (LMN+) were con-
firmed by pathology. According to the American Society of Clinical
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Oncology (ASCO) and the College of American Pathologists (CAP)
Panel, ER and PR were considered positive if there are at least 1%
positive tumor nuclei in the sample [39]. HER2 status was defined
according to 2018 American Society of Clinical Oncology/College of
American Pathologists (ASCO/CAP) guidelines [40]. Immunohisto-
chemical scores of 3+ were considered positive, and scores of 2+
were considered positive if HER2 gene amplification was evaluated
by fluorescence in situ hybridization (FISH).

5.5. Clinical feature ranking based on random forest

Variable selection is important for interpretation and predic-
tion, especially for high-dimensional data sets. Random forest is
a combinatorial classifier model composed of decision tree classi-
fier sets, which belongs to an integrated learning model [41]. It
uses multiple decision trees to classify and predict samples and
each decision tree is an unpruned decision tree constructed by
the Classification And Regression Tree (CART) algorithm [42]. Ran-
dom forest can also be used to estimate the importance of variables
in a model and the importance of variables is measured by Mean
Decrease Gini caused by variable m. At the classification node t,
the calculation formula for Mean Decrease Gini is as follows:

MeanDecreaseGini tð Þ ¼ 1�
XM
m¼1

pðm=tÞ2

where M represents the total number of classes of the target vari-
able, and pðm=tÞ represents the conditional probability that the tar-
get variable is of class m at node t. According to the formula, Gini
index is calculated. Finally, the larger the value of
MeanDecreaseGini tð Þ is, the more important the m is.

5.6. Image feature representation based on ResNet50

Convolution neural network (CNN) is a state-of-the-art algo-
rithm in image recognition and classification because of its stable
learning performance [43]. The structure of CNN includes input
layer, hidden layer, and output layer. Its workflow was shown in
Fig. 1(d): when an image is fed into the input layer, the data is
entered the hidden layer and the low-level features is extracted.
After that, the middle-level feature is extracted in the following
convolutional layer and pooling layer, In the convolutional layer,
some small trainable convolution kernel l can be learned to extract
convolution feature on the previous layer L:

HLþ1 ¼ f
X

HL � li þ b
� �
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where, HL and HLþ1 represent the input and output at the layer
Lþ 1, respectively; fð�Þ was a nonlinear function; Rectified Linear
Unit (ReLU) is used in CNN as activation function; and b represents
the bias. Consequently, the extracted features in the convolutional
layer will be transmitted to the pooling layer for feature dimension-
ality reduction and information filtering, and the high-level features
will be extracted through the following hidden layers in turn.
Finally, they are feed into the output layer.

ResNet is a large-scale CNN constructed by residual blocks,
which was proposed by the winner of ILSVRC image classification
and object recognition algorithm in 2015 (Microsoft Research, the
ARTIFICIAL intelligence team of Microsoft) [44]. The hidden layer
of ResNet50 contains 16 residual blocks (Fig. 6(b)) in total [45].
The stack of the residual blocks mitigated the gradient-vanishing
problem commonly seen in deep neural networks, and has been
used by many subsequent algorithms [46]. We used ResNet50 to
select features of breast cancer H&E images, and its workflow was
shown in Fig. 6(a). The architecture of ResNet50 was divided into
4 stages. Every ResNet architecture performed the initial convolu-
tion and max-pooling using 7 � 7 and 3 � 3 kernel sizes respec-
tively. Afterward, stage 1 of the network started and it has 3
bottlenecks containing 3 layers with 1 � 1, 3 � 3 and 1 � 1 convo-
lutions. The 1 � 1 convolution layers were responsible for reducing
and then restoring the dimensions; the 3� 3 layer was a bottleneck
with smaller input/output dimensions; and the kernel sizes used to
perform convolution operations in all 3 layers were 64, 64 and 128,
respectively. Curved arrows refer to the connection; the dashed
arrow indicates that the convolution operation in the residual
blocks was performed with stride 2; so, the size of the input will
be reduced by half in height and width, but the channel width will
be doubled. When the image advanced from one stage to another,
the channel width will be doubled and the input size will be
reduced by half. Finally, the network has an average pool layer, fol-
lowed by a fully connected layer with 1000 neurons.

Because there are not many positive samples of recurrence and
metastasis, data augmentation is used to enrich the data images.
We applied a fresh set of random operations with RandomCrop
package of Python to crop the image data randomly. Instead of
using the exact same items at every epoch, we showed a variant
Images
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Fig. 6. Network architecture of ResNet50. (a) ResNet50 structure d

340
that has been changed in a different way. Here, for the training,
we were randomly cropping the image and re-sizing it to shape
(224, 224) in each epoch in order to enrich the data images.
5.7. Features fusion

In order to improve the performance of the model for predicting
recurrence risk, it is necessary to fuse the features with two differ-
ent modes (H&E image features and clinical features). The most
common methods are concatenation, element wise product, and
element wise sum. These simple operations are not as effective
as outer products, which can establish a complex relationship
between the two modes. However, the complexity of outer product
calculation is too high. N-dimensional vector, the outer product is
calculated to get a vector of n2. Therefore, Multimodal Compact
Bilinear (MCB) is proposed. MCB maps the results of outer product
into low dimensional space, and does not need to explicitly calcu-
late outer product.

MCB algorithm was used to fuse the penultimate layer of
ResNet50 with clinical features, and the fusion results were fed
into the BN layer before linear layer. (Fig. 1(d)).
5.8. Sample classification

As shown in the predict part of Fig. 1(d), each patient’s slide was
divided into many different patches, and each patch may get a pre-
dicted value by the trained model. The average of these values was
used as the recurrence probability of the slide. After that, the slide
was classified: if the recurrence probability was greater than 0.5,
then this slide was determined to recurrence, otherwise it was
determined to non-recurrence.
5.9. Evaluation criteria

5.9.1. 2-fold CV
In the modeling process, we used 2-fold CV to verify the accu-

racy of the training model. The workflow of building model for
clinical data is shown in Table 2.
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ttlenecks

Weight layer
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x

�
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Relu
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iagram. (b) The basic structure of ResNet50 residual network.



Table 2
The workflow of building model.

Algorithm: Build model

Input: Training data set, test data set
Output: Trained model and performance of the model
1 for feature type in clinical data, H&E images, clinical + H&E images do
2 for 2-fold cross validation process do
3 if feature type = clinical data do
4 sort importance of features in Random forest;
5 train model on train data set;
6 compute AUC from ROC curve for one subset of cross validation;
7 draw ROC curve based on the results of 2-fold CV;
8 train the model with whole train data set;
9 test the performance of the model on test data set;
10 final;
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5.9.2. Independent validation
We trained the model with 127 samples from Cancer Hospital

of Chinese Academy of Medical Sciences. Then TCGA data sets were
used as independent test set to verify the prediction performance
of the model.

5.10. Statistical analysis

We used statistical methods to analyze the clinical characteris-
tics including age, LMN, PR, ER and tumor stage of 123 cases from
TCGA. Specifically, age was divided into �50 years old and
<50 years old. LMN was divided into positive lymph nodes (LMN
+)and negative lymph nodes (LMN�), PR and ER were divided into
positive and negative respectively, while tumor stage was divided
into three groups of I, II, and III. A t-test was used to compare the
agreement between the observers, and bilateral statistics was per-
formed, p-value < 0.05 was considered statistically significant. All
statistical analyses were performed using R software.
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