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Bayesian dose-finding designs for
combination of molecularly targeted
agents assuming partial
stochastic ordering
Beibei Guoa and Yisheng Lib*†

Molecularly targeted agent (MTA) combination therapy is in the early stages of development. When using a fixed
dose of one agent in combinations of MTAs, toxicity and efficacy do not necessarily increase with an increasing
dose of the other agent. Thus, in dose-finding trials for combinations of MTAs, interest may lie in identifying
the optimal biological dose combinations (OBDCs), defined as the lowest dose combinations (in a certain sense)
that are safe and have the highest efficacy level meeting a prespecified target. The limited existing designs for
these trials use parametric dose–efficacy and dose–toxicity models. Motivated by a phase I/II clinical trial of a
combination of two MTAs in patients with pancreatic, endometrial, or colorectal cancer, we propose Bayesian
dose-finding designs to identify the OBDCs without parametric model assumptions. The proposed approach is
based only on partial stochastic ordering assumptions for the effects of the combined MTAs and uses isotonic
regression to estimate partially stochastically ordered marginal posterior distributions of the efficacy and tox-
icity probabilities. We demonstrate that our proposed method appropriately accounts for the partial ordering
constraints, including potential plateaus on the dose–response surfaces, and is computationally efficient. We
develop a dose-combination-finding algorithm to identify the OBDCs. We use simulations to compare the pro-
posed designs with an alternative design based on Bayesian isotonic regression transformation and a design
based on parametric change-point dose–toxicity and dose–efficacy models and demonstrate desirable operating
characteristics of the proposed designs. © 2014 The Authors. Statistics in Medicine Published by John Wiley &
Sons Ltd.

Keywords: Bayesian isotonic regression transformation; dose–efficacy surface; dose–toxicity surface; matrix
ordering; plateau; post processing

1. Introduction

Cancer treatment development is in the era of molecularly targeted agents (MTAs) [1,2], which are drugs
or other substances that interfere with specific molecules necessary for tumor growth and progression.
MTA combination therapy, however, is still in its early stages of development [3]. In principle, the use
of combinations of MTAs is attractive for a variety of reasons. Specifically, a combination of treatment
agents may achieve a greater blockade of cancer cell growth by inhibiting sequential signal transduction
sites in one transduction pathway, by simultaneously impacting the extracellular targets and the intracel-
lular tyrosine kinase that regulates a pathway, by simultaneously impacting a transduction pathway and
its bypassing mechanism, or by targeting different transduction pathways in a potentially additive strat-
egy [2]. Thus, it is imperative that we develop robust and efficient statistical designs for dose-finding
clinical trials for combinations of MTAs.
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The designs proposed in this paper are motivated by a phase I/II clinical trial that uses a combination
of two MTAs to treat patients with pancreatic, endometrial, or colorectal cancer. One agent being inves-
tigated in the trial inhibits AKT (protein kinase B, which plays vital roles in multiple cellular processes).
The second agent inhibits MEK (a mitogen-activated protein kinase/extracellular signal-regulated kinase,
which is an enzymatic activator of protein kinase family that regulates several processes in support of
cellular proliferation). The investigators assume that at a fixed dose of either agent, neither efficacy nor
toxicity of the combined agents decreases with an increasing dose of the other agent, on the basis of their
understanding of the mechanism of the effects of the combination agents. As with many MTA combi-
nations, the investigators also believe that both efficacy and toxicity may plateau within the tested dose
range. Thus, the primary objective of the trial is to determine the lowest dose combinations (to be for-
mally defined in Section 2.1) that are safe and have the highest efficacy level meeting a prespecified
target, which we term the optimal biological dose combinations (OBDCs).

Numerous methods have been proposed for designing phase I dose-finding clinical trials for combina-
tions of cytotoxic agents [4–7]. A common assumption underlying these methods is that the dose–toxicity
and dose–efficacy relationships are characterized by a monotonic increase in the outcome probability as
the dose of one drug increases when the dose of the other drug is held fixed. Thus, the goal of these trials
is to identify the maximum tolerated dose combination. A recent trend in drug development in oncol-
ogy favors integrating phase I and phase II trials so that the drug development process may be expedited
while potentially reducing costs [8]. Huang et al. [9] proposed a parallel phase I/II design for combina-
tion of chemotherapies in which the first stage uses a modified ‘3+3’ algorithm, the limitations of which
have been extensively discussed in the literature ([10–12], among others). Yuan and Yin [13] proposed a
phase I/II design using a copula-type parametric model for the toxicity probabilities across dose combi-
nations in the phase I portion. Neither of these designs explicitly incorporates partial ordering constraints
in assessing efficacy in their phase II portion of the trial. Recently, Wages and Conaway [14] proposed
a phase I/II design for chemotherapy combination trials, assuming partial ordering constraints for both
toxicity and efficacy using parametric models. While their methods may be efficient in situations where
certain ordering (rather than partial ordering) constraints are known a priori, the computational burden
of their methods may increase considerably when such information is not available.

For MTAs, the hypothesized dose–efficacy and dose–toxicity relationships are different. Specifically,
there may be a plateau in the dose–efficacy curve such that higher doses of MTAs may not necessarily
improve clinical benefit [15–19]. In addition, toxicity does not necessarily increase with an increasing
dose of MTAs [16,18–21]. For example, if toxicity is incurred by unintended target inhibition, this effect
may also reach a plateau in the tested dose range as the dose increases, on the basis of a mechanism
similar to that of the efficacy of the agents.

Very limited literature exists on phase I/II dose-finding designs for combinations of MTAs. Mandrekar
et al. [20] proposed a dose-finding design for trials evaluating combinations of biological agents based
on a continuation ratio model that allows for a potential drop in the probability of efficacy and no toxicity
with an increasing dose of either agent when the dose of the other agent is fixed. Hirakawa [22] developed
a dose-finding design for combinations of two drugs where the dose–efficacy curve may plateau beyond
certain dose levels. Recently, Cai et al. [21] have proposed a dose-finding design for MTA combination
trials using a change-point model for the dose–toxicity surface and a quadratic model for the dose–
efficacy surface to account for a potential plateau in the dose–toxicity surface and a potential decreasing
trend in the dose–efficacy surface. All these designs use parametric models for dose–toxicity and dose–
efficacy relationships, which may be sensitive to the strong parametric model assumptions.

While some authors have considered models that allow for decreased efficacy with an increased dose
[20, 21], in this paper we focus on a more likely scenario in which the dose–efficacy curve for each
agent may either increase or increase and then plateau in the tested dose range given a fixed dose of
the other agent [15-19,22]. We assume that the dose–toxicity relationships may follow the same pattern.
That is, we assume matrix-ordering constraints for both dose–toxicity and dose–efficacy relationships
while allowing for temporary or continuous plateaus in the tested dose range. We aim to develop novel
dose-finding designs for combinations of MTAs that are based only on the partial ordering assumptions
[23, 24], targeting particularly at potential plateaus in the dose–efficacy and/or dose–toxicity surfaces,
with the ultimate goal of identifying the OBDCs.

To achieve the preceding goal, we consider computationally feasible approaches to Bayesian inference
under partial order constraints without parametric model assumptions. The first is a Bayesian isotonic
regression transformation (BIT) approach [25–27]. We show that, however, this approach has a limita-
tion of potentially overcorrecting the order when used to model non-decreasing dose–response surfaces
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where a plateau may be present. This motivates us to propose a second approach that is also based on
postprocessing of the unconstrained posterior distributions (thus maintaining computational efficiency),
yet which appropriately accounts for not only the non-decreasing trend but also potential plateaus in the
dose–response surfaces. This second approach uses partial stochastic ordering (PSO) assumptions, for
which we demonstrate that computation can be carried out efficiently as no posterior samples need to be
drawn for posterior inferences. We develop a dose-combination-finding algorithm to identify the OBDCs.

The organization of the article is as follows. In Section 2.1, we describe PSO assumptions for predicted
patient binary outcomes as the motivation and basis of our proposed methods. In Section 2.2, we consider
a BIT approach to account for the partial ordering constraints and illustrate a limitation of this approach to
modeling dose–response relationships that may plateau in the tested dose range. We then propose a second
approach based only on PSO assumptions to address the limitation of the BIT approach in Section 2.3. In
Section 3, we propose a dose-combination-finding algorithm. In Section 4, we apply the proposed designs
to the motivating clinical trial for pancreatic, endometrial, or colorectal cancer, examine the operating
characteristics of the designs and compare them with a design based on parametric change-point models
through simulations. We provide concluding remarks in Section 5.

2. Method

2.1. Notation and partial stochastic ordering assumptions on predicted toxicity and efficacy outcomes

Following Hunsberger et al. [16], we assume that each patient has a binary response for toxicity and
efficacy, respectively, after treatment with the MTA combination. Toxicity can be defined as having or
not having predefined dose-limiting toxicities. Efficacy can be a pharmacodynamic response assessed
by the change in relevant biomarker measurements that are considered to confer clinical benefit to the
patients. Alternatively, efficacy can be assessed by tumor response, such as complete or partial remission.
We assume that the toxicity and efficacy outcomes can be observed in a short period of time, such as after
one cycle of treatment.

Suppose each MTA (A or B) has J or K dose levels being tested, respectively, resulting in a J × K
dose-combination matrix. Let ( j, k) denote a combination with dose level j of agent A and k of agent B,
j = 1,… , J, k = 1,… ,K, J ⩾ 2, K ⩾ 2. Let D = {( j, k) ∶ j = 1,… , J, k = 1,… ,K} be the set of all
dose combinations. We define a partial order ⪯ on D as follows:

( j1, k1) ⪯ ( j2, k2), if j1 ⩽ j2 and k1 ⩽ k2,

and in which we say that combination ( j1, k1) is lower than ( j2, k2) or combination ( j2, k2) is higher
than ( j1, k1). We further define a combination ( j, k) to be one of the lowest combinations in a subset
C ⊂ D (for use only in the decision rules in our proposed dose-combination-finding methods), if for all
( j′, k′) ∈ C, j′ + k′ ⩾ j + k. Therefore, there can be multiple ‘lowest’ combinations in C. For example,
if C = {( j, k) ∶ j > 1 or k > 1}, then the lowest combinations in C are (1,2) and (2,1) (Figure 1).
Alternatively, if C = {(1, 2), (3, 1)}, then the lowest combination in C is (1,2). We note that alternative
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Figure 1. An illustration of dose combinations.
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definitions for the lowest combinations are possible, depending on the physicians’ interest. For example,
a plausible alternative definition that is not the focus of this paper is a combination ( j, k) ∈ C such that
for all ( j′, k′) ∈ C, either j′ ⩾ j or k′ ⩾ k.

We now define a stochastic order between two random variables. For two random variables, X and Y ,
with corresponding cumulative distribution functions, F and G, X is said to be stochastically smaller than
Y if F(x) ⩾ G(x) for all x. Furthermore, X is said to be stochastically strictly smaller than Y if F(x) ⩾ G(x)
for all x, and F(x) > G(x) for at least one x [28]. Also, two random variables X and Y are said to be
stochastically equal if X is stochastically smaller than Y and Y is stochastically smaller than X.

We consider it reasonable to make the following PSO assumption on the predicted toxicity and efficacy
outcomes of patients across dose combinations.

Assumption A1. Given any observed data, the toxicity and efficacy outcomes of a patient to be treated
at ( j1, k1) are stochastically smaller than those of a patient to be treated at ( j2, k2) where ( j1, k1) ⪯ ( j2, k2).

Note that Assumption A1 allows for cases where the outcomes of the two future patients treated at
( j1, k1) and ( j2, k2) are stochastically equal. This is important for dose-finding trials of MTA combinations
as a plateau may be present in the dose–efficacy and/or dose–toxicity surface.

Denote pjk and qjk as the toxicity and efficacy probabilities of a patient treated at dose combination
( j, k). One can easily show that the subsequent Condition C1 is a sufficient condition for Assumption A1.
See Appendix 1 in the Supporting information.

Condition C1. Given any observed data, pj1k1
and qj1k1

are each stochastically smaller than pj2k2
and

qj2k2
, respectively, as long as ( j1, k1) ⪯ ( j2, k2).

In the following sections, we will consider two postprocessing inference approaches, both of which
ensure that Condition C1 is satisfied, so that Assumption A1 is met.

2.2. Bayesian isotonic regression transformation

In the Bayesian paradigm, there have been two general approaches to inference on order-constrained
model parameters. The first is a fully Bayesian approach in which priors for the relevant parameters are
specified in an order-constrained parameter space. While this may be a desirable approach, difficulties
may arise in both specification of the prior and computation of the posterior in the presence of complex
ordering constraints. For example, the matrix-ordering constraints we consider in this paper allow for the
presence of potential plateaus across unspecified sets of dose combinations, making it tedious to specify
priors that satisfy these constraints while ensuring that the specified prior and chosen hyperparameters are
intuitive or easily interpretable. In addition, posterior computation for these models can be expensive. The
second is a postprocessing approach that is typically based on transformation and may involve two steps.
In the first step, one obtains the posterior distribution based on a model that ignores the order constraints.
In the second step, the order constraints are incorporated by postprocessing the unconstrained posterior
distribution of the model parameters via transformations. For example, BIT uses isotonic regression to
directly transform the posterior samples of the unconstrained model parameters into order-constrained
samples. Thus, posterior inference based on these order-constrained samples automatically accounts for
the ordering constraints [25–27]. Note that in this approach only the model parameters that are assumed to
follow certain ordering or partial ordering constraints need to be transformed. For example, in Li et al. [27]
the toxicity probability is assumed to follow the matrix order while the efficacy probability is assumed
to be unordered. Thus, the BIT is only applied on the toxicity probabilities across dose–schedule combi-
nations [27]. As the isotonic regression is a minimal distance mapping (see its following definition), and
the prior distribution implicitly defined by the ratio of the transformed posterior distribution and the like-
lihood is data dependent, such an approach has been considered an empirical Bayes-type procedure [26].
Generally speaking, the primary motivation and utility of this type of approach is computational [25–27].
This is because computation in the first step, which does not involve ordering constraints, is typically
quite efficient, and general algorithms for isotonic regression are well developed, including, for example,
the minimum lower sets algorithm (MLSA) for a partially ordered set [29]. Such algorithms have been
implemented in the design of dose-finding and dose–schedule-finding trials [27,30]. Compared with cer-
tain fully Bayesian prior specification approaches based on truncation for order-constrained parameters,
the BIT approach respects the data in an intuitive way [25].

Therefore, we first propose a BIT approach to modeling the posterior toxicity and efficacy probabil-
ities while assuming matrix-ordering constraints across dose combinations with potential plateaus. We
start by assuming independent Beta(a1, b1) and Beta(a2, b2) prior distributions for toxicity and efficacy,
respectively, at each dose combination, where a1, b1, a2 and b2 are constants that often do not depend
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on ( j, k). Let njk denote the number of patients that have been treated at combination ( j, k), and nT
jk and

nE
jk denote the number of patients that experienced toxicity and showed efficacy, respectively. Given the

binomial likelihood and beta prior distributions, the posterior distributions of toxicity and efficacy at
combination ( j, k), without accounting for the partial ordering constraints, are

pjk ∼ Beta
(

a1 + nT
jk, b1 + njk − nT

jk

)
, (1)

qjk ∼ Beta
(

a2 + nE
jk, b2 + njk − nE

jk

)
. (2)

In the second step, following Li et al. [27], we use isotonic regression to transform each sample from
the unconstrained posterior distribution for the toxicity probabilities into an order-constrained sample.
Specifically, hereafter we denote C as the set of dose combinations at which at least one cohort of patients
has been treated and ⪯ as the partial order defined on C ⊂ D in Section 2.1. Let p = {pj,k} and q = {qj,k}.
A draw p̃ of p from its unconstrained posterior distribution (1) can be regarded as a real-valued function on
C, and the isotonic regression p̃∗ of p̃ is defined as an isotonic function on C that minimizes the weighted
sum of squares

∑
( j,k)∈C

(
p̃jk − p̃∗jk

)2
wjk,

subject to the constraints p̃∗j1k1
⩽ p̃∗j2k2

whenever ( j1, k1) ⪯ ( j2, k2). The weights {wjk} are taken to be

the posterior precisions of pjk [25–27]. By the preceding definition, the partial ordering constraints are
satisfied for the transformed posterior samples p̃∗. A similar transformation is applied on the uncon-
strained posterior samples of the efficacy probabilities q̃ to obtain order-constrained posterior samples
q̃∗. Thus, the partial ordering constraints are automatically accounted for in the corresponding posterior
inference based on these transformed posterior samples for toxicity and efficacy probabilities in a dose-
finding study. In addition, this isotonic regression transformation of p or q is a minimal distance mapping
from the unconstrained to the constrained parameter space. We use the MLSA to calculate the isotonic
regression under the matrix-ordering constraints [29]. As the application of BIT on posterior samples
of pjk and qjk ensures almost sure partial ordering, the PSO Condition C1 is clearly met. We propose a
dose-combination-finding algorithm in Section 3.

2.3. Isotonic regression of the posterior distribution functions

While the BIT approach has the attractive feature of reduced computational burden while accounting
for the partial ordering constraints, it faces a challenge in modeling the dose–toxicity and dose–efficacy
surfaces where plateaus may be present. In fact, the BIT approach results in posterior distributions that
are always strictly partially ordered across dose combinations, thus making it less sensitive in identifying
plateaus in the tested dose range and therefore undesirable for determining the OBDCs. To demonstrate
this limitation, let us look at two simplistic examples.

Suppose three patients are treated at each of dose combinations (1, 1) and (1, 2), with two and one
responses being observed, respectively. Under independent Beta(a2, b2) priors, the corresponding pos-
terior distributions for q1,1 and q1,2 are Beta(2 + a2, 1 + b2) and Beta(1 + a2, 2 + b2), respectively. Let
us assume for now that a2 = b2 = 0.5. It is straightforward to show that q1,1 is stochastically strictly
larger than q1,2. A proof of this is given in Appendix 2 in the Supporting information. Thus, on the basis
of the non-decreasing assumption for efficacy with respect to dose that allows for the possibility of a
plateau, and to respect the observed data, it may be desirable to estimate the two posterior distributions
to be equal (i.e., as close to the unconstrained posterior distributions as possible while adhering to the
ordering constraint). Using the BIT approach, however, as the unconstrained posterior draws for q1,1 and
q1,2 are made independently (under the independent priors and independent binomial likelihood across
dose combinations), there will be a positive probability of the transformed posterior draws (q⋆1,1, q

⋆

1,2)
satisfying q⋆1,1 < q⋆1,2. In fact, Pr (q⋆1,1 = q⋆1,2 ∣ data) = 0.79 and Pr (q⋆1,1 < q⋆1,2 ∣ data) = 0.21!
The posterior means are similarly strictly ordered (despite that the sample means are 0.67 and 0.33,
respectively; see Figure 2). If the response outcomes are instead one and two out of three patients at
combinations (1, 1) and (1, 2), respectively, that is, the outcomes are reversed, then it is clear that q1,1
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is already stochastically strictly smaller than q1,2. Presumably no correction of the posterior distribu-
tions is necessary in this case. However, BIT would estimate the posterior distributions for q1,2 to be
even larger and q1,1 to be even smaller than the corresponding unconstrained posterior distributions. We
argue that in both of the preceding cases the BIT approach has made more adjustments than necessary to
account for the ordering constraint or, in other words, has ‘overcorrected’ for the order. See Figure 2 for
a graphical illustration.

Although overly simplified, the preceding examples demonstrate the general trend for this approach,
even for more complex situations that involve multiple combinations. Intuitively, correction of the order
occurs with a high probability if two underlying distributions are close to each other. It is possible that
the extent of overcorrection is also higher under those situations. While such ‘overcorrection’ effects
of the BIT approach would not be a concern were the sample size large, the sample size at each dose
combination in a typical phase I/II dose-finding trial for combination therapy is small. Understanding
these effects of the BIT approach may help us interpret the operating characteristics of the BIT-based
design presented in Section 4.

To address the preceding ‘overcorrection’ issue of the BIT approach, we propose an intuitive and novel
transformation approach that applies isotonic regression directly on the marginal posterior distribution
functions. Under this approach, Condition C1 is clearly met. Let Fjk(x) and Gjk(x) be the cumulative
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Figure 2. The top three panels are posterior densities of the efficacy probability when two out of three and one out
of three responses are observed at combinations (1,1) and (1,2), respectively. The bottom three panels are the cor-
responding posterior densities when one out of three and two out of three responses are observed at combinations
(1,1) and (1,2), respectively. The solid and dotted curves are the density curves at combinations (1,1) and (1,2),
respectively. The vertical lines indicate the posterior means, with black representing unconstrained and blue and
red representing constrained posterior means, and the solid and dotted lines correspond to combinations (1,1) and
(1,2), respectively. The blue solid and red dotted lines overlap on the top right panel; the black and blue solid lines
overlap and the black and red dotted lines overlap on the bottom right panel. BIT, Bayesian isotonic regression

transformation; PSO II, partial stochastic ordering using sample sizes as weights.
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distribution functions of pjk and qjk, respectively, at combination ( j, k), conditional on observed data, and
F̂jk(x) and Ĝjk(x) be the corresponding unconstrained cumulative distribution functions. For simplicity,
when F̂jk(x) and Ĝjk(x) are not directly calculable, we use the same notation to denote the empirical
distribution functions of pjk and qjk, on the basis of their unconstrained posterior samples. For a fixed
x, let �̂�jk(x) =

{
F̂jk(x), ( j, k) ∈ C

}
. An order-restricted estimate F⋆

jk(x) of Fjk(x) is obtained by applying

isotonic regression on �̂�jk(x) with respect to the reversed partial order ⪯r on C, where ⪯r is defined as
( j1, k1) ⪯r ( j2, k2) if j1 ⩾ j2 and k1 ⩾ k2. We consider two different weights in the isotonic regression on
the cumulative distribution functions: the precisions of the posterior beta distributions (as also used in
the BIT approach) and the numbers of patients treated at the combinations (recommended for estimates
of ordered proportions in the frequentist context by Robertson et al. [29]), to be denoted as PSO I and
PSO II, respectively, in Section 4. One can easily show that F̂⋆

jk(x) is indeed a distribution function. In
fact, using the notation from Robertson et al. [29], F⋆

jk(x) = maxU∶( j,k)∈UminL∶( j,k)∈LAvx(L∩U), where L

and U are lower and upper sets in C, and Avx(L∩U) is the weighted average of F̂j′k′ (x) for all ( j′, k′) ∈ C
(see the definitions of lower and upper sets in, e.g., [27]). Because for any ( j, k), F̂jk(⋅) is a distribution
function, implying that F̂jk(x1) ⩽ F̂jk(x2) for all x1 < x2, we have Avx1

(L ∩ U) ⩽ Avx2
(L ∩ U) for any L

and U; thus, F⋆

jk(x1) ⩽ F⋆

jk(x2).
Using the preceding approach to inference, the posterior distributions will be equal when two out of

three and one out of three responses are observed at combinations (1, 1) and (1, 2), respectively. The pos-
terior means will also be equal. If the responses are reversed at the two combinations, then the resulting
posterior distributions will be unchanged as Beta(1 + a2, 2 + a2) and Beta(2 + a2, 1 + a2), because they
are already stochastically strictly ordered. These can be seen in Figure 2. The preceding examples thus
demonstrate that the proposed approach based only on PSO appropriately accounts for the order and
corrects it as needed. Intuitively, the proposed isotonic regression of the distribution functions is appro-
priate in the sense that it ensures that the stochastic partial ordering condition C1 is directly met while
keeping the estimated posterior distributions as close to the unconstrained posterior distributions as pos-
sible (i.e., to respect the observed data), by minimizing the weighted sum-of-square distance between the
unconstrained and constrained marginal posterior distribution functions. This is particularly important
and useful given the small sample sizes of dose-finding trials, where correction of the ordering constraints
may be frequently needed because of high variability of the observed outcomes.

2.4. Theoretical framework and justification of the proposed partial stochastic ordering-based approach

In this section, we describe the theoretical framework and summarize the justification of the PSO-based
approach proposed in Section 2.3.

First, for computational convenience, we choose to model the toxicity and efficacy outcomes sepa-
rately across dose combinations (without the need to assume their independence within patients) and
base our dose-finding algorithm on only the marginal posterior distributions of the toxicity and efficacy
probabilities. As our goal is to make inferences on the marginal probabilities of the toxicity and effi-
cacy outcomes, we rely on the correct specification of the marginal binomial likelihood with each of
the toxicity and efficacy outcomes (as is the case). Furthermore, this strategy allows us to use existing
algorithms, such as the MLSA, for performing isotonic regression of the unconstrained marginal poste-
rior distribution functions of the toxicity and efficacy probabilities across dose combinations under the
matrix-ordering constraints. Cunanan and Koopmeiners [31] conducted an extensive simulation study to
compare two common phase I/II design methods that model the correlation structure between the toxicity
and efficacy outcomes [32, 33], with the corresponding versions of these methods that assume indepen-
dence, when the correlation is present. Their paper concludes that, in general, modeling the correlation
structure does not enhance the performances of these dose-finding methods. In fact, surprisingly, the
models that assume independence can perform even better than the models that correctly specify the cor-
relation structure in some cases while performing similarly in other cases. According to the authors, the
potential reasons behind these results may include the following: (1) The likelihood contains very little
information about the correlation parameter, and any benefit of modeling the correlation is negated by
the need to estimate an additional correlation parameter; (2) phase I/II clinical trials with small sample
sizes do not provide sufficient information for selecting the correct copula model; (3) properly modeling
the correlation between the two endpoints is necessary to complete proper inference (hypothesis tests,
credible intervals, etc.), but it may be that modeling this correlation is not necessary in a phase I/II clin-
ical trial where the goal is to select a dose at study completion regardless of the error associated with
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the estimates of the toxicity and efficacy probabilities. In a related study, Cai et al. [21] also proposed
to model the toxicity and efficacy outcomes independently in order to identify the OBDC and showed
through simulations that correctly modeling the correlation structure resulted in negligible improvements
in the performance of their design. On the basis of these considerations, we elect to focus on separately
modeling the dose–toxicity and dose–efficacy relationships in the current paper. Furthermore, our sim-
ulation study in Section 4 shows satisfactory performance of the proposed designs compared with both
the BIT-based design and a design based on parametric change-point models for the dose–toxicity and
dose–efficacy surfaces.

Second, like the BIT approach, the PSO-based approach is also a postprocessing approach, falling
in the category of a transformation-based two-step approach to order-constrained posterior inference.
Specifically, in the PSO-based approach, the matrix-ordering constraints on the toxicity and efficacy
probabilities across dose combinations are incorporated by separately isotonically transforming the
unconstrained marginal posterior distribution functions of the toxicity and efficacy probabilities across
dose combinations. By Theorem 1 of Hoff [34], there exists a joint posterior distribution of the toxic-
ity probabilities across dose combinations that is almost surely matrix-ordered and that has the marginal
cumulative distribution functions of the toxicity probabilities across dose combinations that are identical
to those obtained through isotonic regression of the unconstrained posterior distribution functions of the
toxicity probabilities. Note that isotonic regression of the marginal distribution functions is a minimal
distance mapping. In addition, a joint prior distribution implicitly defined by the ratio between a joint
order-constrained posterior distribution with the isotonically transformed marginals and the likelihood is
also almost surely matrix-ordered and data dependent. This suggests that the PSO-based approach can
be similarly considered as an empirical Bayes-type procedure [26]. The preceding statements also hold
for the efficacy probabilities.

The proposed PSO-based approach has some additional features: (1) Being nonparametric, it is poten-
tially more robust than a parametric approach (as shown in our simulation study); (2) the PSO-based
approach respects the data in a more intuitive way than the BIT approach (i.e., by not overcorrecting
for order), as explained in Section 2.3 and also illustrated in Figure 2; and (3) the proposed PSO-based
approach is an extension of a frequentist nonparametric approach to the estimation of stochastically
ordered survival functions [35] while applied in a Bayesian context. We detail such a connection
subsequently.

Let X1,… ,Xm and Y1,… ,Yn be independent random samples from two distributions, F and G, respec-
tively, and let Fm and Gn be the corresponding empirical distribution functions. Suppose F(x) ⩾ G(x) for
all x. Define P(x) = 1 − F(x), Q(x) = 1 − G(x), Pm(x) = 1 − Fm(x), and Qn(x) = 1 − Gn(x). Let

Rm+n(x) =
n

m + n
Qn(x) +

m
m + n

Pm(x).

Rojo [35] proposed estimators

F⋆

m(x) = 1 − min
(
Pm(x),Rm+n(x)

)
(3)

and

G⋆

n (x) = 1 − max
(
Qn(x),Rm+n(x)

)
(4)

for F(x) and G(x), and showed the following: (1) F⋆
m(x) and G⋆

n (x) satisfy the stochastic order con-
straint; (2) F⋆

m(x) is strongly uniformly consistent for F(x) when m goes to infinity, and similarly,
G⋆

n (x) is strongly uniformly consistent for G(x) when n goes to infinity, each without the need
of both m and n going to infinity; and (3) for censored data, under suitable conditions, the pro-
cesses

{√
m
(
F⋆

m(x) − F(x)
)
, 0 < x < ∞,m = 1,…

}
and

{√
n
(
G⋆

n (x) − G(x)
)
, 0 < x < ∞, n = 1,…

}

are weakly convergent, so that asymptotic confidence bands for the distribution functions can be
constructed.

We note that Equations (3) and (4) suggest that the estimators F⋆
m(x) and G⋆

n (x) are isotonic regressions
of Fm(x) and Gn(x), with the sample sizes m and n being the weights. While Rojo’s [35] method is appli-
cable only in the two-sample stochastic ordering case, our proposed approach is applicable to PSO cases
such as matrix stochastic ordering for the toxicity and efficacy probabilities across dose combinations.
Consequently, our approach is an extension of the Rojo [35] method to the partial ordering case while
being applied in a Bayesian context.
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3. Dose-combination-finding algorithm

Let p̄ and q̄ be the physician-specified upper limit for toxicity and lower limit for efficacy, respectively.
We define admissible dose combinations as those with toxicity probabilities less than or equal to p̄ and
efficacy probabilities larger than or equal to q̄. The admissible plateau is defined as the combinations
with the largest efficacy probability among the admissible combinations. We define the OBDCs, or target
combinations, as the lowest combinations in the admissible plateau. We propose an algorithm to sequen-
tially allocate patients to dose combinations that are both safe and efficacious. Suppose we treat patients
in cohorts of size c. Let n and njk be the current total sample size and the sample size at dose combination
( j, k), respectively. We categorize a combination as safe, having acceptable toxicity, or excessively toxic
as follows:

• ( j, k) is safe if P
(
pjk ⩽ p̄ ∣ data

)
> P1,n,njk ,𝜔

.
• ( j, k) has acceptable toxicity if P

(
pjk ⩽ p̄ ∣ data

)
> P2,n,njk ,𝜔

.
• ( j, k) is excessively toxic if P

(
pjk ⩽ p̄ ∣ data

)
⩽ P2,n,njk ,𝜔

.

Here, P1,n,njk ,𝜔
⩾ P2,n,njk ,𝜔

are cutoffs that depend on a weighted average of njk and n:

P1,n,njk ,𝜔
= a1

(
𝜔njk + (1 − 𝜔)n

)
+ b1,

P2,n,njk ,𝜔
= a2

(
𝜔njk + (1 − 𝜔)n

)
+ b2,

with 0 ⩽ 𝜔 ⩽ 1 being the weight given to njk, which reflects the relative importance of the two sample
sizes, and a1, b1, a2, and b2 being tuning parameters. Suppose P1 > P2 at the smallest sample size
(n = n11 = c). As one may expect P1 and P2 to converge as the sample size becomes large, reasonable
tuning parameters should satisfy a1 < a2 and b1 > b2 +(a2 −a1)c. These conditions, however, imply that
when 𝜔 ⋅ njk + (1 − 𝜔) ⋅ n is sufficiently large, P1 may become less than P2. In that case, we will define
P1 = P2 = a2

(
𝜔njk + (1 − 𝜔)n

)
+ b2 to ensure P1 ⩾ P2.

We define a dose combination as having acceptable efficacy if P
(
qjk ⩾ q̄ ∣ data

)
> Qn,njk ,𝜔

, where

Qn,njk ,𝜔
= a3

(
𝜔njk + (1 − 𝜔)n

)
+ b3.

In the preceding definitions, we let the cutoff probabilities depend on both the sample size at ( j, k) and
the total sample size. When the total sample size increases, the posterior probability estimates are more
reliable because they have borrowed strength across combinations. Similarly, if njk is large, the probability
estimates at this combination are more reliable. Thus, our criteria for declaring a dose combination as
safe, excessively toxic, or having acceptable efficacy are in general liberal at the beginning of the trial
and more stringent at a later stage of the trial. We evaluate the sensitivity of the operating characteristics
of the design to different values of 𝜔 in simulation studies.

We say a dose combination is acceptable if it has acceptable levels of both toxicity and efficacy. Let =
{( j, k) ∶ ( j, k) is acceptable and tried}. For each dose combination ( j, k), we define its lower neighbors
as ( j − 1, k) and ( j, k − 1), as applicable. Some combinations may have only one or zero lower neighbor.
For example, combination (1, 1) has zero lower neighbor, and each of combinations (1, 2) and (2, 1) has
only one lower neighbor.

Because of the randomness of the data, we proposed a practical rule that resulted in increased proba-
bility of selecting the target combinations in our simulations. Specifically, at any point during the trial,
let the efficacy probability point estimates be the isotonic regression of the observed efficacy probabil-
ities with respect to the partial order among all tried combinations. Denote qmax as the largest efficacy
point estimate among all acceptable combinations. Define the best combination in  as the one with the
largest Sjk ≡ Prob(qjk ⩾ qmax), with the largest Sjk denoted as Smax. The acceptable plateau is defined as
combinations ( j, k) in  that satisfy Sjk ⩾ Smax−𝛿, with 𝛿 > 0 to be tuned through simulations to achieve
desirable operating characteristics of the design. Similar to P1,n,njk ,𝜔

, P2,n,njk ,𝜔
and Qn,njk ,𝜔

, to adequately
explore the admissible plateau early in the trial and become more focused and stringent when more data
are accruing toward the end of the trial, we let 𝛿 decrease with the total sample size, as follows:

𝛿 = a𝛿n + b𝛿,
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where a𝛿 < 0 and b𝛿 are tuning parameters. It is important to point out that all the preceding posterior
probabilities can be calculated without drawing posterior samples, as the values of the beta cumulative
distribution functions are directly calculable in any common computer software such as R.

We propose a dose-combination-finding algorithm, as follows:

(1) Patients in the first cohort are treated with (1, 1). If at any evaluation point, (1, 1) is deemed to be
excessively toxic or the maximum sample size is reached, we terminate the trial.

(2) If there is at least one dose combination that has both safe lower neighbors and has not been used
to treat patients, we allocate the next cohort of patients at the lowest such combination. When
there are multiple such lowest combinations, we randomly select one with equal probability. If no
untried combination has both safe lower neighbors, then the next cohort of patients is assigned
to the lowest combination in the acceptable plateau in , or the trial is terminated if  is empty.
When there are two or more lowest combinations in the acceptable plateau, we randomly pick one
with equal probability.

(3) At the end of the trial, we select the lowest dose combinations in the acceptable plateau as the
recommended combinations. There can be more than one recommended combination.

4. Application and simulation

Our trial design was motivated by a phase I/II clinical trial of a combination of an AKT inhibitor and a
MEK inhibitor in patients with pancreatic, endometrial, or colorectal cancer. For each agent evaluated in
the study, three doses are selected for testing, starting from 60% of the single-agent maximum tolerated
dose and resulting in a total of nine dose combinations. Toxicity is defined as having one or more of the
dose-limiting toxicities, such as grade 4 neutropenia lasting ⩾ 5 days or febrile neutropenia. Efficacy is
defined as complete or partial remission, according to the Response Evaluation Criteria in Solid tumors
(RECIST) 1.1. As the investigators hypothesize that plateaus may exist in the dose–efficacy (and dose–
toxicity) surfaces in the tested dose range, the primary objective of the study is to determine the OBDCs,
that is, the lowest dose combinations that are safe and have the highest efficacy level meeting a prespeci-
fied target. Specifically, the physician-specified toxicity upper limit and efficacy lower limit are p̄ = 0.33
and q̄ = 0.3.

On the basis of this trial, we constructed 12 scenarios with different true probabilities of toxicity and
efficacy to assess the performance of our proposed designs, in comparison with a design that uses a
parametric change-point model from Cai et al. [21] for both the dose-toxicity and dose-efficacy surfaces
(hereafter referred to as the Cai design) (Table I). Both efficacy and toxicity were assumed to either
increase with dose or first increase and then plateau. We designed the target combinations at different
locations on the dose-combination matrix and used different plateau shapes for efficacy and toxicity, in
order to cover a wide array of practical scenarios. Specifically, Scenarios 1–7 describe situations in which
there is only one target combination (with a varying location) and the efficacy probability plateaus in the
tested dose range. Scenarios 8–10 represent situations in which there is more than one target combination.
In Scenarios 11–12, the efficacy probability strictly increases with an increasing dose, that is, without a
plateau in the dose–efficacy surface. The toxicity and efficacy outcomes were assumed to be independent.

The maximum sample size was chosen to be 54, and patients were treated in cohorts of size 3. We
assigned independent Beta(0.5, 0.5) priors for the toxicity/efficacy probabilities at each dose combination,
to reflect prior ignorance. The chosen tuning parameters were a1 = 0.015, b1 = 0.3, a2 = 0.026, b2 =
0.03, a3 = 0.009, b3 = 0.02, a𝛿 = −0.0015, b𝛿 = 0.4515, and 𝜔 = 0.3 under the proposed designs based
only on PSO, a1 = 0.01, b1 = 0.25, a2 = 0.02, b2 = 0.015, a3 = 0.005, b3 = 0.014, a𝛿 = −0.001,
b𝛿 = 0.551, and 𝜔 = 0.3 under the BIT approach, and a1 = 0.015, b1 = 0.3, a2 = 0.035, b2 = 0.02,
a3 = 0.002, b3 = 0.001, and 𝜔 = 0.5 under the Cai design. We note that because the Cai design uses
change-point models that are designed specifically to identify the plateau, we set 𝛿 = 0, and consequently,
we do not need to specify parameters a𝛿 and b𝛿 . P1 was defined as equal to P2 when 𝜔 ⋅njk +(1−𝜔) ⋅n is
greater than 24.5, 23.5, and 14.0, for the PSO, BIT, and Cai designs, respectively. Each set of parameters
was tuned via simulations to achieve overall desirable operating characteristics. One may notice that
these tuning parameters reflected looser cutoff probabilities P1, P2, Q, and 𝛿 in the BIT design than in
the PSO-based designs. As the BIT approach tended to either underestimate or overestimate the toxicity
and efficacy probabilities, looser cutoff probabilities were required in order to control the percentage of
inconclusive trials to be low when there was at least one target combination.
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Table I. True toxicity and efficacy probabilities of each dose combination for the 12 scenarios. The
combinations in bold are the OBDCs.

True pr(toxicity) True pr(efficacy) True pr(toxicity) True pr(efficacy)

Dose 1 2 3 1 2 3 1 2 3 1 2 3

Scenario 1 Scenario 2
1 0.05 0.10 0.10 0.10 0.40 0.40 0.05 0.05 0.05 0.05 0.05 0.05
2 0.10 0.15 0.15 0.15 0.40 0.40 0.10 0.10 0.10 0.30 0.30 0.30
3 0.40 0.45 0.45 0.20 0.40 0.40 0.45 0.50 0.50 0.35 0.50 0.50

Scenario 3 Scenario 4
1 0.05 0.45 0.45 0.35 0.35 0.35 0.05 0.08 0.50 0.30 0.30 0.30
2 0.08 0.45 0.45 0.35 0.45 0.45 0.08 0.50 0.50 0.30 0.30 0.30
3 0.08 0.45 0.45 0.35 0.45 0.45 0.50 0.50 0.50 0.30 0.30 0.30

Scenario 5 Scenario 6
1 0.02 0.04 0.45 0.05 0.10 0.30 0.02 0.04 0.06 0.10 0.10 0.10
2 0.04 0.06 0.50 0.10 0.30 0.40 0.04 0.06 0.10 0.10 0.15 0.40
3 0.06 0.10 0.50 0.10 0.50 0.50 0.06 0.10 0.15 0.10 0.15 0.40

Scenario 7 Scenario 8
1 0.05 0.45 0.50 0.05 0.40 0.40 0.05 0.08 0.10 0.05 0.10 0.32
2 0.10 0.50 0.50 0.35 0.50 0.50 0.08 0.10 0.15 0.10 0.32 0.32
3 0.10 0.50 0.50 0.35 0.50 0.50 0.10 0.15 0.45 0.32 0.32 0.32

Scenario 9 Scenario 10
1 0.05 0.08 0.10 0.05 0.10 0.10 0.05 0.08 0.10 0.02 0.30 0.30
2 0.08 0.10 0.12 0.10 0.12 0.35 0.08 0.50 0.50 0.30 0.35 0.35
3 0.10 0.12 0.15 0.10 0.35 0.35 0.10 0.50 0.50 0.30 0.35 0.35

Scenario 11 Scenario 12
1 0.02 0.03 0.05 0.05 0.10 0.15 0.05 0.10 0.15 0.05 0.20 0.30
2 0.03 0.05 0.06 0.10 0.15 0.25 0.10 0.45 0.50 0.20 0.35 0.40
3 0.05 0.06 0.10 0.15 0.25 0.55 0.15 0.50 0.50 0.45 0.50 0.60

Under each scenario, we simulated 1000 trials. We present the selection percentages of the dose com-
binations, the average number of patients treated at each dose combination, and the observed toxicity and
efficacy percentages in Table II. ‘PSO I’ and ‘PSO II’ refer to the proposed designs based only on PSO
and using posterior precisions and sample sizes as weights for isotonic regression, respectively. ‘BIT’
refers to the design based on Bayesian isotonic regression transformation. ‘Cai’ refers to the Cai design.
We retain the same decision rules used in our approach for the Cai design and use appropriately tuned
design parameters for a fair comparison. We use our decision rules because the definition of the OBDC
and thus the goal of the trial design as well as the assumption made on the dose–efficacy relationship in
Cai et al. [21] are different from those of our design.

In all scenarios, PSO I and II performed comparably, and the target combinations had the highest selec-
tion percentages and were used to treat the largest number of patients among all combinations under the
two PSO designs. This was not the case for the BIT or Cai design. For example, the highest selection
percentage and number of patients treated were not at the target combinations in Scenarios 3, 4, and 5
under the BIT design nor in Scenarios 5, 6, 9, and 11 under the Cai design. The percentages of toxicity
and efficacy were comparable under PSO and BIT, although the latter yielded overall slightly higher per-
centages of both. The Cai design yielded overall lower efficacy percentages and more chances of higher
toxicity percentages. Out of the 12 scenarios, the PSO I and II designs performed consistently or almost
consistently better than the BIT design in Scenarios 1–5, 10, and 11 and better than the Cai design in
Scenarios 5–9, 11, and 12 in terms of the selection percentage of the target dose combination(s) and the
number of patients treated at the target combination(s). These results reflect the ‘overcorrection’ of the
partial ordering constraints by the BIT approach, as well as the sensitivity of the performance of the Cai
design to potential violation of the parametric model assumptions. In Scenario 2, the admissible plateau
included dose combinations (2,1), (2,2), and (2,3). With identical true efficacy probabilities of 0.3 at these
combinations, the BIT method tended to underestimate the efficacy probability at the lowest combina-
tion in the plateau, that is, (2,1), thus with a higher probability excluding it from the acceptable plateau
and declaring combination (2,2) as the OBDC, while the true OBDC was (2,1). A similar interpretation
applies to the results in Scenarios 1, 3, 4, and 10. In particular, in Scenario 1, the true equal efficacy
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Table II. Selection percentage and number of patients treated (in parentheses) at each dose combination under
the proposed designs assuming partial stochastic ordering (PSO I and PSO II), the design using Bayesian
isotonic regression transformation (BIT), and a design based on parametric change-point models (Cai). The
combinations in bold are the OBDCs.

Dose 1 2 3 1 2 3

Selection percent (number patients) Tox Eff Selection percent (number patients) Tox Eff

Scenario 1 Scenario 2
1 0.5 (5.3) 52.4 (16.9) 24.5 (7.7) 0.3 (4.9) 0.9 (4.8) 2.7 (3.5)

PSO I 2 6.6 (5.5) 18.8 (6.8) 8.9 (2.5) 15.1 32.9 46.2 (16.5) 25.4 (8.3) 15.4 (3) 15.1 25.1
3 3 (3.9) 1.5 (3.9) 0.5 (1.1) 8.2 (5.6) 2.1 (5.7) 0.2 (1)

1 0.1 (5.1) 52.5 (16.8) 23.9 (7.3) 0.5 (4.9) 1.6 (4.8) 2 (3.7)
PSO II 2 8 (5.9) 21.7 (6.9) 8.2 (2.7) 14.7 33.0 47.0 (16.5) 26.2 (8.3) 15.5 (3.4) 14.7 25.2

3 4 (3.9) 1.7 (3.8) 0.5 (1.2) 7 (5.3) 1.5 (5.2) 0.2 (1.1)

1 0.1 (3.8) 46.4 (15.7) 30 (9.2) 0 (3.1) 0.5 (3.6) 2.5 (4.2)
BIT 2 5.9 (5.2) 29.4 (9) 6.1 (2.7) 14.9 34.1 35.6 (14.8) 35 (10.9) 18.5 (3.4) 15.3 26.4

3 4.8 (3.9) 1.4 (3.7) 0.1 (0.6) 12.4 (7) 1.5 (5.8) 0.1 (0.5)

1 22 (16.5) 55.2 (10.4) 16.1 (5.3) 4.8 (8.8) 8.5 (4.4) 5.2 (3.6)
Cai 2 22.5 (5.1) 9.8 (3.9) 3.2 (3.3) 14.7 27.1 47.4 (12.7) 20 (5.7) 9.9 (4.1) 18.7 25.4

3 4.7 (3.5) 0.6 (3.1) 0.4 (2.7) 16.9 (7.7) 3.6 (3.8) 1.2 (2.7)

Scenario 3 Scenario 4
1 55.0 (23.2) 4.9 (5.5) 3.3 (2.4) 52.8 (23.7) 27 (8.6) 1.9 (3.5)

PSO I 2 22.4 (10.6) 4.5 (2.7) 0.1 (0.7) 15.4 35.7 26.6 (8.8) 1.9 (3.7) 0.1 (0.4) 16.6 30.2
3 15.5 (7.3) 0.7 (1.4) 0.4 (0.2) 1.4 (3.7) 0.2 (1.2) 0 (0.1)

1 53.1 (23.0) 6.6 (5.6) 1.6 (2.2) 50.5 (23.0) 28.1 (8.9) 1.5 (3.8)
PSO II 2 24 (10.8) 3.2 (2.5) 0.2 (0.6) 15.4 35.5 28.7 (8.9) 1.4 (3.7) 0.1 (0.4) 16.9 29.5

3 16.7 (7.8) 0.3 (1.2) 0 (0.2) 1.8 (3.7) 0.2 (1.2) 0 (0.1)

1 35.1 (16.3) 11.5 (7.5) 1.1 (2.4) 23.8 (12.1) 39.8 (12.9) 2.9 (4.3)
BIT 2 40.9 (15.6) 4.1 (3.1) 0.2 (0.7) 17.4 35.9 38.7 (12.7) 3.2 (4.4) 0.1 (0.4) 19.4 29.7

3 14.6 (6.9) 0.5 (1.3) 0 (0.1) 2.1 (4.4) 0.1 (1.2) 0 (0)

1 93.5 (31.0) 2 (3.5) 0.2 (3.1) 90.7 (30.9) 4.1 (3.7) 1.5 (3.3)
Cai 2 3.8 (3.6) 0.6 (3.2) 0 (2.3) 17.6 36.7 3.8 (3.7) 0.9 (3.1) 0.1 (2.3) 18.4 29.5

3 1.3 (3.3) 0.3 (2.6) 0 (1.5) 0.8 (3.3) 0.2 (2.5) 0 (1.1)

Scenario 5 Scenario 6
1 0.1 (4.1) 2.5 (5.3) 8 (5.6) 0.7 (5.3) 2 (5.1) 7.9 (4.8)

PSO I 2 2.4 (5.1) 34.6 (11.3) 3 (2.4) 13.2 28.5 2.4 (5.1) 12.4 (5.8) 49.6 (11.1) 7.7 21.0
3 5.4 (4.7) 52.0 (14.2) 0.4 (1) 8 (4.8) 11.9 (4.9) 18.9 (6.8)

1 0.4 (4) 1.2 (5.3) 8.7 (5.5) 0.8 (5.5) 3.2 (5.1) 5.8 (4.7)
PSO II 2 1.5 (4.7) 35.9 (11.6) 2.1 (2.3) 13.1 28.9 3.2 (5.3) 9.9 (5.6) 49.8 (11.2) 7.6 21.0

3 4.7 (4.8) 52.4 (14.7) 0.6 (1) 6.8 (4.7) 12 (5) 19.3 (6.7)

1 0 (3.1) 1 (5) 13.5 (6.4) 0 (3) 0.3 (3.5) 5 (5.7)
BIT 2 0.6 (4.1) 47.7 (14.6) 2.3 (2.2) 13.3 28.4 0.4 (3.5) 8 (5.8) 67.8 (15.1) 8.0 22.9

3 8.1 (5.8) 43.1 (12.1) 0 (0.6) 3.7 (4.9) 17.2 (6.4) 13.6 (5.6)

1 3 (8) 15.9 (7.3) 26.1 (7.9) 4.6 (8.3) 5.6 (4.8) 24.6 (7.5)
Cai 2 9.3 (5.2) 30.3 (6.8) 4.9 (4.1) 16.8 23.9 7.6 (4.7) 9.6 (4.2) 20.7 (6.6) 6.9 17.4

3 18.6 (5.4) 28.5 (6.2) 2.8 (2.9) 17.9 (6) 14.7 (4.6) 23.8 (5.9)

probabilities among combinations (1,2), (1,3), and (2,2) imply that the efficacy probability at (1,2) may
be considerably underestimated in the BIT design. The toxicity probability at combination (2,2) may also
be considerably underestimated. As a result, the selection percentage (and number of patients treated) at
the target combination (1,2) may be reduced and the corresponding percentage and number of patients
treated at combination (2,2) may be increased (compared with the PSO designs). In Scenario 5, the
reason combination (2,2) was selected more than the true OBDC (3,2) in the BIT design may be seen
as a result of both the potential overestimation of the toxicity probability at combination (3,2) and the
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Table II. (continued).

Dose 1 2 3 1 2 3

Selection percent (number patients) Tox Eff Selection percent (number patients) Tox Eff

Scenario 7 Scenario 8
1 0.5 (5.1) 10.2 (8.7) 2.4 (2.3) 0.2 (4.3) 2.2 (5.6) 51.8 (9.0)

PSO I 2 62.7 (22.3) 2.9 (2.7) 0.3 (0.5) 20.4 34.1 2.1 (5.7) 48.0 (8.9) 8.1 (3.6) 11.7 25.0
3 25.1 (10.3) 0.5 (1) 0 (0.1) 52.0 (9.7) 8.4 (4.2) 0.7 (2.7)

1 0.3 (5.1) 10.1 (8.7) 1.7 (2.3) 0.3 (4.3) 2.1 (5.4) 53.6 (9.4)
PSO II 2 61.3 (22.6) 1.3 (2.5) 0.1 (0.4) 20.2 34.0 1.5 (5.6) 47.1 (9.3) 8 (3.7) 11.9 25.1

3 26.4 (10.5) 0.4 (1) 0 (0.1) 51.1 (9.2) 7.2 (3.9) 1.2 (2.9)

1 0 (4.5) 19.4 (10.9) 2.1 (2.8) 0 (3.1) 1.2 (4.5) 49.1 (10.0)
BIT 2 69.1 (23.1) 2.5 (3) 0.1 (0.5) 22.2 34.9 0.9 (4.6) 42.8 (8.9) 11.4 (4.6) 11.9 26.7

3 20.2 (7.9) 0.2 (0.9) 0 (0) 48.7 (10.4) 12.5 (5.1) 0.7 (2.6)

1 11.5 (15.4) 25.2 (8.4) 2.2 (3.6) 3.4 (10.3) 17.2 (6.7) 38.6 (7.2)
Cai 2 51.0 (11.6) 5.7 (3.8) 0.2 (2) 24.0 30.0 17.3 (6.4) 30.8 (5.2) 6.5 (3.8) 11.6 21.2

3 22.6 (5.5) 0.7 (2.4) 0.2 (1.2) 40.3 (7.1) 6.6 (3.8) 1.7 (3.2)

Scenario 9 Scenario 10
1 0.1 (4.7) 1.4 (5.6) 5.7 (4.9) 0 (4) 46.7 (14.8) 17.3 (6.4)

PSO I 2 2 (5.5) 9.2 (5.5) 41.1 (8.0) 10.4 19.6 44.4 (13.5) 5 (4.3) 0.7 (1.7) 14.5 28.6
3 6.5 (5.1) 41.8 (9.0) 11.3 (4.7) 20.3 (7.2) 0.9 (1.7) 0 (0.3)

1 0.1 (4.7) 2 (5.8) 7.9 (5.1) 0.2 (4) 46.3 (14.2) 18.9 (6.5)
PSO II 2 1.9 (5.7) 11.1 (5.6) 40.8 (8.0) 10.4 19.4 47.1 (14.8) 4.2 (4.2) 0.4 (1.6) 14.2 28.6

3 7.5 (5.1) 40.1 (8.4) 8.9 (4.5) 18.6 (6.6) 0.6 (1.7) 0.2 (0.4)

1 0 (3) 0.4 (3.5) 3.5 (5.4) 0 (3.3) 40.7 (13.6) 23.2 (7.5)
BIT 2 0.5 (3.7) 5.7 (5.6) 52.8 (10.5) 10.9 21.7 41.1 (14.0) 7.1 (4.6) 0.4 (1.6) 14.6 29.1

3 5.1 (5.9) 54.2 (11.3) 7.5 (4) 22.7 (7.3) 0.6 (1.8) 0 (0.2)

1 1.4 (7) 5.6 (5.1) 25.4 (7) 9.8 (14.1) 47.8 (9.0) 14 (4.7)
Cai 2 6.1 (5) 13.2 (4.5) 19.8 (5.7) 10.1 17.1 48.1 (8.7) 13.9 (4.1) 1.1 (3.1) 17.4 23.7

3 25.7 (7.1) 19.6 (5.7) 17.4 (5.4) 16.5 (4.6) 1.2 (3.3) 0.4 (2.4)

Scenario 11 Scenario 12
1 0.1 (3.7) 0.7 (4.3) 8 (5.5) 0.2 (4.3) 15.6 (8.8) 25.6 (7.3)

PSO I 2 1.2 (4.4) 6.2 (4.7) 17.4 (6.2) 6.0 25.7 15.7 (9) 11 (5.6) 0.7 (1.8) 18.2 30.4
3 6.3 (5.3) 17.3 (6.6) 52.6 (13.2) 57.6 (14.1) 1.4 (2.3) 0.4 (0.5)

1 0.2 (3.8) 90.9 (4.4) 9.1 (5.3) 0.3 (4.4) 13.1 (8.9) 29.1 (7.7)
PSO II 2 1.4 (4.6) 9.4 (5.3) 16.4 (6.1) 6.0 24.9 14.4 (8.8) 9.7 (5.2) 0.5 (1.7) 18.1 30.5

3 6.6 (5) 17 (6.7) 51.2 (12.5) 57.5 (14.3) 1.5 (2.2) 0.2 (0.5)

1 0 (3) 0.1 (3.6) 10.5 (5.8) 0 (3.5) 15.8 (9.2) 32.1 (8.1)
BIT 2 0.3 (3.6) 8 (5.1) 30.7 (8.4) 5.8 24.1 19.9 (10.7) 14.8 (5.5) 0.6 (1.7) 18.2 30.0

3 9.8 (5.9) 27.7 (8.7) 36.9 (9.5) 57.9 (12.8) 1.4 (2.1) 0 (0.2)

1 1.4 (7) 7.6 (4.9) 28.1 (7.5) 7.1 (10.5) 22.7 (6.6) 20.9 (5.3)
Cai 2 7.6 (4.9) 14.3 (4.6) 14.8 (5.3) 5.1 19.7 25.8 (8) 22.8 (5.2) 2.8 (3.5) 21.0 28.6

3 25.1 (7.2) 16.6 (5.7) 24.8 (6.4) 38.5 (8.6) 6.4 (3.8) 1 (2.4)

corresponding increased chances for it to fall out of the acceptable plateau, and the larger 𝛿 value chosen
in the BIT design in order to achieve overall desirable operating characteristics. The results in Scenario
11 is a reflection of the combined effects of the overestimation of the toxicity probability at combination
(3,3), overestimation of the efficacy probabilities at combinations (2,3) and (3,2), and the larger 𝛿 value
chosen by the BIT method. Similar to the argument made in Section 2.3, as the multiple combinations
that are lower than combinations (2,3) and (3,2) have only moderately lower efficacy probabilities, the
chances for overestimation of the efficacy probabilities at combinations (2,3) and (3,2) are higher. This
may have contributed to the larger selection percentages of the combinations (2,3) and (3,2) as the tar-
get combinations in the BIT design than in the PSO designs. The BIT design performed better than the
PSO I and II designs in Scenarios 6, 7, and 9, where ‘overcorrection’ of the partial ordering constraints
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actually helped the selection of the target combination(s). For example, in Scenario 6, the admissible
plateau includes combinations (2,3) and (3,3). Overestimation of the toxicity probability at combination
(3,3) may increase the chances of excluding it from the acceptable plateau and consequently declaring
combination (2,3) as the target combination. The PSO I and II designs overall performed slightly better
in Scenario 8, and the BIT design performed slightly better in Scenario 12. The comparison in these sce-
narios may be seen as the results of overcorrection of partial ordering in combined toxicity and efficacy
probabilities by the BIT approach. For example, in Scenario 8 the slightly worse selection percentages
of and the slightly better allocations of patients to the target combinations by the BIT design may be a

Table III. Illustration of a simulated trial using the PSO I design.

Data Estimates Dose
combo

assignment

Combo Tox Eff P1 P2 qmax Sjk Smax 𝛿 Accpt Lowest

Unc C Unc C plateau accpt
plateau

(1,1) 0/3 0/3 0.89 0.89 (1,2), (2,1)

(1,1) 0/3 0/3 0.89 0.89 (3,1), (2,2), (1,3)
(2,1) 0/3 0/3 0.89 0.89
(1,2) 1/3 1/3 0.46 0.46

(1,1) 0/3 0/3 0.89 0.89 (3,2), (2,3)
(2,1) 0/3 0/3 0.89 0.89
(1,2) 1/3 1/3 0.46 0.81
(3,1) 1/3 1/3 0.46 0.46
(2,2) 0/3 2/3 0.89 0.81
(1,3) 0/3 3/3 0.89 0.81

(1,1) 0/3 0/3 0.89 0.89 0.13 0.13 0.5 0.03 0.5 0.42 (1,2)
(2,1) 0/3 0/3 0.89 0.89 0.13 0.13 0.03
(1,2) 1/3 1/3 0.46 0.84 0.58 0.46 0.29 X X
(3,1) 1/3 1/3 0.46 0.46 0.58 0.46 0.29 X
(2,2) 0/3 2/3 0.89 0.84 0.911 0.46 0.37 X
(1,3) 0/3 3/3 0.89 0.84 0.995 0.56 0.5 X
(3,2) 2/3 0/3 0.11 0.11 0.13 0.46 0.37
(2,3) 0/3 0/3 0.89 0.84 0.13 0.56 0.5 X

(1,1) 0/3 0/3 0.89 0.89 0.13 0.13 0.5 0.03 0.5 0.41 (3,1)
(2,1) 0/3 0/3 0.89 0.89 0.13 0.13 0.03
(1,2) 1/6 1/6 0.80 0.87 0.25 0.25 0.047
(3,1) 1/3 1/3 0.46 0.46 0.58 0.43 0.29 X X
(2,2) 0/3 2/3 0.89 0.87 0.911 0.43 0.37 X X
(1,3) 0/3 3/3 0.89 0.87 0.995 0.56 0.5 X X
(3,2) 2/3 0/3 0.11 0.11 0.13 0.43 0.37
(2,3) 0/3 0/3 0.89 0.87 0.13 0.56 0.5 X

(1,1) 0/3 0/3 0.89 0.89 0.13 0.13 0.5 0.03 0.5 0.4065 (2,2)
(2,1) 0/3 0/3 0.89 0.89 0.13 0.13 0.03
(1,2) 1/6 1/6 0.80 0.87 0.25 0.25 0.047
(3,1) 2/6 1/6 0.47 0.47 0.25 0.25 0.047
(2,2) 0/3 2/3 0.89 0.87 0.911 0.38 0.37 X X
(1,3) 0/3 3/3 0.89 0.87 0.995 0.56 0.5 X X
(3,2) 2/3 0/3 0.11 0.11 0.13 0.38 0.37
(2,3) 0/3 0/3 0.89 0.87 0.13 0.56 0.5 X

Notes: (1) P1 = P
(
pjk ≤ p̄ ∣ data

)
, P2 = P

(
qjk ≥ q̄ ∣ data

)
, where p̄ = 0.33, q̄ = 0.3. (2) The dose combinations in bold

are used to treat the current cohort of patients. When multiple combinations are in bold, they are used to treat cohorts
of patients in an order randomly chosen, essentially on the basis of our proposed dose-combination-finding algorithm.
The same statement is true when the dose-combination assignment for the next cohort of patients (last column) includes
multiple combinations. (3) The underlined combinations are found to be excessively toxic. (4) Combo: combination;
Tox: toxicity; Eff: efficacy; Unc: unconstrained; C: constrained; accpt: acceptable.
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combined result of the underestimation of the efficacy probabilities at the target combinations and the
overestimation of the toxicity probabilities at combinations (2,3) and (3,2). While it appears that the cho-
sen larger 𝛿 value in the BIT design decreased its performance in some scenarios, we note that, were a
smaller 𝛿 chosen, results for the BIT design will become considerably worse in Scenarios 2, 3, 4, and oth-
ers. The chosen 𝛿 has achieved overall the best operating characteristics of the BIT design. In summary,
the results across all scenarios supported the pattern of ‘overcorrection’ of the partial ordering constraints
by the BIT approach, and the PSO I and II designs performed overall better than the BIT design.

The Cai design performs extremely well in Scenarios 3 and 4, with considerably higher target combi-
nation selection percentages and greater numbers of patients treated at the target combination compared
with the PSO and BIT designs. In Scenarios 1, 2, and 10, it yielded slightly higher target combination
selection percentages but had lower numbers of patients treated at the target combinations compared with
the PSO and BIT designs. These results again reflect the sensitivity of the Cai design to a correct spec-
ification of the dose–toxicity and dose–efficacy curves. That is, when the true scenarios are close to the
assumed parametric models, the performance of the Cai design may be dramatically enhanced. However,
overall the Cai design does not perform as well as either the PSO or BIT designs. We further carried out
sensitivity analyses to evaluate the performance of the designs with varying weights 𝜔 in the cutoff prob-
abilities. The weights examined were 0, 0.1, 0.3, 0.7, 0.9, and 1 besides 0.5. We summarize the selection
percentage of and the average number of patients treated at each OBDC with each weight for the PSO I,
PSO II, BIT, and Cai designs, respectively, in Tables S1–S4 in the Supporting information. On the basis
of the selection probabilities of the target combinations, we found that 0.3 is the overall best weight for
the PSO I design. This is determined using the following criteria. For example, for PSO I, we first picked
the best four 𝜔′s in each scenario and counted the frequency of each 𝜔 falling in the best four among the
12 scenarios. The frequencies of the seven weights 0, 0.1, 0.3, 0.5, 0.7, 0.9, and 1 were 7, 5, 12, 8, 8, 4,
and 3, respectively. Next, we selected the weights in each scenario that resulted in selection probabili-
ties of the target combinations within 94% of the best selection. The corresponding frequencies were 7,
3, 10, 8, 7, 4, and 6, respectively. Both criteria suggested that 𝜔 = 0.3 yielded the best overall operating
characteristics of the design. Using similar criteria, 𝜔 = 0.3 was also found to be the best weight for the
PSO II and BIT designs, and 𝜔 = 0.5 was the best for the Cai design.

As the performances of the two PSO-based designs are very similar, to numerically illustrate
the proposed methods, we present the following information only based on the PSO I design in
Table III: (1) hypothetical data of a trial simulated under Scenario 1 of Table I; (2) calculated posterior
probabilities based on isotonically transformed marginal posterior distributions of the toxicity and/or
efficacy probabilities, and related parameters; and (3) the corresponding dose-combination assignment
decisions. Because of space limitations, we show these results for only a few cohorts rather than for all
cohorts in the trial.

5. Discussion

We have proposed Bayesian designs to select OBDCs in phase I/II clinical trials. The proposed approach
does not assume a parametric dose–efficacy or dose–toxicity model and is based only on PSO assump-
tions. The dose–efficacy and dose–toxicity surfaces allow for potential plateaus in the tested dose range,
as may be expected for MTAs. The performances of the proposed designs are compared with those of a
design based on BIT and a design based on parametric change-point models for the dose–toxicity and
dose–efficacy surfaces. Our simulation studies show that although both the PSO- and BIT-based designs
perform reasonably well and better than the design based on parametric models, the PSO-based design
performs the best in terms of correctly selecting the target combinations and assigning more patients to
the target combinations.

The proposed designs can be applied without changes when the definition of the OBDCs is replaced by
the lowest dose combinations that are safe and have an efficacy probability at most 𝛿0 less than or 100p%
of the highest probability, with 𝛿 > 0 or 0 < p < 1 being a prespecified value. The only difference is
that we may need to choose a larger 𝛿 in our proposed designs. Slight modifications of our designs can
be sufficient if an alternative definition of the lowest dose combinations is used.

The proposed PSO-based inference approach has a number of attractive features: (1) It has a general
and simple framework. The method does not need to change if the plateau appears in the middle or at the
end of the tested dose range, whereas a parametric approach might. The proposed method can be easily
extended to account for different types of ordering constraints, for example, umbrella ordering that allows
for a plateau at the peak. The proposed method can also be easily extended to different outcome types,
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with changes needed in only the estimation of or sampling from the posterior distributions based on the
unconstrained models. For example, if the efficacy and/or toxicity outcomes are not observed immedi-
ately, then we can model corresponding time-to-event outcomes on the basis of similar PSO assumptions.
(2) The proposed approach makes minimal acceptable assumptions and thus potentially serves as a ‘refer-
ence’ approach. For example, when efficiency is a priority, one can compare alternatively proposed (such
as model-based) designs with our proposed designs to evaluate potential efficiency gained and robustness
lost before deciding which design to choose, possibly taking into account the likelihood of hypothesized
scenarios in the trial. (3) The proposed approach is computationally efficient. In our proposed design
with binary endpoints, posterior inference does not require posterior simulation of the toxicity or effi-
cacy probabilities. With the R code we provide, upon request, for performing isotonic regression of the
unconstrained posterior distribution functions under the matrix-ordering constraints, the design will be
relatively straightforward to implement in practice. The computational efficiency remains the same for
other outcomes, including continuous outcomes such as tumor size.
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