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Abstract

Human cytomegalovirus (HCMV) is an opportunistic human herpesvirus that causes a

sight-threatening retinitis in immunosuppressed patients, especially those with AIDS. Using

an established model of experimental murine cytomegalovirus (MCMV) retinitis in mice with

retrovirus-induced immunodeficiency (MAIDS), we have been attempting to define with

greater clarity the immunologic mechanisms that contribute to the progression of AIDS-

related HCMV retinitis in the unique immunosuppressive setting of HIV infection. Toward

this end, we provide herein a comprehensive assessment of immune response gene

expression during the onset and development of MAIDS-related MCMV retinitis employing

NanoString nCounter. In so doing, we analyzed and compared the intraocular expressions

of 561 immune response genes within MCMV-infected eyes of groups of healthy mice,

MCMV-infected mice with MAIDS of 4 weeks’ (MAIDS-4) duration, and MCMV-infected

eyes of mice with MAIDS of 10 weeks’ (MAIDS-10) duration. These animal groups show a

progression of retinal disease from absolute resistance to retinitis development in healthy

mice to the development of classic full-thickness retinal necrosis in MAIDS-10 mice but

through an intermediate stage of retinal disease development in MAIDS-4 mice. Our find-

ings showed that increased susceptibility to MCMV retinitis during the progression of

MAIDS is associated with robust upregulation or downregulation of a surprisingly large num-

ber of immune response genes that operate within several immune response pathways

often unique to each animal group. Analysis of 14 additional immune response genes asso-

ciated with programmed cell death pathways suggested involvement of necroptosis and pyr-

optosis during MAIDS-related MCMV retinitis pathogenesis. Use of the NanoString

nCounter technology provided new and unexpected information on the immunopathogen-

esis of retinitis within MCMV-infected eyes of mice with retrovirus-induced immunosuppres-

sion. Our findings may provide new insights into the immunologic events that operate during

the pathogenesis of AIDS-related HCMV retinitis.
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Author summary

The immunodeficiency caused by HIV during the progression of AIDS creates a unique

systemic immunosuppressive environment that often leads to the development of oppor-

tunistic virus infections. Among these is a sight-threatening retinitis caused by human

cytomegalovirus (HCMV). While the clinical and histopathologic features of AIDS-

related HCMV retinitis have been well documented, the immunologic mechanisms that

continue to operate during HIV-induced immunosuppression and contribute to the onset

and development of retinal tissue destruction caused by ocular HCMV infection in

patients with AIDS remain unexplored. Herein, we report the first comprehensive analysis

of a total of 571 immune response genes that are expressed during the pathogenesis of

experimental murine cytomegalovirus (MCMV) retinitis in mice at different stages of ret-

rovirus-induced immunosuppression (MAIDS) who exhibit different susceptibilities to

retinal disease development. Our finding that different patterns of immune response gene

expression are observed at different stages of retrovirus immunosuppression during

increased susceptibility to retinal necrosis development adds new knowledge to our

understanding of the contributions of unique innate and adaptive immune pathways

towards the pathogenesis of AIDS-related HCMV retinitis and may extend to other

AIDS-related opportunistic virus infections.

Introduction

The unique immunosuppressive environment created by HIV infection during the develop-

ment of AIDS resulted in the emergence of a significant number of diseases caused by oppor-

tunistic viruses that prior to AIDS were no more than rare medical curiosities. One such

AIDS-related opportunistic disease that appeared as a consequence of HIV-induced immuno-

suppression is a sight-threatening retinitis caused by human cytomegalovirus (HCMV), a β
herpesvirus [1,2]. Although HCMV retinitis had been documented occasionally in a patient

immunosuppressed for solid-organ or bone-marrow allografts [3], the appearance of an

AIDS-related HCMV retinitis was quickly observed in up to 42% of this patient population at

the outset of AIDS in the United States [4]. Today the number of cases of AIDS-related

HCMV retinitis in the United States has decreased significantly due to the use of combination

antiretroviral therapy (ART) but nonetheless remains an ophthalmologic problem in some

parts of the world in patients who do not have access to ART or who do not respond to ART

[5–8].

The clinical and histopathologic features of AIDS-related HCMV retinitis have been well

documented [9–12]. To extend this knowledge to include the virologic, immunologic, and

pathogenic mechanisms that operate to allow the onset and progression of HCMV retinitis in

patients with AIDS, we have been using an experimental animal model of murine cytomegalo-

virus (MCMV) retinitis that develops in mice with retrovirus-induced immunodeficiency

(MAIDS) [13]. MAIDS-related MCMV retinitis mimics AIDS-related HCMV retinitis in

many ways. These include the appearance of generalized lymphadenopathy, polyclonal B cell

activation, hypergammaglobulinemia, and a Th1 to Th2 shift in cytokine profile accompanied

by progressive dysfunction of cellular immunity that takes place over weeks following systemic

infection with an immunosuppressive murine retrovirus mixture [14]. These events culminate

in the development of MAIDS by 8 to 10 weeks after retrovirus infection that allows suscepti-

bility to a retinitis in eyes inoculated with MCMV [15]. Importantly, MAIDS-related MCMV
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retinitis exhibits histopathologic features identical to those of AIDS-related HCMV retinitis.

These include the emergence of a full-thickness retinal necrosis with prominent cytomegalic

cells that develops within MCMV-infected retinal tissues at a frequency of 80 to 100% by 10

days after intraocular MCMV inoculation [13].

Previous work by us has used this animal model of MAIDS-related MCMV retinitis as an

experimental platform to understand with greater clarity the pathogenesis of AIDS-related

HCMV retinitis as dictated within the host by the unique immunologic milieu created by an

immunosuppressive retrovirus. Past emphasis has been on various components of innate and

adaptive immunity of the host with more recent focus being given to individual cytokines and

a number of programmed cell death pathways [16]. While informative, these past studies have

not been at the depth needed to identify and compare the extraordinary number of immune

response genes expressed simultaneously within the ocular compartment at critical times dur-

ing the evolution of MAIDS-related MCMV retinitis. In an attempt to overcome this obstacle,

we employed NanoString nCounter technology which allows for the direct measurement of

immune response gene expression levels without amplification during the onset and progres-

sion of retinitis within MCMV-infected eyes of mice with MAIDS. Herein, we report the intra-

ocular expression of 575 immune response genes within MCMV-infected eyes of mice at

different stages of MAIDS development and compared with MCMV-infected eyes of immuno-

logically normal mice. As expected, our results show that intraocular MCMV infection of mice

with MAIDS results in the upregulation or downregulation of immune response genes associ-

ated with several distinct immune response pathways during retinitis development. In addi-

tion, some immune response genes and pathways identified in this investigation have been

surprising and not recognized by us previously, thereby extending our understanding of the

role of various immune responses toward the pathogenesis of MAIDS-related MCMV retinitis.

Furthermore, we have observed dramatic differences in the expression of immune response

genes to intraocular virus infection depending on the resistance or degree of susceptibility of

MCMV-infected eyes to retinitis development.

Results

Hierarchical clustering analysis of 561 immune response gene transcripts

within MCMV-infected eyes of healthy mice, MAIDS-4 mice, and MAIDS-

10 mice

Several prior investigations by us have confirmed major differences in the susceptibility to

development of full-thickness retinal necrosis when comparing the MCMV-infected eyes of

healthy mice with the MCMV-infected eyes of mice at different stages of retrovirus-induced

immunosuppression [13,17]. Whereas the retinal architecture of MCMV-infected eyes of

healthy mice remain normal without histopathologic evidence of retinal disease, the MCMV-

infected eyes of mice with MAIDS of 10-weeks duration (MAIDS-10 mice) show a progressive

development of retinitis at 3, 6, and 10 days after intraocular MCMV inoculation that culmi-

nates in severe, full-thickness retinal necrosis at 10 days after inoculation [13]. Intermediate

between the two histopathologic extremes of the eyes of healthy mice and MAIDS-10 mice

inoculated with virus are the MCMV-infected eyes of mice with MAIDS of 4-weeks duration

(MAIDS-4 mice) that show only mild retinal pigment epithelium (RPE) proliferation with

preservation of the neurosensory retina but with an absolute absence of full-thickness retinal

necrosis throughout the course of infection [17]. These diverse pathogenic outcomes among

healthy mice, MAIDS-4 mice, and MAIDS-10 mice following intraocular MCMV infection

therefore allowed us the unique opportunity to compare MCMV-infected eyes of these animal
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groups for simultaneous detection and quantification of transcript expression for a large num-

ber of immunologic pathways and related components throughout the present investigation.

Initial studies were performed to determine the overall change in expression of 561

immune defense genes during the pathogenesis of MCMV retinitis. This was accomplished

using a commercial NanoString nCounter Murine Immunology Panel that included 15 addi-

tional internal reference and housekeeping genes [18]. The left eyes of groups of healthy mice

(n = 3), MAIDS-4 mice (n = 3), and MAIDS-10 mice (n = 3) were inoculated with MCMV; the

contralateral right eyes of each animal group were mock-infected with maintenance medium

only and served as internal controls. At 3, 6, and 10 days after intraocular inoculation, individ-

ual MCMV-infected and mock-infected eyes were collected from all animal groups, subjected

to total RNA extraction, and the MCMV-infected or mock-infected eyes were pooled by

groups and subjected to NanoString nCounter analysis. S1 Table details our findings for

MCMV-infected eyes for each of the 561 immune defense gene analyzed whether upregulated

or downregulated for each animal group of this investigation. Included are their overall fold-

change expression profiles together with p values at 3, 6, and 10 days postinfection when com-

pared with mock-infected eyes.

Hierarchical clustering analysis of the expression of 561 immune response gene transcripts

analyzed for each group of MCMV-infected eyes or mock-infected eyes are presented in Fig 1.

Inspection of these data indicates that patterns of gene expression differed greatly when

Fig 1. Hierarchical clustering analysis of 561 immune response gene transcripts within MCMV-infected eyes of

healthy mice, MAIDS-4 mice, and MAIDS-10 mice. Whole MCMV-infected eyes (MCMV) and mock-infected

(Media) eyes were collected 3, 6, and 10 days after intraocular inoculation from groups of (A) healthy mice (n = 3), (B)

MAIDS-4 mice (n = 3), and (C) MAIDS-10 mice (n = 3). Total RNA was extracted from individual MCMV-infected

eyes or mock-infected eyes and pooled for each group. 100ng of RNA from each group were loaded onto a Murine

Immunology Panel, specifically designed for the NanoString nCounter. Hierarchical clustering analysis for each of the

561 genes was performed using the nSolver software. The bar indicates range of transcriptional activity with blue

indicating upregulation, yellow indicating downregulation, and black indicating no change in mRNA expression.

https://doi.org/10.1371/journal.ppat.1009032.g001
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comparing mock-infected and MCMV-infected eyes at each time point examined. More

importantly, the patterns of immune response gene expression were remarkably distinct for

each animal group, reflecting resistance or the degree of susceptibility to MCMV retinitis

development. The MCMV-infected eyes of healthy mice without MAIDS that show absolute

resistance to retinitis development [17] nonetheless exhibited active gene expression (Fig 1A).

At least some of this transcriptional activity might be attributed to an intraocular trauma cre-

ated in response to the needlestick that takes place during mock infection. In comparison,

MCMV-infected eyes of MAIDS-4 mice and MAIDS-10 mice also showed active gene expres-

sion but with increased upregulation of genes when compared with MCMV-infected eyes of

healthy mice. Of interest, MCMV-infected eyes of MAIDS-4 mice that fail to develop full-

thickness retinal necrosis but nonetheless exhibit RPE proliferation showed an unexpected

and extensive upregulation of a majority of the 561 immune response genes investigated at day

6 after virus inoculation (Fig 1B) when compared with retinitis-susceptible MCMV-infected

eyes of MAIDS-10 mice at day 6 after virus inoculation (Fig 1C). This outcome was particu-

larly surprising because of our previous observation that the MCMV-infected eyes of both ani-

mal groups harbor high but equivalent amounts of infectious virus [17]. Moreover, distinctly

different expression patterns for individual immune response genes were observed within the

MCMV-infected eyes of MAIDS-10 mice following development of full-thickness retinal

necrosis but not within MCMV-infected eyes of MAIDS-4 mice resistant to full-thickness reti-

nal necrosis development.

Comparison of MCMV-infected eyes of healthy mice, MAIDS-4 mice, and

MAIDS-10 mice for the expression of genes associated with distinct

immunologic pathways

We next processed the hierarchical clustering analysis of the 561 immune response gene tran-

scripts from MCMV-infected eyes of healthy mice, MAIDS-4 mice, and MAIDS-10 mice at all

time points examined for their involvement in 32 distinct immunologic pathways using the

NanoString nSolver software. After determining the fold-change upregulation or downregula-

tion of differentially expressed immune-response genes of MCMV-infected eyes when com-

pared with mock-infected eyes for each animal group, a fold change of less than two was used

to exclude that particular gene from further analysis. This approach revealed 17 genes were

upregulated and 15 genes were downregulated within MCMV-infected eyes of healthy mice,

83 genes upregulated and 4 genes downregulated within MCMV-infected eyes of MAIDS-4

mice, and 92 genes upregulated and 54 genes downregulated within MCMV-infected eyes of

MAIDS-10 mice (Fig 2). An increasing trend in immune response-related gene activity was

observed when MCMV-infected eyes of healthy mice were compared to MCMV-infected eyes

of MAIDS-4 mice and then compared to MCMV-infected eyes of MAIDS-10 mice. This trend

is presumably due to an increased susceptibility of the MCMV-infected eyes of these animal

groups toward development of full-thickness retinal necrosis as suggested in the resulting heat-

maps (Fig 1).

This trend also continued when the differentially expressed immune response genes show-

ing upregulation of activity were organized into NanoString-defined immunologic pathways

for each animal group with the understanding that each gene could be involved in multiple

pathways. Categorization into immunologic pathways revealed that five of the 32 NanoString-

defined pathways exhibited relatively substantial stimulation of gene activity within MCMV-

infected eyes when compared with other pathways of MCMV-infected eyes of healthy mice,

MAIDS-4 mice, and MAIDS-10 mice during progressive susceptibility to MCMV retinitis.

Those pathways showing the most robust stimulation in gene activity included pathways
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associated with the broad categories of adaptive immunity, innate immunity, host-pathogen

interactions, cytokine signaling, and lymphocyte activation (Fig 3). More functionally focused

pathways such as those involved with NF-κB signaling, toll-like receptor signaling, NOD-like

receptor signaling, chemokine signaling, type 1 interferon signaling, type 2 interferon signal-

ing, tumor necrosis factor (TNF) family signaling, MHC class I antigen presentation, and

phagocytosis and degradation also showed less robust but nonetheless heightened gene activity

when comparing MCMV-infected eyes of MAIDS-4 and MAIDS-10 mice with MCMV-

infected eyes of healthy mice (S1 Fig). Overall, these findings demonstrate that gene activity

associated with immunologic pathways becomes progressively and dramatically more active in

number and function as MCMV-infected eyes become progressively more susceptible to the

onset and development of full-thickness retinal necrosis as retrovirus-induced immunosup-

pression ensues. Moreover, this progressive gene activity is far more complex than was origi-

nally thought and appears to involve a large number of immune pathways of which several

were never considered by us to be involved in the evolution of cytomegalovirus retinitis in ret-

rovirus-immunosuppressed hosts.

Fig 2. Comparison of the number of upregulated and downregulated immune-response genes for MCMV-

infected eyes of groups of healthy mice, MAIDS-4 mice, and MAIDS-10 mice. Comparison of the number of

differentially expressed immune-response genes with a fold change of two-fold or greater for MCMV-infected eyes

collected from groups of healthy mice (n = 3), MAIDS-4 mice (n = 3), and MAIDS-10 mice (n = 3) when compared

with mock-infected eyes at all time points examined.

https://doi.org/10.1371/journal.ppat.1009032.g002
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A comparison of the top 15 differentially expressed immunologic-

associated genes within MCMV-infected eyes of healthy mice, MAIDS-4

mice, and MAIDS-10 mice

In an attempt to provide a more quantitative analysis of the progressive response(s) of the 561

immune response genes analyzed within MCMV-infected eyes as they relate to the progressive

susceptibility to retinitis development, we focused on 15 differentially expressed genes which

showed the greatest upregulation of gene expression at 3, 6, or 10 days after intraocular

MCMV inoculation and compared these levels with those of mock-infected eyes for groups of

healthy mice, MAIDS-4 mice, and MAIDS-10 mice. Table 1 summarizes our findings for

MCMV-infected eyes for each animal group with respect to individual genes, their known

function(s), their overall fold change at peak expression along with their p values when com-

pared with mock-infected eyes [19–61]. In agreement with our previous observations, the

fold-change for stimulation of the top 15 individual genes within MCMV-infected eyes

appeared to increase markedly from healthy mice to MAIDS-4 mice and MAIDS-10 mice,

seemingly as a reflection of increased susceptibility to the onset and development of MCMV

retinitis among these animal groups, especially MAIDS-4 animals when compared with

MAIDS-10 animals. While the average fold-increase for peak expression in activity of these 15

genes was 3.04 for MCMV-infected eyes of healthy mice, the average fold-increase for peak

expression in activity increased to 20.14 and 20.74 for MCMV-infected eyes of MAIDS-4 mice

and MAIDS-10 mice, respectively, suggesting a far more dynamic intraocular gene transcrip-

tion activity in response to MCMV infection during progressive retrovirus-induced immuno-

suppression than during immunocompetence. It is also noteworthy that a subset of individual

genes exhibited remarkable transcription activity such as ccl5, a gene encoding for a chemo-

kine associated with inflammation [51], that showed an 83.32-fold increase in activity within

MCMV-infected eyes of MAIDS-10 mice susceptible to full-thickness retinal necrosis develop-

ment when compared to mock-infected eyes.

Fig 3. Number of upregulated immune response genes within MCMV-infected eyes in groups of healthy mice,

MAIDS-4 mice, and MAIDS-10 mice when categorized according to major immunologic pathways.

Transcriptional activity of immune response genes of MCMV-infected eyes in groups of healthy mice (n = 3), MAIDS-

4 mice (n = 3), and MAIDS-10 mice (n = 3) that registered a fold change of> two, when compared with mock-

infected eyes at 3, 6, or 10 days postinfection. These genes were categorized into five NanoString-defined immunologic

pathways that exhibited the most robust upregulation. Immunologic pathways included the broad categories of: (A)

Adaptive Immunity, (B) Innate Immunity, (C) Host-Pathogen Interaction, (D) Cytokine Signaling, and (E)

Lymphocyte Activation.

https://doi.org/10.1371/journal.ppat.1009032.g003
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Table 1. Summary of the 15 differentially expressed immune response genes showing the greatest upregulation of activity within MCMV-infected eyes of groups of

healthy mice, MAIDS-4 mice, and MAIDS-10.

Top 15 Genes Upregulated in MCMV infected Eyes of Healthy Mice

Gene Function [Ref.] Peak Expression p value

Bst1 Facilitates pre-B-cell growth and induces cell migration [19] 3.25 0.0298

Casp3 Activation plays a role in the execution -phase of apoptosis [20] 2.36 0.0117

Ccl3 Associated with macrophage recruitment [21] 2.28 0.0324

Ccl9 Induces chemotaxis of CD4+ T cells, CD8+ T cells, and monocytes [22] 3.09 0.0107

Cd2 Regulates natural killer cell lytic activity and proinflammatory cytokine production [23] 2.74 0.0365

Clec5a Involved in neutrophil extracellular trap formation and proinflammatory cytokine production [24] 3.74 0.0244

Emr1 Murine marker of macrophages (F4/80) [25] 2.48 0.0280

H2-K1 Bind to and present antigens derived from pathogens onto the cell surfaces for T cell recognition [26] 4.37 0.0444

Ifnar2 Part of IFN-α and IFN-β receptor and critical for antiviral immunity [27] 2.10 0.0377

Itgb2 Involved in extravasation into tissues during infection or injury [28] 3.03 0.0016

Jak2 Involved in signal transduction of interferon and cytokine signaling [29] 2.70 0.0131

Ptafr Involved in proinflammatory signaling [30] 2.53 0.0230

Ptgs2 Involved in the production of prostacyclin, expressed in inflammation [31] 3.80 0.0011

Stat2 Aids in the activation of the transcription of interferon stimulated genes [32] 4.37 0.0350

Tgfb1 Inhibits the actions of T cells and the secretion of IFN-γ, TNF-α, and interleukins [33, 34, 35] 2.75 0.0091

Top 15 Genes Upregulated in MCMV infected Eyes of MAIDS-4 Mice

Gene Function [Ref.] Peak Expression p value

Ccl12 Attracts eosinophils, monocytes, and lymphocytes to the site of infection [36] 10.88 0.0450

Ccl2 Involved in chemotaxis and regulating inflammation [37] 51.23 0.0353

Ccl7 Promotes the recruitment of monocytes and neutrophils to the site infection [38] 34.39 0.0350

Ccr5 Acts as a receptor for chemokines [39] 11.10 0.0123

Cfb Regulates the alternative pathway of the complement system [40] 27.79 0.0030

Cxcl10 Attracts CD8+ and CD4+ T cells to the site of inflammation [41] 30.24 0.0374

Cxcl9 Attracts T cells to the site of inflammation [42] 28.12 0.0413

Icos Involved in the induction and regulation of Th1, Th2, and Th17 immunity [43] 10.01 0.0354

Ifit2 Plays a role in the stimulation of interferons as part of an anti-viral response [44] 17.09 0.0008

Irgm1 Involved in the polarization of M1 [inflammatory driven] macrophages [45] 12.16 0.0450

Itgal Involved in leukocyte cellular adhesion and costimulatory signaling [46] 11.48 0.0185

Lilrb3 Functions as an inhibitory receptor to help balance the function of innate immune cells [47] 9.59 0.0407

Lilrb4 Transduces a negative signal that inhibits stimulation of the immune response [48] 16.53 0.0209

Ptprc Suppresses JAK kinases as a negative regulator of cytokine signaling [49] 10.54 0.0490

Slamf7 Induces B cell proliferation [50] 21.03 0.0411

Top 15 Genes Upregulated in MCMV infected Eyes of MAIDS-10 Mice

Gene Function [Ref.] Peak Expression p value

Ccl2 Involved in chemotaxis and regulating inflammation [37] 35.19 0.0323

Ccl5 Promotes the recruitment of leukocytes to the site of infection [51] 83.32 0.0263

Cd274 Plays a major role in suppressing the adaptive arm of the immune system [52] 7.36 0.0145

Ctss Degrades antigenic proteins for antigen presentation [53] 12.69 0.0443

Cybb Involved in the formation of reactive oxygen species [54] 9.83 0.0191

Fcgr3 Participates in signal transduction triggering lysis by natural killer cells [55] 6.92 0.0425

Fcgr4 Promotes macrophage-mediated phagocytosis and antigen presentation to T cells [56] 10.03 0.0307

Ifi204 Acts as a nuclear innate DNA sensor resulting in inflammasome activation [57] 15.33 0.0202

Il1rn Binds non-productively to the interleukin-1 receptor preventing IL-1 from sending a signal [58] 48.31 0.0017

Irgm1 Involved in the polarization of M1 [inflammatory driven] macrophages [45] 8.36 0.0303

Lilrb3 Functions as an inhibitory receptor to help balance the function of innate immune cells [47] 10.74 0.0062

S100a9 Controls macrophage accumulation and cytokine production [59] 17.85 0.0179

(Continued)
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The fold changes in transcriptional activities within MCMV-infected eyes of groups of

healthy mice (n = 3), MAIDS-4 mice (n = 3), and MAIDS-10 mice (n = 3) were determined for

all 561 differentially expressed immune response genes. The 15 genes for the MCMV-infected

eyes showing the greatest fold change increase when compared with mock-infected eyes are

summarized, with known function(s), peak expression, and p values.

A detailed comparison of the top 15 immune response genes activated within MCMV-

infected eyes of healthy mice, MAIDS-4 mice, and MAIDS-10 mice also revealed that some

upregulated gene activities were exclusive to each animal group whereas other upregulated

gene activities were shared between and among groups. This is depicted in the Venn diagram

shown in Fig 4. Whereas the top 15 upregulated genes of the MCMV-infected eyes of healthy

mice that are absolutely resistant to MCMV retinitis development were found to be exclusive

to this animal group, while 4 of the top 15 upregulated genes of the eyes of MCMV-infected

Table 1. (Continued)

Slamf7 Induces B cell proliferation [50] 29.00 0.0425

Socs1 Involved in the negative feedback regulation of cytokine signaling [60] 6.98 0.0208

Tyrobp Activates signal transduction and plays a role in inflammation [61] 9.42 0.0468

https://doi.org/10.1371/journal.ppat.1009032.t001

Fig 4. Venn diagram comparing the expression of 15 differentially expressed immune response genes showing the

greatest upregulation of activity within MCMV-infected eyes of groups of healthy mice, MAIDS-4 mice, and

MAIDS-10. Following analysis of the differentially expressed transcriptional activity for 561 immune response genes

within MCMV-infected eyes of groups of healthy mice (n = 3), MAIDS-4 mice (n = 3), and MAIDS-10 mice (n = 3),

those 15 genes showing the greatest upregulation of activity at all times examined postinfection (see Table 1) were

compared for possible, shared activities among the three animal groups. While none of the genes presented shared

activities among all three groups, of the 15 most active genes, 4 genes were found to be commonly expressed within the

MCMV-infected eyes of MAIDS-4 mice and MAIDS-10 mice.

https://doi.org/10.1371/journal.ppat.1009032.g004
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mice of MAIDS-4 and MAIDS-10 groups were shared between and among the animal groups.

This observation, however, should not diminish the observation that 11 of the top 15 upregu-

lated genes of the MCMV-infected eyes of these animal groups were exclusive to MAIDS-4

mice and MAIDS-10 mice, animals that exhibited remarkably distinct patterns of MCMV-

induced retinal disease [17].

Analysis of 14 additional immune response gene transcripts of MCMV-

infected eyes of healthy mice, MAIDS-4 mice, and MAIDS-10 mice

associated with programmed cell death pathways

Use of the commercially available NanoString nCounter Murine Immunology Panel provided

a wealth of new and, at times, unexpected changes in the expression of 561 immune response

genes during the onset and development of MAIDS-related MCMV retinitis. Given our pres-

ent interest in programmed cell death pathways and their relative roles in the pathogenesis of

MCMV-induced full-thickness retinal necrosis in MAIDS-10 mice [62,63], we created a cus-

tom panel consisting of 14 genes. This panel included 3 genes associated with autophagy, 3

genes associated with necroptosis, 2 genes associated with parthanatos, and 6 genes associated

with pyroptosis and inflammasomes. Importantly, gene transcription analysis using this cus-

tom gene panel for cell death pathways was performed using the same samples collected from

MCMV-infected eyes of healthy mice, MAIDS-4 mice, and MAIDS-10 mice that were earlier

used to generate data using the commercially available murine immunology gene panel. Genes

associated with apoptosis were excluded from this custom panel because we have already

determined previously, using mice with MAIDS deficient in key apoptosis-associated genes,

that this programmed cell death pathway contributes only minimally to the pathogenesis of

MAIDS-related MCMV retinitis [62].

A summary of the upregulation or downregulation for each of the 14 immune response

genes within MCMV-infected eyes for each animal group at 3, 6, and 10 days after intraocular

MCMV inoculation is shown in Table 2. The overall positive (upregulated) or negative (down-

regulated) fold changes at peak expression including their p values of these response genes

when compared with mock-infected eyes is also shown. Owing to the relatively small number

of 14 genes being analyzed in this experiment, a two-fold change in gene activity was not used

to exclude some genes for analysis as was done for the 561 immune response genes analyzed

above. The MCMV-infected eyes of healthy mice which are absolutely resistant to the develop-

ment of MCMV retinitis [17] exhibited a pattern of cell death pathway-associated gene activi-

ties that suggested significant quiescence of activity for each pathway at all days postinfection

examined. Indeed, downregulation of gene activity was consistently observed for all 3 necrop-

tosis genes and all 6 pyroptosis and associated inflammasome genes at 3, 6, and 10 days

postinfection. Gene activities for autophagy and parthanatos were also found to be either

downregulated or only minimally upregulated (< 2-fold increase) within MCMV-infected

eyes of healthy mice at all days postinfection examined. As MCMV-infected eyes of animals at

different stages of MAIDS development became more susceptible to the development of retinal

disease at different stages of MAIDS development, however, genes associated with some, but

not all, cell death pathways under investigation became increasingly active. This was apparent

within the MCMV-infected eyes of MAIDS-4 mice and MAIDS-10 mice for necroptosis and

pyroptosis and pyroptosis-associated inflammasomes but not for autophagy and parthanatos.

The fold changes in transcriptional activities within MCMV-infected eyes when compared

with mock-infected eyes of groups of healthy mice (n = 3), MAIDS-4 mice (n = 3), and

MAIDS-10 mice (n = 3) were determined for genes associated with autophagy, necroptosis,

parthanatos, and pyroptosis including inflammasomes at 3, 6, and 10 days postinfection.
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Table 2. Summary of differentially expressed immune response genes associated with programmed cell death pathways within MCMV-infected eyes of groups of

healthy mice, MAIDS-4 mice, and MAIDS-10 mice.

Fold Change of MCMV-infected Eyes of Healthy Mice

Cell Death Pathway Genes Day 3 Day 6 Day 10

Δ p value Δ p value Δ p value

Autophagy Atg12 1.07 0.3855 1.24 0.0792 1.14 0.1344

Autophagy Atg5 -1.05 0.0155 -1.13 0.0269 -1.02 0.0047

Autophagy Becn1 0.05 0.5346 -0.05 0.5090 1.07 0.3855

Necroptosis Mlkl -3.53 0.1688 -1.59 0.0012 -4.34 0.0500

Necroptosis Ripk1 -1.46 0.0491 -1.31 0.0248 -1.63 0.0048

Necroptosis Ripk3 -2.34 0.0983 -2.01 0.0632 -2.87 0.0016

Parthanatos Parg 1.07 0.1772 1.24 0.2209 0.02 0.5158

Parthanatos Parp1 0.07 0.5445 1.33 0.0385 1.11 0.1695

Inflammasome/Pyroptosis Aim2 -2.27 0.0457 -1.45 0.0013 -2.07 0.0073

Inflammasome/Pyroptosis Casp11 -6.83 0.2365 -2.86 0.0683 -7.90 0.1394

Inflammasome/Pyroptosis Gsdmd -2.64 0.0437 -1.95 0.0636 -2.91 0.0033

Inflammasome/Pyroptosis Nlrc4 -3.78 0.1043 -1.81 0.1011 -4.14 0.0538

Inflammasome/Pyroptosis Nlrp1b -0.01 0.5154 -0.07 0.5284 -1.24 0.0510

Inflammasome/Pyroptosis Nlrp3 -2.42 0.0483 -0.01 0.5328 -2.25 0.0837

Fold Change of MCMV-infected Eyes of MAIDS-4 Mice

Cell Death Pathway Genes Day 3 Day 6 Day 10

Δ p value Δ p value Δ p value

Autophagy Atg12 0.05 0.5378 -1.13 0.0314 -0.44 0.5109

Autophagy Atg5 1.52 0.2518 1.19 0.0172 0.10 0.6342

Autophagy Becn1 1.25 0.3402 1.19 0.0855 0.05 0.5810

Necroptosis Mlkl 4.73 0.1322 6.69 0.0625 6.01 0.2067

Necroptosis Ripk1 1.98 0.1282 2.25 0.1306 2.34 0.0547

Necroptosis Ripk3 3.18 0.2738 4.49 0.2026 5.29 0.0467

Parthanatos Parg -0.03 0.5322 -0.13 0.5056 -1.28 0.0612

Parthanatos Parp1 1.06 0.5000 1.21 0.1669 -1.49 0.1188

Inflammasome/Pyroptosis Aim2 2.56 0.0470 2.72 0.1099 3.03 0.0995

Inflammasome/Pyroptosis Casp11 8.74 0.1416 11.25 0.0666 8.81 0.0533

Inflammasome/Pyroptosis Gsdmd 3.59 0.0783 5.05 0.1068 3.59 0.1095

Inflammasome/Pyroptosis Nlrc4 7.67 0.1999 7.40 0.0953 4.61 0.0291

Inflammasome/Pyroptosis Nlrp1b 1.58 0.2863 1.74 0.1732 4.54 0.2836

Inflammasome/Pyroptosis Nlrp3 4.23 0.1047 3.41 0.0672 3.64 0.1983

Fold Change of MCMV-infected Eyes of MAIDS-10 Mice

Cell Death Pathway Genes Day 3 Day 6 Day 10

Δ p value Δ p value Δ p value

Autophagy Atg12 -0.07 0.5202 1.19 0.3286 1.08 0.0424

Autophagy Atg5 1.32 0.0101 1.36 0.1665 1.69 0.0092

Autophagy Becn1 1.41 0.0465 1.28 0.2578 1.59 0.1850

Necroptosis Mlkl 5.75 0.1482 4.16 0.1853 3.43 0.1166

Necroptosis Ripk1 2.20 0.0978 1.96 0.0565 2.17 0.0272

Necroptosis Ripk3 3.80 0.0057 3.93 0.0228 4.14 0.0091

Parthanatos Parg -1.14 0.0119 1.21 0.2048 -1.26 0.0085

Parthanatos Parp1 -0.13 0.5111 1.19 0.1190 -1.63 0.0736

Inflammasome/Pyroptosis Aim2 2.08 0.1594 2.44 0.0244 2.04 0.1032

Inflammasome/Pyroptosis Casp11 12.65 0.0358 5.07 0.1811 5.83 0.0631

(Continued)
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Discussion

Herein we have confirmed and extended our understanding of some of the immunologic

events that take place during the onset and development of cytomegalovirus retinitis in the

unique setting of retrovirus-induced immunosuppression. This was accomplished by perform-

ing a comprehensive transcriptional analysis of immune response genes during the pathogene-

sis of MAIDS-related MCMV retinitis, a well-characterized, reproducible, and clinically

relevant mouse model of AIDS-related HCMV retinitis [13]. Our findings show that (i) the

pathogenesis of retinal disease in MCMV-infected eyes of MAIDS-10 mice susceptible to full-

thickness retinal necrosis development is associated with the robust, differential expression of

extensive number of immune response genes that operate in several distinct immune response

pathways; (ii) the temporal development of MCMV retinitis within the eyes of MAIDS-10

mice is a dynamic process that involves both the upregulation and downregulation of several

immune response genes at different times after intraocular MCMV infection; and (iii) the pat-

tern of immune response gene activation differs remarkably within MCMV-infected eyes of

healthy mice resistant to retinitis development when compared with MCMV-infected eyes of

mice at different stages of MAIDS that exhibit a profound difference in their susceptibility to

full-thickness retinitis development. A more focused companion investigation also provided

compelling evidence for the stimulation of the transcription of multiple genes associated with

the necroptosis and pyroptosis programmed cell death pathways during the development

MAIDS-related MCMV retinitis.

For our investigation of immune response gene expression during the pathogenesis of

MAIDS-related MCMV retinitis, we used the NanoString nCounter assay. This recently devel-

oped technology platform is capable of making without amplification a direct multiplexed

measurement of gene expression within the ocular compartment following intraocular

MCMV inoculation of mice for comparisons during immunocompetence and MAIDS without

recourse to any need for sequence amplication. This amplification-free microarray technology

is a powerful tool that allows for the simultaneous quantification of the expression of hundreds

of genes at several distinct time points during disease pathogenesis. Even so, we initiated this

investigation mindful of several limitations that this experimental approach enjoys. Firstly, the

amount of data obtained after the performance of a single experiment is overwhelming and

requires thoughtful use of statistical analysis to help provide meaningful conclusions [64]. Sec-

ondly, subsequent performance of quantitative RT-PCR and/or western blot assays is needed

to confirm the upregulation or downregulation of an individual gene under investigation.

Thirdly, the data generated are descriptive and often do not provide mechanistic insights into

the function of an individual gene or its functional gene product during a pathogenic event.

Finally, it has not escaped our attention that the NanoString nCounter assay provides only

fold-change differences in transcription activity that may or may not be biologically significant

to disease pathogenesis in that the quantitative fold-change in activity of an individual gene

may not be a true reflection of the unique kinetics of that particular gene’s mRNA or its gene

product and consequently pertinent changes in its functional ability. For example, a two-fold

increase in transcriptional activity may be biologically significant for one gene, but another

Table 2. (Continued)

Inflammasome/Pyroptosis Gsdmd 4.41 0.0707 2.68 0.1036 3.63 0.0073

Inflammasome/Pyroptosis Nlrc4 7.20 0.2324 6.05 0.3290 4.23 0.0659

Inflammasome/Pyroptosis Nlrp1b -0.10 0.5529 1.80 0.3369 1.12 0.3362

Inflammasome/Pyroptosis Nlrp3 3.08 0.0882 3.36 0.1534 1.40 0.2788

https://doi.org/10.1371/journal.ppat.1009032.t002
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gene may require a far greater transcriptional increase for a greater duration and at a particular

time to be biologically significant.

Despite these perceived limitations, the NanoString nCounter assay has proven to be a use-

ful and powerful tool to point us quickly in new directions of investigation and thereby expand

our knowledge base of a series of immune functions that contribute (or do not contribute) to

the onset of MCMV-induced retinal disease and progression to full-thickness necrosis during

MAIDS. Use of the NanoString nCounter assay has also provided the opportunity to confirm

previous findings by us and others on the role of various immune responses toward the patho-

genesis of experimental MCMV retinitis during immunosuppression. Most of the findings

presented herein are in agreement with findings documented by us in past publications that

have focused on various immune-mediated pathways and/or individual molecules associated

with innate or adaptive immunity vis-a-vis the pathogenesis of MAIDS-related MCMV retini-

tis. These include roles for humoral immunity [65], cellular immunity [66,67], suppressor of

cytokine signaling (SOCS) pathways [60,68], TNF-α [17], interferon-γ [17], and a number of

proinflammatory cytokines associated with innate immunity [62,69] as summarized by us in a

recent review [16]. The use of a custom panel consisting of a smaller subset of genes associated

with necroptosis and pyroptosis as well as pyroptosis-related inflammasomes in this report

also served to confirm our previous determination that these programmed cell death pathways

appear to be involved in the progression of MCMV retinitis during MAIDS [62] as evidenced

by this earlier report of significant intraocular stimulation of necroptosis-associated receptor

interacting protein kinase 3 (RIPK3), pyroptosis-asssociated caspase-1, interleukin-1β, inter-

leukin-18, and the AIM2 inflammasome.

Careful inspection of the data obtained in the present investigation also exposed an unex-

pected difference in findings reported herein using the NanoString technology and a publica-

tion by us for another programmed cell death pathway, parthanatos, and MAIDS-related

MCMV retinitis [63]. Whereas the transcription levels of parg and parp1, two genes associated

with the parthanatos pathway [70–75], show negligible activity within MCMV-infected eyes of

MAIDS-10 at either 3, 6, or 10 days after intraocular MCMV inoculation in the present investi-

gation, we have documented previously a significant increase in parp1 mRNA and protein pro-

duction as well as parg mRNA and protein synthesis by quantitative RT-PCR and western blot

assays, respectively, at the same times examined after intraocular MCMV inoculation of

MAIDS-10 mice [63]. The reason for this major discrepancy in findings remains unclear but

may be due to differences in the regional specificity of probes used by the NanoString nCoun-

ter assays [18]. That these parthanatos-associated genes are indeed upregulated is undeniable

given the marked intraocular stimulation of protein production previously shown by us for

their respective gene products [63]. These apparently conflicting observations, however, only

serve to underscore the need to confirm all NanoString nCounter data using further quantita-

tive RT-PCR and/or western blot analysis for each gene of interest.

In summary, our experience using the NanoString nCounter assay to provide a novel tran-

scriptional analysis of 575 immune response genes within MCMV-infected eyes of mice at dif-

ferent stages of MAIDS development compared with MCMV-infected eyes of

immunologically normal mice has provided new, and at times, unexpected information on the

pathogenesis of MAIDS-related MCMV retinitis. By extension, our findings may also improve

our understanding of the pathogenesis AIDS-related HCMV retinitis as well as other AIDS-

related opportunistic virus infections. While helpful in many ways, we have also identified

areas of caution when using this powerful research tool. Future use of this technology by us

will be directed toward the identification of host genes expressed by different cell populations

of retinal tissues during the onset and progression of MAIDS-related MCMV retinitis. More-

over, because host RNA constitutes an overwhelming portion of the total RNA recovered from
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infected tissue samples when compared with pathogen RNA which usually comprises a vanish-

ingly small portion of total RNA [76], use of this technology will also allow us to investigate

with greater precision the pattern of mRNA synthesis for individual MCMV genes that are

expressed within retinal tissues and retina-related cell populations during the course of disease

development following intraocular MCMV infection of retrovirus-immunosuppressed mice.

Materials and methods

Viruses

Stocks of MCMV (Smith) were propagated through salivary glands of groups of BALB/c mice

(Harlan Laboratories, USA) as described previously [13]. Briefly, fourteen days following intra-

peritoneal injection of 102 to 103 plaque forming units (PFU) of MCMV contained within 0.2

ml volume, salivary glands were harvested aseptically, pooled, and homogenized (10% [wt/

mol]) in Dulbecco’s modified eagle media (DMEM, Corning Life Sciences, Manassas, VA,

#10–013). Virus stocks were clarified by centrifugation, aliquoted, and stored in liquid nitro-

gen prior to quantification by standard plaque assay on monolayers of mouse embryonic fibro-

blasts as described previously [13]. A fresh aloquot of MCMV stock was thawed and used for

each experiment.

Stocks of murine retrovirus (LP-BM5 murine leukemia virus [MuLV]) were prepared in

monolayers of SC-1 fibroblasts (ATCC #CRL-1404) and SC-1/MuLV LP-BM5 cells [77] kindly

provided by the AIDS Research and Reference Reagent Program, Division of AIDS, NIAID,

NIH (Germantown, MD). Six days following seeding at a 1:1 ratio, the cells were scraped into

SC-1 media and stored at -80˚C. Prior to use, LP-BM5 stocks were thawed and clarified by

centrifugation to remove cellular debris.

Animals

Adult female wildtype BALB/c mice used for the preparation of MCMV stocks were purchased

from Harlan Laboratories (Indianapolis, IN, USA). Adult female wildtype C57BL/6 mice used

for all MAIDS studies were purchased from Jackson Laboratory (Bar Harbor, ME, USA). All

mice were maintained on alternative 12-hr light/dark cycles and allowed unrestricted access to

food and water. All procedures were conducted with strict compliance to National Institutes of

Health and the Association for Research in Vision and Ophthalmology (ARVO) statement for

Use of Animals in Ophthalmic and Vision Research guidelines and in accordance with Georgia

State University Institutional Animal Care and Use Committee (IACUC) approved protocols.

Induction of MAIDS

MAIDS was induced by injecting 1.0 ml of inoculum containing approximately 5 × 103 to

5 × 104 infectious LP-BM5 murine leukemia retrovirus into the peritoneum of C57BL/6 mice.

Mice with MAIDS of 4 weeks’ duration (MAIDS-14 mice) and 10 weeks’ duration (MAIDS-10

mice) were used throughout the investigation and compared with age-matched healthy

C57BL/6 mice.

Experimental mouse model of MCMV retinitis

Details for the MAIDS model of MCMV retinitis used throughout the investigation have been

described by us previously [13,16,62]. Briefly, the left eyes of groups of healthy mice, MAIDS-4

mice, and MAIDS-10 mice were subjected to intraocular (subretinal) inoculation with approx-

imately 104 PFU of MCMV contained within a 2-ul volume of DMEM. The right contralateral

eyes of all mice were inoculated intraocularly with DMEM and served as controls.
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NanoString nCounter assay

Whole MCMV-infected and control eyes were collected from all animal groups at 3, 6, and/or

10 days after intraocular inoculation and stored at 4C in RNAlater solution (Ambion, Austin,

TX) prior to NanoString nCounter analysis. At time of analysis, eyes were individually homog-

enized in 1.0 ml of TRIzol reagent (Invitrogen Life Technologies, Carlsbad, CA) using a 2-ml

Ten Broeck tissue grinder (Wheaton, Millville, NJ). Total RNA was extracted in chloroform

and purified using the PureLink RNA Mini Kit according to the manufacturer’s instructions

(Ambion/ThermoFisher, Grand Island, NY). The extracted RNA from each group and their

respective time points were pooled and the RNA concentrations were determined using a

Nanodrop 2000 spectrophotometer (Thermo Scientific, Pittsburgh, PA). Approximately 100

ng of the purified total RNA from each time point of each animal group were analyzed using

the nCounter Analysis System (NanoString Technologies, Seattle, WA) according to the man-

ufacturer’s instructions in combination with the Murine Immunology Panel which contained

561 unique RNA barcodes. Probes for 15 internal and housekeeping genes such as ribosomal

protein L10, beta-actin, beta-2-microglobuin, glyceraldehyde 3-phosphate dehydrogenase, and

ribosomal protein L19 were incorporated into the NanoString codesets of this panel. A second

custom-made panel that included 14 unique genes not included in the Murine Immunology

Panel but associated with programmed cell death pathways as well as three housekeeping

genes was used in another set of studies. Analysis of raw mRNA data was performed using the

NanoString nSolver™ analysis software version 4.0.

Statistical analysis

Two independent experiments were performed for each study and were run independently

through the NanoString nSolver™ analysis software. All p values were determined on fold

changes of raw mRNA counts as determined by the NanoString nSolver™ software and per-

formed with a significance level (α) set to 0.05; p values of< 0.05 were considered statistically

significant. Statistical analysis were performed by comparing MCMV-infected eyes with

mock-infected eyes (controls) by unpaired, two-sided Student’s t-test.

Supporting information

S1 Fig. Number of upregulated immune response genes within MCMV-infected eyes of

groups of healthy mice, MAIDS-4 mice, and MAIDS-10 mice when categorized according

to more focused immunologic pathways. Transcriptional activity of immune response genes

of MCMV-infected eyes of groups of healthy mice (n = 3), MAIDS-4 mice (n = 3), and

MAIDS-10 mice (n = 3) with a fold change of greater than two when compared with mock-

infected eyes at 3, 6, or 10 days postinfection were categorized into more focused NanoString-

defined immunologic pathways that exhibited the robust upregulation. Immunologic path-

ways included those associated with (A) TLR Signaling (B)Phagocytosis and Degradation, (C)

NOD-like Receptor (NLR) Signaling, (D) Type I Interferon (IFN) Signaling, and (E) Type II

Interferon (IFN) Signaling, (F) Tumor Necrosis Factor (TNF) Signaling, (G) Chemokine Sig-

naling, (H) NF-kB Signaling, and (I) MHC Class I Antigen Presentation.

(TIF)

S1 Table. Summary of all 561 immune defense genes analyzed for MCMV-infected eyes of

groups of healthy mice (n = 3), MAIDS-4 mice (n = 3), and MAIDS-10 mice (n = 3) at 3, 6,

and 10 days postinfection showing fold-change expression together with p values when

compared with mock-infected eyes. Variability between individual eyes per group is not
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shown due to pooling of individual eyes.

(PDF)
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