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Abstract

We have built a digital nuclear atlas of the newly hatched, first larval stage (L1) of the wild type 

hermaphrodite of C. elegans at single cell resolution from confocal image stacks of 15 individuals. 

The atlas quantifies the stereotypy of the locations and provides for other statistics on the spatial 

patterns of the 357 nuclei that could be faithfully segmented and annotated of the 558 present at 

this developmental stage. Given this atlas we then developed an automated approach to assign cell 

names to each nucleus in a 3D image of an L1 worm. We achieve 86% accuracy in identifying the 

357 nuclei automatically. This computational method is essential for high-throughput single cell 

analyses of the worm at post-embryonic stages, such as determining the expression of every gene 

in every cell during development from the L1 onward, or ablating or stimulating cells under 

computer control in a high-throughput functional screen.

INTRODUCTION

Despite the detailed knowledge of the anatomy of the nematode C. elegans1, as well as its 

determined cell lineage3, the mapped connectivity of its nervous system4–5, and the 

sequenced genome6–7, we still lack a three dimensional (3D) digital atlas of nuclei positions 

in any postembryonic stage. Such an atlas has several significant applications. First, it 

provides us with quantitative knowledge not previously available about the degree of 

stereotypy of nuclei positions and the details of specific spatial relationships between 

different cells. Second, the atlas can serve as a standard template so that we can compare 

any 3D image of a wild-type C. elegans against the atlas and extract the identities of 

individual nuclei using an automated approach. This is essential for high-throughput 

analysis of cellular information such as gene expression at single cell resolution. Such an 

analysis provides much richer information than does analysis of expression data from a 
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DNA microarray experiment8–9, since DNA microarrays reveal average expression from 

the samples of tissue or entire individual, but not the expression of individual cell.

Prior to this study, the anatomy of C. elegans has been described qualitatively by images 

with a text description or 2D sketches10. Such sketches and descriptions do not provide a 

quantitative description of cell nuclei positions nor do they provide statistical information 

about the variance in cell nuclei positions and spatial relationships between individuals. 

Early efforts using electron microscopy (EM) have resulted in detailed views of the 

anatomy10 and even a connectivity graph of the nervous system4–5, but to date an 

automated or even manual segmentation of the fine structure of such an ultra high-resolution 

image stack has not taken place. While one might contemplate expending an enormous 

amount of manual effort to do so on a single individual worm, doing so for enough worms to 

deliver statistical information on the location of nuclei is effectively impractical.

The method for automatically analyzing individual cells in post-embryonic worms in this 

paper complements the similar capability developed by Bao et al.11 for the embryo from a 

single cell to the point where the muscles become enervated after the 350 cell stage. 

However, the computational problem is completely different. Their method consists of 

tracking nuclei as they divide in-vivo using the cell lineage information that is already 

known, whereas our method identifies nuclei in-situ without the help of temporal or lineage 

information. But while the underlying computations share little overlap, the two capabilities 

offer the same possibility for medium to high-throughput analysis at single cell resolution at 

two different phases in a worm’s life cycle. Similar to the proof of concept provided by 

Murray et al. 12 where they use their embryonic cell tracking technology to measure gene 

expression, one can immediately see that in principle our method allows for the same 

capability in the L1. Moreover, the computational method we describe is general and can be 

applied to a wide range of stereotypic systems, such as other post-embryonic worm stages 

and the fruit fly embryonic nervous system13.

The paper presents the method of building the atlas first, followed by several analyses of the 

model that confirm that it is well constructed and recapitulates known biology. Then we 

describe our automated approach on annotating cell identities in new L1 worm images using 

the atlas information and demonstrate its accuracy.

RESULTS

Building a 3D digital atlas

Three-dimensional images of C. elegans at the L1 stage were collected in 3 fluorescent 

channels. We used DAPI to stain the nuclei of all 558 cells. We used a myo-3:GFP 

transgene to label the nuclei of the 81 body wall muscle cells and 1 depressor muscle cell. 

These nuclei serve as fiducial markers that are used by our manual and automated approach 

to annotate cells. We used mCherry driven by a promoter from a gene of interest to reveal 

expression in a set of target cells. Three-dimensional images were acquired using a Leica 

confocal microscope (Fig. 1a) with 63× oil lens and X–Y and Z sampling set at 0.116 µm 

and 0.122 µm per pixel respectively.
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As briefly as possible we describe the sequence of computational processes and associated 

algorithms that are used to produce the atlas. For the reader desiring more details, earlier 

technical work appearing in the computing algorithms literature is cited below and 

summarized in Supplementary Methods.

To build a standard digital atlas, we first computationally straightened the curved worm 

body in the 3D image into a rod shape14 (Fig. 1b, Supplementary Fig. 1 and Video 1). The 

method first detects the principal curve or “backbone” that represents the anterior/posterior 

(A/P) line that passes from head to tail through the center of a straightened worm 

(Supplementary Fig. 1b). It then generates a series of 1-pixel separated planes orthogonal to 

the backbone and restacks them along a straight A/P line, making them parallel to each other 

(Supplementary Fig. 1c). Because each local transform is a rigid rotation, the resolution of 

the straightened image is merely a function of the sub-pixel interpolation error when a 

straight line is rotated in space. Thus, the overall resolution loss is naturally minimized.

We next developed an automatic approach to segment each individual nucleus in the 3D 

image of the straightened worm (Fig. 1c and Supplementary Fig. 2). More specifically, our 

method first applies 3D median filtering (3 × 3 × 3 pixels) followed by Gaussian filtering (σ 

= 1) to reduce noise so that the intensity distributions within nuclear regions become less 

variable. It then fills any intensity holes in the nuclei, which are typically nucleoli that are 

unstained by DAPI (Supplementary Fig. 2b). Next, it uses adaptive thresholding to detect 

local background levels, generating a location-dependent foreground mask of nuclei or 

clusters of nuclei. After that, it applies the distance transform which computes the distance 

of a foreground pixel from the nearest background pixel, converting the binary foreground 

mask into a gradient image. An initial segmentation of nuclei is then generated from the 

gradient image using the 3D watershed algorithm15–16 (Supplementary Fig. 2d). Finally, to 

handle the small number of over- and under-segmented regions, we developed both rule-

based and training-based methods to do region merging/splitting. The rule-based method 

uses the statistical information of the segmented regions to predict regions of wrong 

segmentation and then uses rules defined on shape, size, and intensity of typical nuclei 

regions to do region merging/splitting. The training-based method trains an SVM 

classifier17–18 using the intensity, size, and shape of nuclei to determine if a region should 

be further split or merged. Splitting and merging of regions are iterated until the classifier 

predicts that further merging or splitting of a given region is unwarranted (Supplementary 

Figs. 2e and 2f). Overall, training-based approach produces slightly better results.

The segmented nuclei were then manually validated, corrected, and annotated with cell 

name conventions of the C. elegans community. For this purpose, we developed a 3D 

annotation and visualization tool called VANO19 (a Volume-object image ANnOtation 

system; Supplementary Fig. 3) that permits one to edit any observed errors in the 

segmentation and to enter a name for every segmented region/nuclei. Our manual annotation 

is based on the morphology and relative spatial positions of cells (http://

www.wormatlas.org)10 (see Methods and Supplementary Methods for details). Since GFP 

was used to highlight the 81 body wall muscle cells and 1 depressor cell in a separate 

channel, these nuclei are annotated first. We then used these muscle cells as fiducial markers 

to identify additional nuclei whose spatial relationships with respect to these markers are 
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stable. The newly annotated nuclei were added to the maker set and we repeated this 

process. By doing so, we were able to manually annotate approximately 357 nuclei in each 

image with high confidence.

Individual C. elegans images differ in size and orientation, therefore the final step is to 

register or map all of the stacks into the same canonical space so that their nuclei positions 

are comparable. For this purpose, we computed the “median” or “centroid” of the collection 

of K stacks, say C, for which the sum of the squared differences of the 357 or so nuclei 

centers between C and every other stack is minimal. We then used it as the reference stack 

to map every other stack to it via an affine transform. The final atlas is the ensemble of the 

transformed nuclei positions for each named nuclei in the coordinate system of the reference 

stack (Supplementary Video 2).

Statistical analysis of the atlas

First, we analyzed the mean and standard deviations of the center locations of each cell 

nucleus along the anterior-posterior (AP; Fig. 2a), dorsal-ventral (DV; Supplementary Fig. 

5a), and left-right (LR; Supplementary Fig. 5b) axes (Supplementary Table 1). The standard 

deviations and their distribution (Fig. 2a) along AP axis show that 77% of the cells vary by 

less than 2 µm in their location. The average standard deviation of the location of cell nuclei 

along the AP axis is 1.87 µm, which is about 72% of the average diameter of nuclei. This 

recapitulates that cell nuclei in the L1 stage have positions that are highly stereotyped and 

provides a quantitative estimate of the stereotypy of each cell. Note that this estimate is an 

upper-bound as some of the observed variations may be due to imperfect staging, 

straightening, registration, and so on.

Several cell nuclei have a standard deviation of their location that is more than twice that of 

other nuclei along a given axis (see the Supplementary Methods for a complete listing of 

these cells). These hyper-variable cell nuclei include the nuclei of hypodermal cell hyp7, the 

intestinal nuclei, and the HSN and coelomocytes (cc) cell nuclei among others. hyp7 is a 

large syncytium with 23 nuclei that are free to move within the cell relative to each other. 

The number of intestinal cells varies between individual worms between 19 and 21, and the 

location of these cells is variable depending on cell number. Finally, the HSN and cc cells 

start to migrate shortly after hatching. So the results from the atlas agree with known 

biology suggesting that the positions of these cell nuclei are indeed more variable.

To determine the minimum number of stacks needed to build the atlas, we tested how the 

statistics of nuclei positions change as the number of stacks increases. For this purpose, we 

randomly chose K stacks, with K ranging from 5 to 40, and computed the average standard 

deviations of nuclei positions along AP, DV, and LR for each K. To make the statistics 

independent of the stacks chosen, we repeated this process 200 times, each time with 

different subsets of the stacks, and obtained an average curve as shown in Fig. 2b. The 

average standard deviations of cell positions along AP, DV, and LR tends to increase 

quickly with K and then taper off with only an inconsequential and asymptotically limited 

increase after K = 15. This confirms the stability of our computational approach and justifies 

using 15 stacks for the atlas.

Long et al. Page 4

Nat Methods. Author manuscript; available in PMC 2010 June 08.

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript



The atlas further permits one to perform more sophisticated analysis on nuclear locations. 

For instance, we quantitatively modeled and visualized the spatial patterns of nuclei within 

and across different types of cells, such as the four bundles of body wall muscle cells 

(BWMVL, BWMVR, BWMDL and BWMDR), the intestinal cells (InD and InV), the 

hypodermal cell hyp7, the blast cells H, V, and T, the P cells, and the ventral motor neurons 

DD, DA, and DB, using quadratic polynomial curves through the mean cell nuclei positions 

(Figs. 3a and 3b). The spatial distributions of pharyngeal muscle (pm) and marginal (mc) 

nuclei in the head (Figs. 3c and 3d) form 7 rings of pm nuclei and 3 rings of mc nuclei 

projected onto the AP-LR plane. One immediately sees that the spacing of nuclei within 

each ring is quite consistent with earlier qualitative descriptions of worm anatomy1,10 (see 

also http://www.wormatlas.org).

We also analyzed the invariant spatial relationships between nuclei along the AP, DV, and 

LR dimensions. This information directs the automated cell annotation algorithm to be 

described below. For this purpose, we built a graph where each nucleus is a vertex and there 

is a directed edge from u to v if nucleus u is always in front of nucleus v in the dimension 

under consideration (Fig. 4 and Supplementary Fig. 6). Note that we also applied transitive 

reduction to the graphs, meaning that if u is always in front of v and v is always in front of 

w, then the transitively inferable edge from u to w is removed. Fig. 4a shows the AP graph 

for H, V, T, P, and In (intestinal) cell nuclei that are located mostly in the trunk, and Fig. 4b 

shows the AP graph of the nuclei of the pharyngeal muscle and marginal cell nuclei in the 

head. Such graphs showing the statistically verified invariance of the relative positioning of 

cells, especially among the cells of separate tissues within the body plan, can only be built 

given an atlas constructed from many worm observations.

In addition to recording the centers of each nucleus, we also estimated the volume and 

diameter of every cell in the atlas. Fig. 5 shows the statistics of nuclear sizes for different 

types of cells. The average diameter of a nucleus at the L1 stage is 2.58 µm, but intestinal 

cells are much bigger with an average diameter of 3.23 µm. In addition, hypodermal nuclei 

(hyp7) and V nuclei are also larger with average diameters of 2.88 µm and 2.90 µm 

respectively. None of the nuclei are considerably smaller than average and the large cells all 

have a large nucleolus suggesting that there is base-line size for a nucleus that is expanded 

in proportion to the size of its nucleolus. The unusually large size of the intestinal cell nuclei 

could be used in their identification.

Automated annotation of nuclei

With an atlas in hand, we developed an automated approach that replaces the manual 

annotation of cell identities in the analysis of potentially thousands of stacks of worm lines, 

each expressing mCherry from a different target gene’s promoter. The motivation is to 

permit medium- to high-throughput analysis of cellular information at single cell level. In 

this context, the workflow for a newly acquired image stack is:

1. Automated straightening

2. Automated segmentation of the DAPI, GFP, and mCherry channels

3. Optional manual curation of any or all of the segmentations
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4. Optional manual pre-annotation of “problematic” cell nuclei (see below)

5. Automated registration and annotation of the atlas cell nuclei

6. Optional curation of the annotation

7. Automated extraction of cellular information (e.g. expression levels) of each cell in 

the mCherry channel.

A Matlab implementation of all the automated steps takes less than 1 hour to process one 

stack with a 2.3 GHz CPU. A pipeline implemented in C is under development and 

preliminary timings indicate it will be about 10 times faster. For the manual steps, it takes 

about 1 hour to curate the segmentation of one stack (i.e. step 3) and another two hours to 

curate the annotation (i.e. steps 4 and 6). In contrast, it takes about three days to process one 

stack completely manually.

The computational problem posed by Step 5 is as follows. We are given the K (e.g. K = 15) 

registered “template” images of the atlas for which 357 nuclei have been annotated, and a 

“subject” image S in which approximately 558 nuclei have been segmented and yet to be 

annotated. The problem is to establish a 1-1 correspondence or “matching” between the 357 

nuclei in the atlas and a subset of the nuclei in S. We did so in two phases. In the first phase, 

we annotated the 82 “marker” nuclei stained in the GFP channel. These marker nuclei 

include 81 body wall muscle cells and 1 depressor cell. They distribute along the entire 

worm body in 4 bundles (VL, VR, DL, and DR) and can be very accurately segmented. 

Annotation of these marker cells is achieved by simultaneous registration and matching 

using a RANSAC-like approach20. More specifically, we registered S to the reference stack 

C through many trials. In each trial, we selected 4 pairs of non-coplanar corresponding 

marker nuclei centers and compute an affine transform that map S to C. We then used a 

bipartite matching algorithm21 to find the best matching between the 82 marker nuclei of C 

and S under the given transform that minimizes the sum of the Euclidean distance between 

corresponding nuclei centers. The trial with the smallest distance produces the best 

annotation of the marker nuclei.

In the second phase, we took the affine transformation TGFP that minimizes the difference 

between S and C with respect to all 82 GFP-labeled nuclei and used the now-annotated 

marker nuclei in S to triangulate the remaining cell nuclei in the DAPI channel (see 

Methods). More specifically, we computed the normalized distance between a non-marker 

nucleus to be annotated and its nearest marker nuclei (one anterior and one posterior in each 

of the four muscle bundles) and used this metric to find the best bipartite matching between 

nuclei in S and a subset of those in the atlas (see Methods). We then examined the AP, DV, 

and LR relationship in our initial labeling of S to see if there is any assignment that seems to 

substantially conflict with the invariants of the AP, DV, and LR graphs derived from the 

atlas22. If so, we assumed the most conflicted assignment is erroneous and rerun the 

bipartite matching above, but this time prohibiting the conflicting match from being chosen. 

We iterated this process until the level of conflict cannot be improved.

We tested the automated annotation on a new set of 55 confocal image stacks. These 55 

stacks were manually annotated as well in order to allow us to assess the accuracy of the 
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automated approach. First, we segmented the ~558 cells in each stack using our automated 

approach. Fig. 6a shows the accuracy of the automated segmentation. The average accuracy 

is 89%. Errors mainly occur in the head where nuclei density is very high and the axial 

resolution is not high enough to resolve the boundary between neighboring nuclei. Among 

the 55 stacks, 6 of them have notably lower SNR (signal-to-noise-ratio) and segmentation 

accuracies are lower.

We then ran automated annotation without any intervening manual curation of the 

segmentation. Fig. 6b red bars show the annotation accuracy for each of the 55 stacks. The 

average accuracy is 76% for all 357 cell nuclei in all 55 stacks). In Fig. 6c (red bars), we 

gave a histogram of the accuracy achieved for individual cells plotted in terms of the 

percentage of nuclei of all the 357 cells falling into different annotation accuracy ranges.

Since errors in automated segmentation tend to induce errors in the ensuing automated 

annotation, we also manually corrected the segmentation errors in these stacks using VANO 

and then applied automated annotation. In Fig. 6b the blue bars show the annotation 

accuracy of each stack. The average annotation accuracy in this case is 86% for all 357 cells 

in all 55 stacks. In Fig. 6c the blue bars give the histogram of the accuracy of individual 

cells. We found that the nuclei of body wall muscle cells (BWM), P cells, H, V, T cells, 

intestinal cells (In), and most of the ventral motor neurons (D) are annotated with greater 

than 80% accuracy. There are 38 cell nuclei whose annotation accuracies are lower than 

60%. Some are in the pharynx, where cell density is very high, and others have variable 

positions so they tend not to be in the same location or position the same relative to other 

nearby cells. If with the help of additional information such as cell morphology and size, one 

pre-annotates these 38 cell nuclei as suggested in Step 4 of the data flow above, then the 

automated annotation on the remaining 319 cells in Step 5 becomes more accurate as 

indicated by the green bars in Fig. 6b. Overall, the average accuracy improves to 92%. The 

green bars in Fig. 6c shows that the percentages of cells that have higher annotation 

accuracy also appreciably improves.

Another way to use the automated annotator is to provide for each nucleus s a small list of k 

candidate identities sorted according to their likelihood for which we use w(s,t) (the score of 

matching nuclei t in the templates to nuclei s in S, see Methods) as a proxy. That is, we 

presented to the user the nuclei in the atlas giving the top k scores of w(s,t) for each s in 

order of score. To understand how good this list is, we considered it to be ‘informative’ if 

the correct answer was in the list. Fig. 6d shows the percentage of lists that were deemed 

informative for each of the 55 stacks when k = 4. The average rate was 97%, in other words, 

the top 4 candidates determined by our approach faithfully cover the right identity of almost 

every nuclei.

DISCUSSION

By building an atlas of nuclear positions over multiple observations of in situ C. elegans 

preparations we have quantitatively characterized the stereotypy of nuclear locations and the 

invariance of their relative locations. While we observed a number of patterns that confirm 
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known biology described qualitatively, there is the potential to query this atlas to confirm or 

support novel hypotheses about the anatomy of a worm.

For us, the most important application of the atlas is that it allows us to automatically 

process a novel image stack and identify cells in the lineage of an L1 without human 

intervention at an accuracy level sufficient to consider high-throughput studies, which 

cannot be achieved without a digital nuclei atlas and the enabling automated nuclei 

annotation approach.

We expect the atlas can also be used in many applications. For example, we may use it to 

measure gene expression patterns at the resolution of single cells and quantitatively 

characterize the molecular expression signature of each cell. We may also detect mutants at 

the same developmental stage by observing nuclei locations and gene expression levels of 

individual cells that differ significantly from those of wild-type C. elegans. Similarly, we 

may also use it to differentiate hermaphrodites from male worms. We further envision that 

as our software becomes faster and accuracy further improves with refinement of the 

methods, that we could place the software on board a microscope and direct the laser 

ablation or stimulation of channel-rhodophsin or halo-rhodopsin expressing cells 

automatically. Such automation would, for example, allow high-throughput assays of worm 

cell function studies.

In our view, an important limitation is that currently the L1 atlas includes only 357 nuclei. 

The remaining nuclei are mostly neurons in the nerve ring. There are also a small number of 

hypodermal cells, arcade cells and socket cells in the head that are missing. Unfortunately, 

the nuclei are very dense in this region of the worm and do not show distinct features from 

each other in the DAPI channel. This presents difficulty to us in manually annotating their 

identities. One could consider adding additional fluorescent fiducial markers, analogous to 

the GFP-labeling of the body-wall muscle cells, to further aid us to resolve nuclei identities 

in this difficult region and provide training data for automated segmentation and annotation. 

Another difficulty in resolving nuclei in this region is that standard confocal microscopy 

doesn’t give quite the resolution needed for annotation. It is our intuitive estimate that a 

factor of 2 or greater improvement in resolution would be sufficient to resolve these regions 

and there is some hope that say STED or SPIM microscopy, or some optimally clearing 

preparation of the worm will give us this factor. Once we are able to resolve the identities of 

these cells, our computational pipeline can be directly applied to generate the complete atlas.

In the meantime, it is certainly the case that our methodology can be applied directly to other 

developmental stages and in the future we expect to develop the data to enable this method 

on a wider range of developmental stages. Indeed, from a purely algorithmic point of view, 

we have developed a system that can identify objects whose positions are stereotypic given 

an atlas that is in effect a set of registered and labeled training data. In fact, the pipeline we 

developed here has also been used to build a nuclei atlas for fruitfly late embryonic stage13. 

Given that many early developmental body plans or body parts are stereotypic, we expect 

that the methods herein may be useful in a variety of gene expression studies of 

development.
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METHODS

Manual annotation

To build the atlas, we manually annotated nuclei identities based on the morphology and 

relative spatial positions of cells in C. elegans qualitatively described in earlier literatures 

and the WormAtlas website (http://www.wormatlas.org)10 (see Supplementary Methods for 

details). We assessed the accuracy of our manual annotation and further improved it using 

three parallel approaches. In the first approach, we manually annotated three stacks, each 

twice independently. We found that over 98.5% nuclei were assigned the same names in 

independent trials of annotation in different days. In the second approach, we annotated 

some worms carrying mCherry reporters whose expression has been well studied, including 

elt-7, pal-1, cnd-1, die-1 and pha-4. The expression patterns of these reporter based on our 

annotation were consistent with their cell- and tissue-specific patterns in previous literature. 

In the third approach, we computed the standard deviations of the positions of nuclei 

annotated with the same identities across different image stacks. We then pinpointed to 

those outliers with big standard deviations and corrected potential annotation errors if there 

were any. Note that position-variable cells were identified using other cues such as their 

morphology, size, and relative locations to some marker nuclei. This bootstrapping strategy 

was repeated until we were highly confident that the identities of nuclei were correct. Note 

that since the atlas was built on the statistical analysis of multiple 3D worm images, it is 

robust to the potential annotation errors if there were any.

Matching score in automatic annotating nuclei in DAPI channel

For each non-marker nucleus t in DAPI channel, we found the posterior-most marker in each 

body wall muscle cell bundle that is anterior to t in all templates, and the anterior-most 

marker that is posterior to t in all templates, if they exist. We called this set Bt the AP-

“bracketing markers” for t. For each bracketing marker b we computed the mean µ b.m (t) 

and standard deviation σ b.m (t) over the K stacks of its distance to t along each dimension m 

∈ {AP,DV,LR}. The score of matching nuclei t in the templates to nuclei s in S, w(s,t), is the 

average number of standard deviations σ b.m (t) that the distance, db.m (s), between s and 

each bracket marker b (in S) differs from the mean distance µb.m (t) for t, i.e. 

. This criterion is used to find the best bipartite 

matching between the nuclei in S and a subset of those in the atlas and serves as an initial 

annotation of the non-marker nuclei.

Other computational methods

Descriptions of worm body backbone detection, hollow-shaped nuclei pattern filling, 

adaptive thresholding, watershed algorithm, and region merging/splitting for nuclei 

segmentation, VANO interface, affine transform in building the atlas, details on computing 

AP/DV/LR graphs and adding spatial constraints to automatic nuclei annotation are 

available in Supplementary Methods.
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Data and software

The 3D digital atlas of the 357 nuclei is provided in supplementary tables and files. 

Supplementary Table 1 lists the mean and standard deviation of the position of each nucleus. 

Supplementary Data 1 FileS1_worm_atlas_L1_357.apo provides a “point-cloud” of the atlas 

that can be displayed using the software V3D (Peng, et al, unpublished work) we developed 

for microscopy image data processing and visualization (Supplementary Video 3). Both 

V3D and the annotation tool VANO are freely downloadable at http://penglab.janelia.org. 

The Matlab code of this pipeline, called CellExplorer, along with a sample data set, can be 

downloaded both as the Supplementary Data 2 and from the authors’ websites.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Automatic processing of a 3D image of C.elegans. (a) A 2D slice of a 3D image. DAPI 

(blue) is used to stain nuclei of all the 558 cells; Pmyo-3::NLS::GFP (green) is used to stain 

nuclei of the 81 body wall muscle cells and 1 depressor cell; mCherry (red) is used to stain 

nuclei of the cells that express gene of interest, in this example, some ventral motor neurons 

and neurons in the nerve ring. (b) The same 2D slice after worm body straightening. (c) The 

segmentation result of the DAPI channel of same 3D image, with the same 2D slice shown 

in A.
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Figure 2. 
Statistics of nuclei positions. (a) The mean and standard deviations of the locations of 357 

nuclei along the AP axis computed from 15 randomly selected images of hermaphrodites at 

the first larval stage. The horizontal axis is the position of nuclei along the AP axis (in µm), 

the posterior direction being positive. The vertical axis is the ordering of the nuclei sorted 

according to their mean locations along AP. The dots are the mean locations of the 

corresponding nuclei and the lines are their standard deviations. The bottom-right inset 

shows the names of a subset of the 357 nuclei. The up-left inset shows the distribution of the 
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standard deviation of nuclear locations of all the 357 nuclei. (b) The average standard 

deviation of nuclei positions along AP, DV, and LR dimensions as functions of the number 

of stacks used to build the atlas.
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Figure 3. 
The nuclei spatial location patterns of different types of cells. (a) and (b) are the nuclei 

locations of the four bundles of body wall muscle cells (BWMDL, BWMDR, BWMVL, and 

BWMVR) and most of the trunk cells including dorsal and ventral intestinal cells (InD and 

InV), trunk hypodermal cells (hyp7), H, V, T, and P cells, as well as ventral motor neurons 

(DD, DA, DB), projected onto the AP-DV plane and AP-LR plane respectively. For better 

visualization, we did quadratic polynomial fitting for each type of cells. (c) and (d) are the 

nuclei locations of the 7 rings of pharyngeal muscle cell nuclei (pm) and the 3 rings of 
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marginal cell nuclei (mc) in the head projected onto AP-DV and AP-LR plane. Vertical lines 

show the mean locations of each ring along AP dimension. On the AP-LR plane, nuclei of 

the same ring are connected in lines.
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Figure 4. 
AP graph of (a) the H,V,T,P, and In (intestinal cells) and (b) the pm (pharyngeal muscle) 

and mc (marginal cells) nuclei derived from the atlas. The graph is displayed after transitive 

reduction. Thus if there is a directed path from node a to node b, and from node b to node c, 

then the transitively inferable edge from a to c is removed.
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Figure 5. 
Mean and standard deviations of nuclei sizes for different types of cells. BWMVL: body 

wall muscle ventral left bundle; BWMVR: body wall muscle ventral right bundle; BWMDL: 

body wall muscle dorsal left bundle; BWMDR: body wall muscle dorsal right bundle; InV 

and InD: intestine ventral and dorsal cells; hyp: hypodermal cells; DD, DA and DB: ventral 

motor neurons; HL and HR: H cell left and right bundles; VL and VR: V cell left and right 

bundle; TL and TR: T cell left and right; pm: pharyngeal muscle; mc: marginal cells in 

pharynx; vpi: pharyngeal intestinal valve cells; e: pharyngeal epithelial cells; g: pharyngeal 

gland cells; M: pharyngeal motor neuron; I: pharyngeal motor neurons; cc: coelomocyte; 

MI, NSM(L,R): pharyngeal motor interneuron, and secretory motor neuron; other neurons 

include BDU(L,R), ALM(L,R), CAN(L,R), Q(L,R),AVG, SABD, SABV(L,R), RIG(L,R), 

RIF(L,R), PVT, PVP(L,R), PVQ(L,R), PHA(L,R), PHB(L,R), LUA(L,R), PVC(L,R), 

ALN(L,R), PHsh(L,R), PLM(L,R), PVR, DVA, and DVC.
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Figure 6. 
Accuracies of automated segmentation and annotation of 55 image stacks. (a) The 

accuracies of automatic segmentation for each stack. (b) The accuracies of automated 

annotation of the 357 nuclei. Red bars: fully automated segmentation followed by fully 

automated annotation (FA1). Blue bars: manually curated segmentation followed by fully 

automated annotation (FA2). Green bars: manually curated segmentation followed by 

automated annotation of 319 nuclei in each stack. The remaining 38 nuclei with big spatial 

variations across individuals were pre-annotated (PA) manually. (c) Percentages of nuclei 

Long et al. Page 20

Nat Methods. Author manuscript; available in PMC 2010 June 08.

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript



falling into different annotation accuracy ranges for fully automatic annotation of 357 nuclei 

(FA1; red bars and FA2; blue bars) and for automatic annotation of 319 nuclei (PA; green 

bars). (d) Percentages of nuclei among 357 whose identities can be hit by the top 4 

candidates for each stack.
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