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Abstract

Cortical responses to sensory inputs vary across repeated presentations of identical stimuli,

but how this trial-to-trial variability impacts detection of sensory inputs is not fully under-

stood. Using multi-channel local field potential (LFP) recordings in primary somatosensory

cortex (S1) of the awake mouse, we optimized a data-driven cortical state classifier to pre-

dict single-trial sensory-evoked responses, based on features of the spontaneous, ongoing

LFP recorded across cortical layers. Our findings show that, by utilizing an ongoing predic-

tion of the sensory response generated by this state classifier, an ideal observer improves

overall detection accuracy and generates robust detection of sensory inputs across various

states of ongoing cortical activity in the awake brain, which could have implications for vari-

ability in the performance of detection tasks across brain states.

Author summary

Establishing the link between neural activity and behavior is a central goal of neurosci-

ence. One context in which to examine this link is in a sensory detection task, in which an

animal is trained to report the presence of a barely perceptible sensory stimulus. In such

tasks, both sensory responses in the brain and behavioral responses are highly variable. A

simple hypothesis, originating in signal detection theory, is that perceived inputs generate

neural activity that cross some threshold for detection. According to this hypothesis, sen-

sory response variability would predict behavioral variability, but previous studies have

not born out this prediction. Further complicating the picture, sensory response variabil-

ity is partially dependent on the ongoing state of cortical activity, and we wondered

whether this could resolve the mismatch between response variability and behavioral vari-

ability. Here, we use a computational approach to study an adaptive observer that utilizes

an ongoing prediction of sensory responsiveness to detect sensory inputs. This observer

has higher overall accuracy than the standard ideal observer. Moreover, because of the

adaptation, the observer breaks the direct link between neural and behavioral variability,
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which could resolve discrepancies arising in past studies. We suggest new experiments to

test our theory.

Introduction

The large majority of what we know about sensory cortex has been learned by averaging the

response of individual neurons or groups of neurons across repeated presentations of sensory

stimuli. However, multiple studies in the last three decades have clearly demonstrated that sen-

sory-evoked activity in primary cortical areas varies across repeated presentations of a stimu-

lus, particularly when the sensory stimulus is weak or near the threshold for sensory

perception [1–3], and have suggested that this is an equally important aspect of sensory coding

as the average response [4–6]. Variability is thought to arise from a complex network-level

interaction between sensory-driven synaptic inputs and ongoing cortical activity, and single-

trial response variability is partially predictable from the ongoing activity at the time of stimu-

lation. A large body of work has focused on characterizing this relationship between notions of

cortical “state” and sensory-evoked responses [7–13], establishing some simple models of local

cortical dynamics [14]. Less is known about the impact of this relationship for downstream cir-

cuits (though see [15,16]).

As an example, consider the detection of a sensory stimulus, which has been foundational

in the human [17–22] and non-human primate psychophysical literature [23,24] and serves as

one of the most widely utilized behavioral paradigms in rodent literature [25–27]. In an

attempt to link the underlying neural variability to behavior, the principal framework for

describing sensory perception of stimuli near the physical limits of detectability is signal detec-

tion theory [28]. A key prediction of signal detection theory is that, on single trials, detection

of the stimulus is determined by whether the neural response to the stimulus crosses a thresh-

old. Particularly large responses would be detected but smaller responses would not, so vari-

ability in neural responses would lead to, and perhaps predict, variability in the behavioral

response. From the perspective of an ideal observer, if variability in the sensory-evoked

response can be forecasted using knowledge of cortical state, the observer could potentially

make better inferences, but in traditional (state-blind) observer analysis, the readout of the

ideal observer is not tied to the ongoing cortical state.

In this work, using network activity recordings from the whisker sensitive region of the pri-

mary somatosensory cortex in the awake mouse, we develop a data-driven framework that pre-

dicts the trial-by-trial variability in sensory-evoked responses in cortex by classifying ongoing

activity into discrete states that are associated with particular patterns of response. The classi-

fier takes as inputs features of network activity that are known to be predictive of single-trial

response from previous studies [9,14], as well as more complex spatial combinations of such

features across cortical layers, to generate ongoing discrete classifications of cortical state. We

optimize the performance of this state classifier by systematically varying the selection of pre-

dictors. Finally, embedding this classification of state in a state-aware ideal observer analysis of

the detectability of the sensory-evoked responses, we analyze a downstream readout that

changes its detection criterion as a function of the current state. We find that state-aware

observers outperform state-blind observers and, further, that they equalize the detection accu-

racy across states. Downstream networks in the brain could use such an adaptive strategy to

support robust sensory detection despite ongoing fluctuations in sensory responsiveness dur-

ing changes in brain state.

State-aware sensory detection
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Results

To directly assess the relationship between ongoing cortical activity and variability in the sen-

sory-evoked cortical response, we recorded extracellular activity across layers of cortex in the

awake head-fixed mouse. Specifically, spontaneous and sensory-evoked local field potentials

(LFPs) were recorded using a 32-channel laminar array targeted to the region of the primary

somatosensory cortex corresponding to facial vibrissae (S1 barrel cortex, Fig 1A). Mice were

subjected to brief single-whisker deflections (11 recordings in 6 mice; average 438 (196–616)

trials per recording). Intrinsic optical signal imaging was performed to locate the barrel col-

umn corresponding to the stimulated whisker. The sensory stimulus (Fig 1B, top) was a com-

puter-controlled punctate deflection in the caudo-rostral plane (see Methods), designed to

emulate velocity transients observed during ‘stick-slip’ events in rodents whisking across sur-

faces [29–31]. Cortical layers were assigned based on the trial-averaged spatial profile of the

sensory-evoked LFP and current source density (CSD) responses, with layer 4 centered on the

largest evoked response in the LFP and the large, early current sink in the CSD (Fig 1C, see

Methods). Putative boundaries between layer 4 and layer 2/3 or layer 5 were based on pub-

lished laminar dimensions [32].

Sensory-evoked responses in layer 4 were variable: mean amplitude of the response in layer

4 was a negative dip of 0.81 mV (+/- 0.35 across recordings, N = 11), and the standard devia-

tion of evoked response size across trials was 0.45 mV (average SE across recordings, N = 11).

We examined the impact of such variability on the detectability of sensory inputs in the frame-

work of ideal observer analysis, which is conceptually presented in Fig 1D. In this scenario

(Fig 1D, top row), a sensory stimulus W takes on one of two possible values: “+” in the case

that a sensory input was present and “−” in the absence of a sensory input. Neural activity (x,

see Methods), either spontaneous (W is “−”) or generated by the stimulus (W is “+”), was vari-

able across trials and described by a conditional distribution P(x|W). The task of a downstream

network, imagined here as an ideal observer, was to determine from the neural activity

whether or not there was a stimulus. In the classical signal detection framework, this was envi-

sioned as the observed activity arising from one of two distributions, P(x|W = "−") or P(x|W =

"+"). The ideal observer ascribes activity above a chosen threshold (to the right of dashed red

line) as belonging to P(x|W = "+"), and thus concludes that a stimulus was present, and other-

wise as belonging to P(x|W = "−"), and thus the stimulus was deemed absent. In this work, we

considered an alternative perspective, which is that the ideal observer was “state-aware.” That

is, we considered the case in which the response distribution P(x|W, s) depended upon ongo-

ing activity (“state,” s) as well as the stimulus (Fig 1D, blue, bottom row). In this case, the dis-

crete state (̂s) is classified from the recorded, ongoing cortical activity, which is subsequently

used by the state-aware observer to set the detection threshold independently for each state.

To illustrate how this framework operates, we show a set of example trials from a single

recording in Fig 1E–1H. Two of these examples of layer 4 LFP activity show responses to a

whisker input and one is a segment of spontaneous activity (Fig 1E). Across the stimulus-

evoked responses, we observed significant variability in the overall size of sensory-evoked

response (Fig 1F). Moreover, one of the evoked responses (Fig 1F, top row) is smaller than a

spontaneously occurring LFP event (Fig 1F, bottom row). We also note that pre-stimulus LFP

activity is quite different across these recordings. The goal of the state classifier is to find con-

sistent relationships between features of the ongoing activity and the details of the single-trial

sensory-evoked response. Assuming for the moment that it can do so, the state classifier would

classify the pre-stimulus activity for these responses (Fig 1E) into separate states (̂s = 1 or 2, Fig

1G). When tasked with detecting or rejecting stimuli on the basis of the LFP response (Fig

1H), an ideal observer sets a single threshold for detection, which causes it to fail to detect a

State-aware sensory detection

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006716 May 31, 2019 3 / 24

https://doi.org/10.1371/journal.pcbi.1006716


Fig 1. Single-trial prediction and detection of sensory-evoked responses in the awake mouse. A. Recordings of whisker-evoked

neural activity in the principal barrel column were acquired using a laminar probe in awake mice. B. A single trial response to the

punctate whisker stimulus (galvanometer trace, pink line at top), showing LFP activity across the 32 channels of the silicon probe

(25 μm spacing), with 1 s of pre-stimulus activity (xprestim, horizontal blue bar) and the sensory-evoked response starting at the time

point indicated by the arrow (pink). C. Average spatial profile of evoked LFP at t = 10 ms post-stimulus (left). Right: average evoked

CSD over the 25-ms post-stimulus window, with color indicating whether sink (red) or source (blue). Channels were assigned to

layers (dashed horizontal lines separating sections labeled L2/3, L4 and L5) by centering the largest evoked response in layer 4. D.

State-blind analysis (top row, black font): Neural responses encode sensory inputs, described by the encoding distribution P(x|W) of

State-aware sensory detection
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true sensory response while generating a false alarm on the spontaneous fluctuation (Fig 1H,

black). In contrast, the state-aware observer sets its detection criterion separately for each

state. For this example, the threshold may be lowered for state 1 and raised for state 2, thus the

sensory-evoked responses would be detected but the spontaneous fluctuation would be

rejected (Fig 1H, blue).

The state-aware observer thus has two distinct stages: state classification and sensory stimu-

lus detection. The idea is that, by adapting its criterion for detection in accordance with the

expected response, the state-aware observer will more reliably detect sensory-evoked responses

and reject spontaneous fluctuations. Overall, the success of this strategy depends on a state

classifier that predicts variation in the future sensory-evoked response, so we first optimized

classification models with the goal of identifying the most relevant features of ongoing activity

for the prediction of the details of the sensory-evoked responses. We then use this framework

to classify ongoing activity into states and compare traditional (state-blind) and state-aware

observers to determine how using this prediction to adjust detection strategy impacts overall

detection performance.

State classification based on prediction of cortical responses

The foundation upon which the state-aware observer is constructed is a prediction of the sen-

sory-evoked cortical response. This prediction is based on classifying elements of the ongoing,

pre-stimulus activity into discrete “states,” and the goal is to find the features of ongoing activ-

ity and the classification rules that generate the best prediction of sensory-evoked responses.

Treating this as a discrete problem was a methodological choice motivated by the rationale

that such an approach could find rules that are not linear in the features of ongoing activity

and could lend more flexibility in the rules relating features of ongoing activity to variability in

the response. The features of ongoing activity include the power spectrum of pre-stimulus LFP

and the instantaneous “LFP activation” (Fig 2A). To describe sensory-evoked responses, we

define a parameterization of the LFP response using principal components analysis (Fig 2B).

The state classifier is a function that takes as inputs features of pre-stimulus LFP and produces

an estimate of the principal component (PC) weights and thus of the single-trial evoked

response (Fig 2C). In the following sections, we describe this process in detail.

Initial selection of features of ongoing activity. The first step was to select features of

ongoing activity, which are the inputs to the state classifier. Based on previous work in somato-

sensory cortex [8,9], we first identified two features that reflect the instantaneous phase and

synchronization of ongoing activity measured through LFP. To capture instantaneous phase,

we used pre-stimulus LFP activation, defined as the average LFP recorded over the 10 ms pre-

ceding the stimulus, relative to the baseline activation level (LFP averaged from -1000 ms to

-200 ms, Fig 2A, top). Synchronization is reflected by the low-frequency power in the LFP,

response (x) conditioned on stimulus identity (W, here the presence (+) or absence (−) of a sensory input). An ideal observer

determines the stimulus from the response using P(W|x). State-aware analysis (bottom row, blue font): sensory responses also

depend on cortical state (s). Here we estimate ŝ by computing a function of the pre-stimulus neural activity (xprestim). An ideal

observer sets a state-dependent threshold depending on the estimated state ŝ. Figs 2–4: estimation of ŝ. Figs 5 and 6: state-aware ideal

observer analysis using PðWjx; ŝÞ. E-H. Illustration of the detection framework applied to an example drawn from recorded data. E.

The recorded LFP in layer 4 is shown for three example trials, with W = "+" (top two) and W = "−") (bottom). F. Expanded view of

neural activity in a 25-ms window (gray boxes in (E)). In these selected examples, spontaneous fluctuations (W = "−") are larger than

the first sensory-evoked response (W = "+"). G. The state classifier (described in Figs 2–4) estimated state ŝ for each trial based on

ongoing/pre-stimulus activity. H. Illustration of detection of input (W = "+" or W = "−") based on state-blind threshold choice (black,

P(x|W)) and based on state-aware threshold choice (blue, PðxjW; ŝÞ). In this example, the threshold for state 2 was increased to

reject the spontaneous activity (bottom row), while the threshold for state 1 was decreased to accept the small sensory-evoked

responses.

https://doi.org/10.1371/journal.pcbi.1006716.g001
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quantified as the ratio of power between 1 and 5 Hz (denoted here as “L”) to the total power

between 1 and 50 Hz (denoted here as “W”, for wideband, Fig 2A, bottom). Power ratio was

computed using the fast Fourier transform over the 2-second pre-stimulus period.

Parameterizing variability in evoked responses. The next step was to define a discrete

parameterization of the sensory-evoked LFP response, which will be the targeted output of the

state classifier. We focused on the single-trial sensory evoked LFP response in cortical layer 4

in a 25-ms period following the delivery of the sensory stimulus. We parameterized the evoked

Fig 2. A state classifier to predict single-trial sensory-evoked LFP responses. A. Features of the pre-stimulus activity used for the

prediction. Top row: LFP activation is the LFP in the 10 ms preceding stimulus onset (pink arrow) minus the LFP averaged over the

baseline window. Bottom row: power ratio is the ratio of LFP power in the 1–5 Hz range (L) to the power in the 1–50 Hz range (W).

B. Top row: parameterization of the early (25-ms) sensory-evoked LFP response through principal components. Bottom row:

Illustration of evoked responses represented in PC1-PC2 weight space. Five ranges are defined based on quintiles. Color indicates the

PC1 ranges: largest responses, orange; smallest responses, blue. For clarity, only the averages of responses falling into the 1st, 3rd,

and 5th quintiles of PC1 weights and PC2 weights are plotted, colored by the PC1 quintile (orange, green, blue) with the overall

average evoked response in gray. C. Classifier boundaries in power ratio-activation space that predict the PC1 weights. Regions are

labeled from 1 (“small”) to 5 (“large”) and colored as in panel B. A separate classifier was fit to predict PC2 weights. See S1 and S2

Figs for boundaries for PC1 and PC2 classifiers for all recordings. D. Summed fraction of variance explained by the PC1 and PC2

classifiers on trial-shuffled data and on the test set.

https://doi.org/10.1371/journal.pcbi.1006716.g002
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response using the principal components (PCs) of the evoked response across trials. On aver-

age, the first two modes accounted for 89% ± 2% (N = 11 recordings) of the cross-trial vari-

ance. Each trial was therefore described as the average response, plus the weighted sum of the

first two PCs (Fig 2B, top, Methods). For this example, variation in the weight of PC1 (cL4,1)

captured differences in the overall amplitude of the response, while variation in the weight of

PC2 (cL4,2) captured the temporal width of the response (Fig 2B). A similar relationship held in

all recordings: amplitude and temporal width were reflected by the combination of PC1 and

PC2 (S1 and S2 Figs). Thus, the PC representation captured recognizable characteristics of the

shape and size of the evoked response.

To discretize the parameterization of the evoked response, we defined five response ranges

for each PC weight based on quintiles of their distributions (Fig 2B), and set the weight for any

trial falling within a given range to the average of the individual weights within the range (i.e.

the quintile average; see Methods). The choice of five groups reflects a compromise between

capturing variability in the response and having a sufficient number of trials in each group. To

quantify how much discretization impacts the potential for accurate prediction, we computed

the variance explained by the discrete and continuous parameterization. The discrete parame-

terization captures an average of 78% ± 4% of variance, compared to 89% ± 2% (N = 11 record-

ings) for the continuous representation. This number sets the maximum fraction of variance

explained that could be achieved by any state classifier that generates a prediction of the

evoked response.

Building the state classifier. For each principal component of the response, we fit classifi-

ers that mapped combinations of pre-stimulus features to specific ranges of the parameterized

responses (shown for PC1 in Fig 2C). This determines a set of boundaries that define the pre-

stimulus states. For the example recording shown in Fig 2C, smaller evoked responses were

associated with negative pre-stimulus LFP activation (Fig 2C, blue, ŝ1 ¼ 1), while large evoked

responses were associated with positive pre-stimulus LFP activation (Fig 2C, orange, ŝ1 ¼ 5).

This finding is consistent with previous reports of the negative interaction between ongoing

and evoked activity [33]: sensory evoked responses were smaller when the ongoing activity

was higher. Classifier boundaries between states were similar across different recordings (S1

and S2 Figs). The regions are ordered, as expected, with ŝ1 ¼ 1 adjacent to ŝ1 ¼ 2, which is

adjacent to ŝ1 ¼ 3, and so on. This suggests that had we changed the number of “states” to be

four or six, these boundaries would shift somewhat but preserve the ordering.

Prediction performance was quantified using the fraction of variance explained (fVE) over

the 25-ms evoked response window (Methods). We partitioned the data into three sets: one for

fitting classifiers (“training”), one for selecting the best pre-stimulus features (“cross-valida-

tion”) and one for quantifying fVE (“test”). This was important to avoid spuriously high per-

formance of optimized classifiers due to over-fitting (see Methods for details). Using

activation and power ratio (as defined in Fig 2A) as pre-stimulus features, we found that the

fVE was 0.18 ± 0.03, which was significantly larger than the fVE when trials were shuffled

within each recording (average fVE for trial-shuffle: 0.001 ± 0.002, N = 11 recordings; Fig 2D).

Optimization of prediction of the single-trial sensory-evoked response

Next, within the general class of pre-stimulus features considered–power ratio and LFP activa-

tion–we optimized several choices: the range of frequencies used to compute the power ratio;

the cortical depth from which the ongoing LFP signal is taken; and possible combinations of

LFP signals across the cortical depth. Changes in pre-stimulus features resulted in changes in

the boundaries between states, and ultimately in changes in prediction performance.

State-aware sensory detection
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First, we varied the bounds of the low-frequency range (“L range”, Fig 3A). The increase in

fVE was on average 0.09 ± 0.05 (N = 11 recordings) (Fig 3B; classifier boundaries shown in S2

Fig), with a significant increase in 10 of 11 recordings (Fig 3C, asterisks). We found that the

optimal L range could extend to frequencies up to 40 Hz (Fig 3C), with the median bounds of

the optimal L being from 1 to 27 Hz.

Using for each recording the power ratio based on the optimized range of low-frequency

power (Fig 3), we next determined where along the cortical depth the most predictive activity

was and whether taking spatial combinations of LFP activity could improve the prediction.

Note that in this analysis, the channel for the stimulus-evoked response was held fixed (L4)

and thus the parameterization of the evoked response using principal components did not

change, but the pre-stimulus channel was varied. For each recording, we thus built a series of

classifiers, using single- and multi-channel LFP activity from across the array (Fig 4A, S3 Fig),

which again were optimized for prediction of the single-trial L4 sensory-evoked response.

Classifiers built from a single channel of LFP performed best when the channel was near L4

(Fig 4B, single example; Fig 4C, average profile). Because the LFP represents a volume-con-

ducted signal, we also examined the current source density (CSD) [34–36], estimated on single

Fig 3. Optimizing state classifier performance: Defining the power ratio. A. Optimization of power ratio windows. We optimized

the classifier by varying the ranges of low-frequency power used to compute power ratio, while keeping W fixed. B. Fraction of

variance explained by the state classifier based on original power ratio (L�/W) and optimal (L/W). Error bars (SE) are bootstrap

estimates of uncertainty in fVE calculation. C. Optimal L range across all recordings (blue bars). Gray box shows the original range

for L (1–5 Hz). Asterisks indicate those recordings for which the increase in fVE was> 2 SE.

https://doi.org/10.1371/journal.pcbi.1006716.g003
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trials using the kernel method [37]. There was no improvement in fVE using CSD to build

classifiers (fVE difference, CSD minus LFP: -0.07; range: (-0.12, -0.01)).

For each recording, we defined an optimal classifier channel based on the spatial profile of

fVE for single-channel predictors (Fig 4B; S3 Fig). In the “pair” combination, we paired the

optimal classifier channel with each of the other possible 31 channels (Fig 4B; green dashed

line). We optimized the classifier in the 3-dimensional space defined by power ratio (on the

optimal channel only) and LFP activation from each of the two channels and compared the

fVE to that obtained using the optimal classifier channel only (Fig 4D). We found no improve-

ment in the prediction using the pair combination compared to using the optimal channel

alone (Fig 4D, mean fVE difference: 0.00 ± 0.01; 0/11 recordings with significant change, pair

vs. single) or using more complex combinations of channels (S3 Fig).

To summarize, we optimized classifiers based on pre-stimulus features to predict single-

trial sensory-evoked LFP responses in S1 cortex of awake mice. We found that the classifier

performance was improved by changing the definition of the power ratio (L/W) such that the

low-frequency range (L) extended from 1 Hz to 27 Hz, depending on the recording, which dif-

fered from the range typically used from anesthetized recordings in S1 (1–5 Hz) [8,9]. We also

found that the most predictive pre-stimulus LFP activation was near layer 4.

Ideal observer analysis of sensory-evoked responses

After establishing a clear enhanced prediction of the single-trial stimulus-evoked response

within the LFP by considering the pre-stimulus activity, we investigated the impact of this rela-

tionship on the detection of sensory stimuli from cortical LFP activity using a state-aware ideal

observer analysis. We first considered a simple matched-filter detection scheme [38] in which

the ideal observer operated by comparing single-trial evoked responses to the typical shape of

the sensory evoked response (Methods, Detection). The matched filter was defined by the trial-

Fig 4. LFP recorded near layer 4 drives optimal state classifier performance. A. We constructed two sets of state classifiers: first,

using the power ratio and activation from single channels across the array (black label, top) and second, by adding to the best single-

channel classifier a third predictor, the activation from a secondary channel (green label, bottom). B. Spatial profile of fVE for

classifiers using as input each channel of the array. Black, solid: input was single channel LFP. Vertical axis indicates the depth of the

input channel. Green, dash: inputs were taken from pairs of channels, one of which is the channel at y = 0. Vertical axis indicates the

depth of the second input channel. Shaded regions show ± 1 SEM estimated from bootstrapped fVE calculation. C. Normalized fVE

spatial profile averaged across recordings, with fVE normalized by the maximum fVE on each single recording. Recordings were

aligned based on assigned L4 channels and then averaged. Each point is an average over N = 9 recordings with> 500 μm of overlap

after alignment. Shaded region shows ± 1 SEM across recordings. D. Performance of classifiers using pairs of channels vs. the best

single-channel classifier for N = 11 recordings. Estimated error bars (from bootstrap) are approximately ± 0.02 and omitted for

clarity. No significant difference between single-channel vs. pair-channel classifiers for any recording.

https://doi.org/10.1371/journal.pcbi.1006716.g004
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average evoked LFP response, and this filtered the raw LFP (Fig 5A) to generate the LFP score

(Fig 5B). For the state-blind observer, a detected event was defined as a peak in the LFP score

that exceeded a fixed threshold (Fig 5B, stars). The LFP score distributions from time periods

occurring during known stimulus-evoked responses and from the full spontaneous trace were

clearly distinct but overlapping (Fig 5C), and detected events (Fig 5B, stars) included both

“hits” (detection of a true sensory input) and “false alarms” (detection of a spontaneous fluctu-

ation as a sensory input).

Next, using the state classifier constructed in the first half of the paper, we analyzed the per-

formance of a state-aware observer on a reserved set of trials, separate from those used for fit-

ting and optimizing the state classifiers (Methods). Specifically, using the optimized state

classifier (Figs 3 and 4), we continuously classified “state” at each time point in the recording

(Fig 5D). The state-aware observer detects events exceeding a threshold, which changed as a

function of the current state (Fig 5E). Instead of a single LFP score distribution, we now have

one for each predicted state (Fig 5F), leading to many possible strategies for setting the thresh-

olds for detecting events across states.

In general, the overall hit rate and false alarm rate will depend on hits and false alarms in

each individual state (Fig 6A and 6B for single example; S4 and S5 Figs show all recordings), as

well as the overall fraction of time spent in each state (Fig 6A, inset). We walk through the

analysis for a single example, selected as one of the clearest examples of how state-aware detec-

tion worked. While this example recording shows a relatively large improvement, it is not the

recording with the largest improvement, and, moreover, the corresponding plots for all

recordings are shown in S4 and S5 Figs. To compare between traditional (state-blind) and

state-aware observers, we compared hit rates at a single false alarm rate, determined for each

recording as the false alarm rate at which 80%-90% detection was achieved by a state-blind

ideal observer. To select thresholds for the state-aware observer, we systematically varied the

thresholds in state 1 and state 3, while adjusting the state-2 threshold such that average false

alarm rate was held constant. For each combination of thresholds, we computed the overall hit

rate (Fig 6C). For the example recording highlighted in Fig 6, the state-aware observer (hit

rate: 96%) outperformed the traditional one (hit rate: 90%). This worked because the threshold

in state 3 could be increased with very little decrease in the hit rate (Fig 6B), and this substan-

tially decreased the false alarm rate in state 3 (Fig 6A). Because the overall false alarm rate is

fixed, this meant more false alarms could be tolerated in states 1 and 2. Consequently, thresh-

olds in states 1 and 2 could be decreased, which increased their hit rates. Across recordings, we

found that the state-aware observer outperformed the state-blind observer in 9 of 11 record-

ings (Fig 6D; S4 and S5 Figs). Hit rates slightly but significantly increased from a baseline of

81% for the state-blind observer to 84% for state-aware detection, or an average change of +3

percentage points (SE: 3%; signed-rank test, p< 0.01, N = 11).

The overall change in hit rate reflects both the fraction of time spent in each state (some

fixed feature of an individual mouse) and the changes in state-dependent hit rates. To separate

these factors, we analyzed the hit rate of the state-blind and state-aware observers by comput-

ing, for each observer, the hit rate conditioned on each pre-stimulus state (Fig 6E). For this

recording, the state-blind observer had very low hit rate in state 1 and high hit rates in states 2

and 3. In comparison, hit rates were similar across the three state for the state-aware observer

(Fig 6D). Thus, in state 1 (smallest responses, blue), we observed a large increase in the hit rate

depending on whether the observer used state-blind or state-aware thresholds. Averaged

across all recordings, the state-1 hit rates increased from 60% to 76%, which is a relative

increase of 26% (SE 11%). Because this is weighted by the fraction of time spent in state 1, the

overall impact on the hit rate is smaller. Hit rates increased slightly on average in state 2 (+ 2%,

SE 4%) and decreased slightly in state 3 (-7%, SE 9%). The net impact of this is that across the
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majority of recordings, the cross-state range of hit rates for the state-blind ideal observer was

much larger than that for the state-aware ideal observer (Fig 6D and 6F; 19%, average state-

blind minus state-aware hit rate range in percentage points (SE: 5%); p< 0.01, signed-rank

test, N = 11). Thus, while the overall differences between state-aware and state-blind hit rates

are modest, the state-aware observer has more consistent performance across all pre-stimulus

states than a state-blind observer.

Discussion

Due to the rapid development of tools that enable increasingly precise electrophysiology in the

awake animal, there is a growing appreciation that the “awake brain state” encompasses a wide

range of different states of ongoing cortical activity, and that this has a large potential impact

on sensory representations during behavior [39–44]. Here, we constructed a framework for

the prediction of highly variable, single-trial sensory-evoked responses in the awake mouse

based on a data-driven classification of state from ongoing cortical activity. In related work,

Fig 5. State-aware ideal observer analysis of spontaneous and sensory-evoked activity. A. Example of a 400-ms epoch of LFP

taken from sensory-evoked trials (top 3) and spontaneous periods (bottom). Pink arrows indicate stimulus delivery time. B. LFP

traces convolved with a filter matched to the average evoked response generate the LFP score. Peaks in the score that are above a

threshold (gray) are detected as events (pink asterisks). C. Distribution of scores during spontaneous activity (dark gray) and of

sensory-evoked responses (light gray). The two distributions are clearly distinct but with an overlapping area, leading to spontaneous

events being detected as sensory-evoked responses (false alarms). D. Same example traces as in A, but with the “state” at each point

in time indicated by the color overlay. E. An example of how the detection threshold could be adjusted depending on the value of the

ongoing state. F. Separating by ongoing state generates three sets of spontaneous/evoked score distributions (analogous to C).

https://doi.org/10.1371/journal.pcbi.1006716.g005

State-aware sensory detection

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006716 May 31, 2019 11 / 24

https://doi.org/10.1371/journal.pcbi.1006716.g005
https://doi.org/10.1371/journal.pcbi.1006716


Fig 6. Optimizing thresholds for the state-aware observer. A. False alarm (FA) rate vs. threshold for each pre-

stimulus state (colors) as well as the full dataset (black dashed). Pie chart: fraction of time spent in each state. White fill

circles: threshold for state-blind observer. Vermillion fill circle: threshold for state-aware observer (see C). Combined

with the fraction of time spent in each state (pie, A), this sets the overall FA rate. B. Hit rate vs. threshold for each pre-

stimulus state (colors) as well as the full dataset (black dashed). Combined with the fraction of time spent in each state

(pie, A), this sets the overall hit rate. Circles marks same thresholds as in (A). C. Hit rate of state-aware observer for

combinations of threshold that generate the same (1.6 Hz) FA rate is indicated by grayscale. Circles correspond to the

combinations of thresholds shown in A and B. Dashed lines show region with no solution satisfying constraint on FA

rate. D. Change in hit rate between state-blind and state-aware observers. Thresholds are chosen based on the

optimization shown in (C), and hit rates are computed on a reserved set of trials and compared to the fixed-threshold

hit rate at equivalent false alarm rate. E. For the example recording, we parse hit rate by pre-stimulus state for the state-

blind and state-aware observers. The cross-state range of hit rates is defined as the range of hit rates observed across the

three states. F. Cross-state range of hit rates for the state-aware observer versus cross-state range for the state-blind

observer (see D). The cross-state range is smaller for the state-aware observer, meaning that hit rates are more

consistent across pre-stimulus states for the optimal state-aware observer.

https://doi.org/10.1371/journal.pcbi.1006716.g006
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past studies have used some combination of LFP/MUA features to predict future evoked MUA

response [9,14]. We used a similar approach for state classification and response prediction in

cortical recordings in the awake animal, extending this to allow complex combinations of

ongoing activity in space and different features of the pre-stimulus power spectrum as predic-

tors. We found that simple features of pre-stimulus activity sufficed to enable state classifica-

tion that yielded single-trial prediction of sensory evoked responses. These predictive features

were analogous to the synchronization and phase variables found in previous studies [8,9,14],

though we found a revised definition of synchronization was more predictive. In particular,

we found that the very low-frequency band of the LFP power spectrum (1–5 Hz) was less pre-

dictive of single-trial evoked responses in our recordings than a wider band (e.g. 1 to 27 Hz).

This is consistent with findings from a recent study [40] that surveyed the power spectrum of

LFP across different behavioral states in the awake animal and demonstrated differences in the

power spectrum between quiet and active wakefulness up to 20 Hz. While we have focused on

the problem of state classification and prediction from the perspective of an internal observer

utilizing neural activity alone, future work could investigate whether the state classifier is also

tracking external markers of changes in state, such as those indicated by changes in pupil

diameter [42,45], whisking [40], or other behavioral markers in the awake animal.

We fit classifiers for each individual recording rather than pooling responses across animals

and recording sessions. The structure of the classification rules was similar across recordings,

showing that the relationship between pre-stimulus features and evoked responses is robust.

This suggests that a single classifier could be fit, once inputs and outputs are normalized to

standard values. This normalization could be accomplished by determining the typical magni-

tude of LFP sensory responses and rescaling accordingly. Moreover, the ordered structure of

the classification rules suggests that a continuous model of state, rather than a discrete model,

would have worked as well. To implement as a continuous model, one would fit a regression

of the evoked response coefficients using as independent variables LFP activation and power

ratio. Judging by the classification boundaries shown in S1 and S2 Figs, keeping only linear

terms in activation and power ratio would give a good prediction.

In its current formulation, this framework utilizes only the features of ongoing cortical

activity that are reflected in the LFP in order to classify state and predict the evoked LFP

response. Both as features underlying the state classifier and as the sensory-evoked response

being predicted, LFP must be interpreted carefully, as the details of how underlying sinks and

sources combine depend on the local anatomy and population spiking responses [46]. In bar-

rel cortex, the early whisker-evoked LFP response (0 to 25 ms) is characterized by a current

sink in L4 initially driven by thalamic inputs to cortex, but also reflecting cortical sources of

activity: the evoked LFP is highly correlated with the layer-4 multi-unit activity response

[47,48]. We restricted our predictive framework to the high degree of variability in this initial

response. It remains to determine how LFP response variability is reflected in the sensory-

evoked single-unit cortical spiking activity patterns. Further, regarding LFP as a predictor used

by the state classifier, LFP is a mesoscopic marker of cortical state that neglects finer details of

cortical state organization. In addition to establishing whether better predictions are made

from more detailed representations of cortical state, it is an interesting question how microcir-

cuit spiking dynamics are related to the mesoscopic markers of cortical state, or how much can

be inferred about population spiking dynamics from the LFP. Finally, thalamic and cortical

activity are tightly linked, and the results presented here may also reflect variations in ongoing

thalamic activity. Disentangling thalamic and cortical sources of variability in the evoked

response will require paired recordings and perturbative experimental approaches designed to

address issues of causality.

State-aware sensory detection

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006716 May 31, 2019 13 / 24

https://doi.org/10.1371/journal.pcbi.1006716


In the second part of the paper, we used ideal observer analysis to show that state-aware

observers, with oracle knowledge of the spontaneous, ongoing state fluctuations informative of

the single-trial sensory-evoked response, can out-perform a state-blind ideal observer. Our

analysis relied on classification of the markers of ongoing state. This is not to suggest that this

specific estimation takes place in the brain, but instead could potentially be achieved dynami-

cally by a downstream network through the biophysical properties of the circuitry. Theoreti-

cally, the gain and threshold of such a readout neuron or network could be dynamically

modified on the basis of the ongoing activity as a biophysical manifestation of the adaptive

state-aware ideal observer, though the identification of specific mechanisms was beyond the

scope of the current study.

We found that the state-aware observer had higher accuracy than the traditional, state-

blind observer, but the absolute gain in hit rate (at fixed false alarm rate) averaged across all

states was modest. When pre-stimulus states were analyzed separately, however, we found that

accuracy in the low-response state was substantially higher for the state-aware observer, where

there was a relative increase of 25% in the hit rate for this state. Because small sensory

responses are predictable from the ongoing activity, transiently lowering the threshold for

detection resulted in more “hits” in the low-response state, while false alarms in high-response

states could be avoided by raising the threshold when the state changed. However, the cortical

activity was classified to be in this particular state approximately 20% of the time, and thus had

a relatively modest impact on the overall performance, averaged across all states. What is not

currently known is the overall statistics associated with the state transitions (i.e. distribution of

time spent in each state, rate of transitions, etc.) during engagement within perceptual tasks,

but in any case, what we observe here is a normalization of detectability across brain states.

For near-threshold sensory perception, the signal detection theory framework asserts that

single-trial responses are predictive of perceptual report [28]. While there are many previous

studies that seem to support this [49–52], several animal studies have called this into question,

showing that primary sensory neural activity does not necessarily co-vary with perceptual

report on simple detection tasks [23,25,27]. It is possible that the conflicting findings in the lit-

erature are due to behavioral state effects, and that more consistent reports would emerge if

the analysis of the neural activity incorporated elements of the state-classification approach

developed here. Our results show how single-trial response size can be decoupled from percep-

tion, if a downstream network predicts and then accounts for the variability in sensory

responses. Moreover, our analysis showed that some states of pre-stimulus activity should be

associated with higher or lower performance on a near-threshold detection task, which has

been observed in near-threshold detection studies in the rodent [26] and monkey [24]. It

should be noted that there is controversy regarding the relevance of primary sensory cortex in

simple behavioral tasks [53,54], but this is likely related to the task difficulty [55], where a large

body of literature has resolutely shown that processing in primary cortical areas is critical for

difficult tasks that increase cognitive load, and we suspect that near threshold stimuli such as

those shown here fall in that category.

Many studies have demonstrated a link between pre-stimulus cortical activity and percep-

tual report on near-threshold detection tasks in humans [17,18,56–59]. Currently, it is not

entirely clear how far the parallel in cortical dynamics between the mouse and human can be

taken. One challenge is that connecting invasive recordings in the mouse to non-invasive

recordings in human studies is non-trivial. Here, at the level of LFP, we observed similarities

between species in the interaction between ongoing and evoked activity: the largest evoked

responses tended to be preceded by positive deflection in the LFP, and the smallest evoked

responses were preceded by negative deflection in the LFP. This relationship, the negative

interaction phenomenon, points to a non-additive interaction between ongoing and evoked
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activity and is also observed in both invasive and non-invasive recordings in humans

[33,56,60,61]. Establishing parallels between cortical dynamics on a well-defined task, such as

sensory detection, between humans and animal models is an important direction for future

studies.

In summary, we have developed a framework for the prediction of variable single-trial sen-

sory-evoked responses and shown that this prediction, based on cortical state classification,

can be used to enhance the readout of sensory inputs. Utilizing state-dependent decoders for

brain-machine interfaces has been shown to greatly improve the readout of motor commands

from cortical activity [62,63], at the very end-stage of cortical processing. Others have raised

the possibility of using state knowledge to ‘cancel out’ variability in sensory brain-machine

interfaces, with the idea that this could generate a more reliable and well-controlled cortical

response [64,65], which would in theory transmit information more reliably. This is intriguing,

though our analysis suggests a slightly different interpretation: if downstream circuits also

have some knowledge of state, canceling out encoding variability may not be the appropriate

goal. Instead, the challenge is to target the response regime for each state. This could be partic-

ularly relevant if structures controlling state, including thalamus [66], are upstream of the cor-

tical area in which sensory BMI stimulation occurs. The simple extension of signal detection

theory we explored suggests a solution to the problem that the brain faces at each stage of pro-

cessing: how to adaptively read out a signal from a dynamical system constantly generating its

own internal activity.

Methods

Ethics statement: Animal preparation, surgery and habituation to head

fixation

All procedures were approved by the Institutional Animal Care and Use Committee at the

Georgia Institute of Technology (Protocol Number A16104) and were in agreement with

guidelines established by the National Institutes of Health. Six nine to twenty-six week old

male C57BL/6J mice were used in this study. Mice were maintained under 1–2% isoflurane

anesthesia while being implanted with a custom-made head-holder and a recording chamber.

The location of the barrel column targeted for recording was functionally identified through

intrinsic signal optical imaging (ISOI) under 0.5–1% isoflurane anesthesia. Recordings were

targeted to B1, B2, C1, C2, and D2 barrel columns. Mice were habituated to head fixation, paw

restraint and whisker stimulation for 3–7 days before proceeding to electrophysiological

recordings. Following termination of the recordings, animals were anesthetized (isoflurane,

4–5%, for induction, followed by a euthanasia cocktail injection) and perfused.

Electrophysiology

Local field potential was recorded using silicon probes (A1x32-5mm-25-177, NeuroNexus,

USA) with 32 recording sites along a single shank covering 775 μm in depth. The probe was

coated with DiI (1,1’-dioctadecyl-3,3,303’-tetramethylindocarbocyanine perchlorate, Invitro-

gen, USA) for post hoc identification of the recording site. The probe contacts were coated

with a PEDOT polymer [67] to increase signal-to-noise ratio. Contact impedance measured

between 0.3 MOhm and 0.7 MOhm. The probe was inserted with a 35˚ angle relative to the

vertical, until a depth of about 1000 μm. Continuous signals were acquired using a Cerebus

acquisition system (Blackrock Microsystems, USA). Signals were amplified, filtered between

0.3 Hz and 7.5 kHz and digitized at 30 kHz.
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Whisker stimulus

Mechanical stimulation was delivered to a single contralateral whisker corresponding to the

barrel column identified through ISOI using a galvo motor (Cambridge Technologies, USA).

The galvo motor was controlled with millisecond precision using a custom software written in

Matlab (Mathworks, USA). The whisker stimulus followed a sawtooth waveform (16 ms dura-

tion) of various velocities (1000 deg/s, 500 deg/s, 250 deg/s, 100 deg/s) delivered in the caudo-

rostral direction. To generate stimuli of different velocity, the amplitude of the stimulus was

changed while its duration remained fixed. Whisker stimuli of different velocities were ran-

domly presented in blocks of 21 stimuli, with a pseudo-random inter-stimulus interval of 2 to

3 seconds and an inter-block interval of a minimum of 20 seconds. The total number of whis-

ker stimuli across all velocities presented during a recording session ranged from 196 to 616

stimuli.

LFP pre-processing and channel quality criteria

For analysis, the LFP was down-sampled to 2 kHz. The LFP signal entering the processing

pipeline is raw, with no filtering beyond the anti-aliasing filters used at acquisition, enabling

future use of these methods for real-time control. Prior to the analysis, signal quality on each

channel was verified. We analyzed the power spectrum of LFP recorded on each channel for

line noise at 60 Hz. In some cases, line noise could be mitigated by fitting the phase and ampli-

tude of a 60-Hz sinusoid, as well as harmonics up to 300 Hz, over a 500-ms period in the pre-

stimulus epoch, then extrapolating the sinusoid over the stimulus window and subtracting. A

small number of channels displayed slow, irregular drift (2 or 3 of 32 channels) and these were

discarded. All other channels were used.

CSD calculation

Current source density (CSD) analysis was used for two different purposes: first, to function-

ally determine layers based on the average stimulus-evoked response, and second, to analyze

the pre-stimulus activity (in single trials) to localize sinks and sources generating the predictive

signal. We describe the general method used here. Prior to computing the current source den-

sity (CSD), each channel was scaled by its standard deviation to normalize impedance varia-

tion between electrodes. We then implemented the kernel CSD method [37] to compute CSD

on single trials. This method was chosen because it accommodates irregular spacings between

electrodes, which occurs when recordings on a particular contact do not meet quality stan-

dards outlined above. To determine the best values for the kernel method parameters (regular-

ization parameter, λ; source extent in x-y plane, r; and source extent in z-plane, R) we followed

the suggestion of Potworowski (2012) and selected the parameter choices that minimize error

in the reconstruction of LFP from the CSD. These parameters were similar across recordings,

so for all recordings we used: λ = 0.0316; r = 200μm; R = 37.5μm.

Functional assignment of cortical layers

The trial-averaged evoked response was computed on each trial by subtracting the pre-stimu-

lus baseline (average over 200 ms prior to stimulus delivery) and computing the average across

trials. The CSD of this response profile was computed as described above. The center of layer 4

was determined by finding the largest peak of the trial-averaged evoked LFP response as well

as the location of the first, large sink in the trial-averaged sensory-evoked CSD response. We

assume a width of 205 μm for layer 4, based on published values for mice [32].
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Analysis framework

Defining features of ongoing LFP. The ongoing LFP activity was characterized over the

2-s pre-stimulus window using “activation” and “power ratio.” LFP activation is defined here

as the LFP averaged over the 10 ms pre-stimulus relative to the baseline value of the LFP aver-

aged over -1000 ms to -200 ms. We observed that the estimate of pre-stimulus phase was

biased by filter leakage from the evoked response (if the evoked response was not truncated)

and biased by truncation otherwise. This filter leakage causes a spurious increase in classifier

performance, because it reflected not only the evoked response but also the single-trial vari-

ability in the evoked response, which was easily read out by the classifier. Therefore, we used

the simpler measure of LFP activation in place of pre-stimulus LFP phase. For the weighted

average multi-channel LFP activation (Fig 4), we performed a spatial PCA during the sponta-

neous activity and retained up to 3 spatial modes, or the number of modes that explained

>95% of the variance, whichever was fewer. We then projected the pre-stimulus multi-channel

LFP into spatial PC space. The power spectral density (PSD) was estimated over the 2-s pre-

stimulus period on single trials using the fast Fourier transform. The power ratio was com-

puted from the PSD curve as the area over the “L” range (1–5 Hz, or variable) normalized by

the area over the “W” range (1–50 Hz). Analyses were also carried out using a 2-s pre-stimulus

window and multi-taper PSD estimate (with NW = 2, 3 tapers), and the results were qualita-

tively unchanged.

Parameterizing the variable sensory-evoked LFP responses. Evoked responses were

quantified using principal component analysis (PCA) to determine for each channel a small

set of temporal basis functions that enabled us to parameterize the evoked response over the

first 25 ms following sensory stimulation. Principal components (PCs) were computed over all

trials. The most prominent features in the PC basis reflect the important features that one

might define manually (amplitude and latency/duration of the cortical response; Fig 2).

As a linear method, PCA finds the linear subspace that captures the most variance in the

data, and it implies independence across dimensions in PC space, an assumption that may not

hold for evoked waveforms. The choice of PCA was motivated by its relative simplicity and

robustness and represents a reasonable data-driven method. An alternative to the PC represen-

tation of the evoked response is to attempt to directly measure identified features, such as peak

response amplitude and response latency or duration [68–70]. At the level of single trials, such

metrics are susceptible to distortion from high-frequency fluctuations and require substantial

pre-processing [68]. This is avoided by using the linear projection of the evoked response onto

the PCs. Further, we have focused on the 25-ms period post-stimulus, and most of the methods

developed around templates matching or differential variable components are better suited for

slower signals [70].

We also computed the full (32-channel) spatio-temporal PC basis. To compute the full spa-

tial PCs, we used a cross-validation method in which 20% of observations were randomly

dropped [71] and then coefficients and weights that minimized reconstruction error were

found using alternating least squares. A small number (2–3) of full spatiotemporal modes cap-

tured >90% of the response variability. Moreover, the weights obtained for the layer-4 PCs

were nearly identical to the full spatio-temporal mode weights, indicating that variability in the

LFP was dominated by layer 4 variability and justifying our focus on predicting layer 4 vari-

ability alone.

Mathematical formalism. We represent the discretely sampled (2 kHz) LFP time series

by x(t). The time series of the evoked LFP response to a stimulus at time ti (in milliseconds) in

the subsequent 25-ms period is represented as a length-NE vector yti , built up from x(t) (Δt =
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0.5 ms, NE = 50):

yti ¼

xðtiÞ

xðti þ DtÞ

. . .

xðti þ ðNE � 1ÞDtÞ

2

6
6
6
6
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3

7
7
7
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� xðtiÞ

Note that the LFP at the time of stimulus delivery is subtracted in order to return the evoked

response (yti). The average evoked response over NT trials is ξ0:

ξ0 ¼
1

NT

X

ti

yti

and the single-trial response is written as the sum of the mean response and a noise term η:

yti ¼ ξ0 þ η

Here, we expand the evoked response at time ti in terms of its first NC components across

trials:

yti ¼ ξ0 þ
XNC

k¼1

ati ;kξk þ η
0

where the vectors ξk are obtained from the principal components of evoked responses yti , i.e.

the eigenvectors of YYT, where the ith column of Y is yti � ξ0.

Fitting the state classifier. We are motivated to find the pre-stimulus features that best

predict single-trial evoked responses, and to then define “cortical state” based on those combi-

nations of features that produce similar cortical responses. Here we made the methodological

choice to treat this as a classification problem, but the prediction of coefficients could as well

be regressed on the pre-stimulus features.

We aim to find some function of the pre-stimulus features that generates a prediction of the

coefficients (âti ;k
). The predicted response for a stimulus at time ti is ŷ ti

:

ŷ ti
¼ ξ0 þ

XNC

k¼1

âti;k
ξk

We considered the first two components, so NC = 2. Evoked response weights (ati ;k) were

split into equipartitioned groups based on quintiles of the weight distribution. The choice of

five groups (quintiles) reflects a compromise between capturing variability in the response and

having a sufficient number of trials in each group. Taking as predictors (inputs to the classifier)

the features of pre-stimulus activity described above, the classifier was trained to predict to

which group the evoked response belonged. Each evoked mode (k) is independently predicted.

Each recording session was divided into a training/cross-validation set (70% of trials) and a

test set (30% of trials). Classifiers were fit on the training/CV set using five-fold cross-valida-

tion, and predictions and accuracy were recorded for the cross-validation trials. Optimized

parameters, such as ranges for the L range of the power ratio, were selected on the basis of

error in the cross-validation set. Reported classifier performance (fraction of variance

explained, fVE, see below) was then calculated on the reserved test set. For the Gaussian-kernel

SVM, we used a medium-scale kernel (3; predictors range from 0 to 1 (power ratio) and +/- 1

(mV, activation)) and box constraint of 1. Results were not sensitive to this choice. All
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classifiers were fit using built-in Matlab routines, fitcecoc, from the classification

toolbox (MATLAB 2017a, Mathworks, Natick, MA).

Classifier performance quantification (fVE). Fraction of variance explained (fVE) is

defined as the normalized difference between the total trial-by-trial variance (summed over

time) and the trial-averaged squared error between the predicted response and the data (also

summed over time):

VEM ¼
VAR � MSE

VAR
¼ 1 �

PNT
i¼1
ðyti � ŷ ti

Þ
T
ðyti � ŷ ti

Þ
PNT

i¼1
ðyti � �yÞTðyti � �yÞ

Shuffled data fVE: trial labels (i.e. the quintile of the PC distribution to which a trial was

assigned) were shuffled. The classifier (fit on unshuffled data) was applied to the pre-stimulus

activity, and fVE was computed for the predicted classes supposing that the shuffled labels

were accurate.

Uncertainty in fVE from finite quantity of data. Differences in fVE between classifiers

arise from differences in the accuracy of each classifier in predicting a subset of reserved data

and therefore partially reflect the true accuracy as well as random effects arising from the finite

quantity of data. We use a resampling approach to estimate the uncertainty in fVE. Because

the test set is stratified (i.e. it is balanced across labels (quintiles)), we use the leave-one-out

jackknife: drop five trials (one from each quintile of the response), compute the fVE, then

repeat until each trial has been dropped. The sample standard deviation of the resampled fVE

distribution is reported as the uncertainty in the fVE estimate.

State-blind and state-aware detection

The matched filter ideal observer analysis [38] is implemented as follows. The score s(t) is con-

structed by taking the dot product of the evoked responses yt with a filter matched to the aver-

age evoked response:

sðtÞ ¼ yt � ξ0

This is equivalent to computing the sum

sðtÞ ¼
XNx

t0 ¼1

ðxðt þ t0 Þ � xðtÞÞxðt0 Þ

In the standard encoding model, if η is zero-mean white noise, this gives a signal distribu-

tion

PðsÞ � Nðk ξ0 k; s
2Þ

where s2 ¼ k ξ0 k
2s2

Z
and a noise distribution with mean 0. In practice, we do not parameter-

ize the distribution, because η is not uncorrelated white noise, and work from the score distri-

bution directly.

For the state-aware decoder, we use the prediction ât;k of evoked responses

yt ¼ ξ0 þ
XNC

k¼1

ât;kξk þ η0
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This changes the score to

sðtÞ ¼ jξ0j
2
þ
X

k

ât;kξk � ξ0 þ η0 � ξ0

Typically, one of the first two PCs (ξ1 or ξ2) has a very similar shape to ξ0, while the other

one has both positive and negative components (Fig 2, S1 and S2 Figs). For the state-aware

threshold, we use state predictions for the component that is more similar to ξ0, as indicated in

S1 and S2 Figs.

An event is detected at time t for threshold θ when s(t) > θ is a local maximum that is sepa-

rated from the nearest peak by at least 15 ms and has a minimum prominence (i.e. drop in s
before encountering another peak that was higher than the original peak) of |ξ0|2/2.

Supporting information

S1 Fig. (Associated with Fig 2): Classifier boundaries for the prediction of the weight onto

the first principal component of the evoked responses for recordings 1 to 11. Each panel is a

recording. Fraction of variance explained by the classifier (“fVE s1”) is in the title of each panel

(bootstrapped SE in parentheses). Gray indicates that the classifier did not predict above chance

levels (shuffle test). PC VE is the variance explained for the first principal component for each

recording. (fVE cannot exceed PC VE.) Inset shape shows the principal component (PC) load-

ings. Black is “amplitude” (Rec. 1, 2, 4, 5, 6, 7, 10) and red is “sharpness/latency” (Rec. 3, 8, 9,

11). Compare to S2 Fig, which shows the same plots for the second principal component.

(PDF)

S2 Fig. (Associated with Fig 2): Classifier boundaries for the prediction of the weight onto

the second principal component of the evoked responses for recordings 1 to 11. Each panel

is a recording. Fraction of variance explained by the classifier (fVE s2) is in the title of each

panel (bootstrapped SE in parentheses). PC VE is the variance explained for the second princi-

pal component for each recording. (fVE cannot exceed PC VE.) Gray indicates that the classi-

fier did not predict above chance levels (shuffle test). Inset shape shows the principal

component (PC) loadings. Black is “amplitude” (Rec. 3, 8, 9, 11) and red is “sharpness/latency”

(Rec. 1, 2, 4, 5, 6, 7, 10). Compare to S1 Fig, which shows the same plots for the first principal

component.

(PDF)

S3 Fig. (Associated with Fig 4): Comparison of performance for more complex classifiers.

A-D: Same as Fig 4, but including a “multi-channel predictor,” constructed from the projec-

tion of pre-stimulus activity onto the top spatial modes in spontaneous LFP determined by

PCA.

(PDF)

S4 Fig. (Associated with Fig 6): Optimized thresholds for the state-aware observer (panels

A-D of Fig 6) for recordings 1 through 5. Column A: false alarms per s vs. threshold. Inset:

fraction of spontaneous activity in each state. Column B: hit rates vs threshold. Column C:

State-aware detection rates at fixed false alarm rate for combinations of state1 and state3

thresholds. Red contour is the detection rate with fixed threshold. Column D: Hit rate, condi-

tioned on pre-stimulus state, in the state-blind and state-aware cases.

(PDF)

S5 Fig. (Associated with Fig 6): Optimized thresholds for the state-aware observer (panels

A-D of Fig 6) for recordings 7 through 11. Column A: false alarms per s vs. threshold. Inset:
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fraction of spontaneous activity in each state. Column B: hit rates vs threshold. Column C:

State-aware detection rates at fixed false alarm rate for combinations of state1 and state3

thresholds. Red contour is the detection rate with fixed threshold. Column D: Hit rate, condi-

tioned on pre-stimulus state, in the state-blind and state-aware cases. Recording 6 is shown in

Fig 6.

(PDF)
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