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Relaxin-3 has been proposed to modulate emotional–behavioural functions such as arousal and behavioural activation, appetite
regulation, stress responses, anxiety, memory, sleep and circadian rhythm. The nucleus incertus (NI), in the midline tegmentum
close to the fourth ventricle, projects widely throughout the brain and is the primary site of relaxin-3 neurons. Over recent years, a
number of preclinical studies have explored the function of the NI and relaxin-3 signalling, including reports of mRNA or peptide
expression changes in the NI in response to behavioural or pharmacological manipulations, effects of lesions or electrical or
pharmacological manipulations of the NI, effects of central microinfusions of relaxin-3 or related agonist or antagonist ligands on
physiology and behaviour, and the impact of relaxin-3 gene deletion or knockdown. Although these individual studies reveal
facets of the likely functional relevance of the NI and relaxin-3 systems for human physiology and behaviour, the differences
observed in responses between species (e.g. rat vs. mouse), the clearly identified heterogeneity of NI neurons and procedural
differences between laboratories are some of the factors that have prevented a precise understanding of their function. This re-
view aims to draw attention to the current preclinical evidence available that suggests the relevance of the NI/relaxin-3 system to
the pathology and/or symptoms of certain neuropsychiatric disorders and to provide cognizant directions for future research to
effectively and efficiently uncover its therapeutic potential.
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Introduction

The nucleus incertus (NI)/relaxin-3 system, highly conserved
across species, has been studied for over a decade (Goto et al.,
2001; Bathgate et al., 2002). The NI is heterogeneous, with an-
atomically distinct compacta and dissipata regions differing
in electrophysiological properties (Nunez et al., 2006; Ma
et al., 2013; Martinez-Bellver et al., 2015) and expression of
neuropeptides, neurotransmitters and receptors (Sutton
et al., 2004; Tanaka et al., 2005; Miyamoto et al., 2008; Ryan
et al., 2011; Kumar et al., 2015) including the neuropeptide,
relaxin-3, which participates in a variety of neurophysiologi-
cal functions (see Ma et al., (in press)).

The NI/relaxin-3 system in the rat robustly responds to
stressors suggesting that it will be up-regulated and poten-
tially dysfunctional in disease states associated with excessive
stress. Because neuropeptides are preferentially released un-
der conditions of high neural tone which are more likely to
be present in pathological states, neuropeptide receptor an-
tagonists are likely to produce specific and effective actions
to correct pathological disequilibrium. In addition, due to
the neuromodulatory nature of neuropeptides, interfering
with neuropeptide signalling is less likely to have overt,
strong side effects than manipulations of classical neuro-
transmitter systems (Hokfelt et al., 2000). Similarly, we argue
that studying a potentially dysregulated relaxin-3 system in
preclinical disease models could yield significant insights
into its functional roles and simultaneously identify the ther-
apeutic potential of inhibiting or enhancing relaxin-3-related
signalling.

There is an exigent need to examine whether the acquired
knowledge of this neuropeptide system (Ryan et al., 2011;
Smith et al., 2011, 2014; Ma and Gundlach, 2015) can be
translated from bench to bedside. However, the few human
studies on the NI/relaxin-3 system expose a disparity between
the animal and human systems and reveal a clear need for
more cognizant future studies in this field. Of course, caution

will be required when extrapolating preclinical findings to
design of human studies, but use of animal models of human
diseases and disorders is still indispensable to drug discovery
(Markou et al., 2009; Nestler and Hyman, 2010; Baldarelli,
2012). This review will briefly summarize findings linking
the NI/relaxin-3 system to neuropsychiatric conditions such
as anxiety, depression, disorders related to appetite, stress
and cognitive dysfunction (for more detailed reviews see
Ryan et al., 2011; Smith et al., 2011; Ma and Gundlach,
2015) and will focus on providing a ‘road-map’ for future
research in preclinical disease models and fundamental clini-
cal studies.

Stress
In humans, dysregulation of adaptivemechanisms with inap-
propriate and/or exaggerated responses to psychological
stressors manifests as a disorder in itself and/or as a cluster
of symptoms co-morbid with other psychiatric conditions
such as anxiety and depression (American Psychiatric Associ-
ation, 2013; Gold, 2015). Preclinical studies that have
successfully modelled mechanisms, such as plasticity and
cognitive dysfunction related to stress, have furthered our
understanding of the neurobiology of stress and related disor-
ders and provided screening methods to identify new candi-
date drugs for treating these disorders (Kormos and Gaszner,
2013; Bock et al., 2015; Chattarji et al., 2015; Constantinof
et al., 2015; Musazzi and Marrocco, 2016). Among the multi-
tude of neuropeptides implicated in stress responses, the role
of corticotropin-releasing factor (CRF) is central (Aubry, 2013;
Kormos and Gaszner, 2013). The conspicuous expression of
the CRF1 receptor in the NI of the rat and its high co-
expression with relaxin-3 (Potter et al., 1994; Chalmers
et al., 1995; Bittencourt and Sawchenko, 2000; Tanaka et al.,
2005; Ma et al., 2013), not only defined the topography of
the NI but also inspired early studies to evaluate its role in
stress responses (Figure 1) (Rivest et al., 1995; Tanaka et al.,
2005).

Tables of Links

TARGETS

GPCRsa PAC1 receptor

5-HT1A receptor RXFP3 receptor

CRF1 receptor V1A receptor

CRF2 receptor Y5 receptor

Dopamine D2 receptor Nuclear hormone receptorsb

Dopamine D3 receptor Glucocorticoid receptor, NR3C1

Neuropeptide S receptor

LIGANDS

5-HT Lidocaine

Agouti-related protein Neuropeptide Y

Antalarmin Orexin-A

cAMP Orexin-B

Corticotrophin-releasing hormone Oxytocin

Dopamine Quinpirole

β-Endorphin Relaxin-3

Fenclonine Relaxin-3 (B chain)

GABA Substance P

Ghrelin Vasopressin

Insulin

These Tables list key protein targets and ligands in this article that are hyperlinked to corresponding entries in http://www.guidetopharmacology.org, the
common portal for data from the IUPHAR/BPS Guide to PHARMACOLOGY (Southan et al., 2016), and are permanently archived in the Concise Guide to
PHARMACOLOGY 2015/16 (a,bAlexander et al., 2015a,b).
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Stress induced by exposure of rodents to different behav-
ioural stressors, exogenous CRF in the brain (presumed to
simulate a stressful situation) or treatment with anxiogenic
agents such as the inverse benzodiazepine agonist, FG-7142
(Lawther et al., 2015), resulted in up-regulation of c-Fos in
the NI as well as other areas (Senba et al., 1993; Cullinan
et al., 1995; Bittencourt and Sawchenko, 2000; Passerin
et al., 2000; Dayas et al., 2001; Timofeeva et al., 2003; Tanaka
et al., 2005; Cano et al., 2008; Rajkumar et al., 2016), and in
some cases, increased relaxin-3 expression (Banerjee et al.,
2010; Lenglos et al., 2013; Lenglos et al., 2014), which was re-
versible by pretreatment with a CRF1 antagonist (Banerjee
et al., 2010) (Figure 1). Human relaxin-3 could have a direct
stimulatory effect on CRF neurons as suggested by in vivo
findings, in which i.c.v. infusion of human relaxin-3-
augmented plasma corticosterone levels, increased plasma
ACTH and prolactin and induced c-Fos and CRF mRNA in
the paraventricular nucleus of the hypothalamus (PVN) – a
structure with a high density of the relaxin family peptide
receptor RXFP3 (Figure 2) (Ma et al., 2007; Watanabe et al.,
2011a; McGowan et al., 2014).

We showed that CRF infusion into, or electrical stimula-
tion of, the NI, to simulate a stressful situation or a condition
with high neural activity tone, affected plasticity as measured
by LTP in the hippocampo-medial prefrontal cortical (HP-
mPFC) pathway (Farooq et al., 2013). Infusion of the CRF1
receptor antagonist antalarmin into the NI, prior to or after
exposure of rats to elevation stress, reversed the elevation

stress-induced suppression of LTP in the HP-mPFC pathway
(Rajkumar et al., 2016). Together, these results demonstrate
that the NI-HP-mPFC is a stress-responsive circuit and the
NI, especially via CRF1 receptor activation, contributes to
stress-induced impairment in neuronal plasticity that is likely
to have implications in stress-related cognitive dysfunction.

Behavioural activation
The NI innervates several areas that are involved in regulating
levels of behavioural activity such as the reticularis pontis
oralis (RPO), median raphe nucleus (MRN), interpeduncular
nuclei and the lateral preoptic area (Goto et al., 2001). During
stress and food anticipatory activity, NI activation is posi-
tively correlated with high behavioural activity leading to
the hypothesis that the NI, together with the
interpeduncular and median raphe nuclei, may function to
control behavioural activation. Indeed, this circuit may be
part of the behavioural inhibition system (McNaughton and
Gray, 2000) centred on the septohippocampal system (SHS).
This theory is based on the findings that all anxiolytics (typi-
cal and novel) increase the threshold of septal driving of hip-
pocampal (HC) theta waves, reduce RPO-induced theta waves
and produce similar behavioural responses to lesions of the
SHS. According to this theory, the hippocampus functions
as a comparator, determining when expected outcomes do
not meet actual outcomes and produces an output affecting
attention, arousal and behavioural inhibition essentially giv-
ing rise to anxiety (McNaughton and Gray, 2000;

Figure 1
The nucleus incertus responds to stress and contributes to stress responses. The diagram summarises recent findings on the role of the nucleus
incertus (NI) in stress. Stressors (yellow box) may directly or indirectly (activating the PVN and increasing CRF released) activate the NI as indicated
by c-Fos induction or enhanced expression of relaxin-3 mRNA (blue box). Micro-infusion of CRF or electrical stimulation of NI (green box) sup-
pressed firing of mPFC neurons and LTP in the HP-mPFC pathway. Stimulation of NI is also known to increase theta activity in the dorsal hippo-
campus. In addition, behavioural or pharmacological manipulations (purple box) such as food anticipation, exposure to spontaneous
alternation tasks (SAT), pharmacological treatments (FG-7142, PCPA and antipsychotics) have been shown to induce c-Fos in the NI. dH: dorsal
hippocampus; vH: ventral hippocampus; PCPA: para-chlorophenylalanine.
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McNaughton and Corr, 2004). Studies to date indicate that
themain inputs to the hippocampus are the septal pacemaker
neurons, pedunculopontine tegmental nucleus, amygdala,
superior colliculus and substantia nigra, which provide input
about signals of non-reward, punishment, unconditioned or
conditioned fear stimuli. As direct connections between the
RPO and SHS are scarce (Vertes and Martin, 1988; Nunez
et al., 1991), the RPO is thought to provide ascending control
via the supramammillary nucleus during tasks such as the
fixed interval schedule (McNaughton and Gray, 2000); and
it is thought that the NI mediates the RPO influence on the
SHS during tasks such as exploration, as inhibition of the NI
abolished RPO stimulation-induced HC theta waves (Nunez
et al., 2006). The NI perhaps modulates anxiety by altering
the input to the SHS and contributes to the stress-responsive
nature of this circuit (see Ma et al., (in press)).

Studies from our laboratories revealed that the NI/relaxin-3
systemmay subserve behavioural activation. Infusion of a do-
pamine D2/D3 receptor agonist, quinpirole, into the NI con-
sistently reduced locomotion in different behavioural
paradigms (Kumar et al., 2015) demonstrating that activation
of D2 receptors in the NI, that are highly co-expressed with
relaxin-3 and CRF1 receptors, could modulate behavioural
activity. Additionally, the role of D2 receptors may be
modulated by stress as activation in a high, but not a low
stress environment reduced feeding (Kumar et al., 2015).
Furthermore, we observed a causal role for the NI in locomo-
tion and behavioural activation in rats by employing high
frequency electrical microstimulation of the NI via

chronically implanted microelectrodes (Farooq et al., 2016).
Microstimulation of the NI was sufficient to induce robust
forward locomotion, rotational behaviour and behavioural
activity. The latency of this effect indicated that the NI most
likely induced locomotion via modulation of premotor areas
rather than directly affecting motor cortices (Farooq et al.,
2016). HC theta is strongly linked to locomotion in behaving
animals and to processing of spatially-related sensory input
(Vanderwolf, 1969; Whishaw and Vanderwolf, 1973).
Structures involved in modulating HC theta such as the
RPO, supramammillary nucleus and raphe nuclei similarly,
upon stimulation, evoke or inhibit locomotion accompanied
by increased or decreased HC theta activity. It will therefore
be important to concurrently measure HC theta activity and
behavioural activation while stimulating the NI. A recent
study using designer receptors exclusively activated by de-
signer drugs (DREADDs) to selectively activate NI neurons
caused cortical desynchronization, heightened arousal and
increased locomotion as well as elevated vigilance behaviours
in fear conditioning (Ma et al., 2016). These complementary
results indicate that the NI/relaxin-3 system is involved in
stress-related modulation of behavioural activity levels, a
key feature underlying several functions dysregulated in var-
ious neuropsychiatric disorders and manifesting as ‘lethargy’
(Czeh et al., 2016).

Anxiety
Anxiety is a sustained state of vigilance marked by increased
arousal and behavioural inhibition (Davis et al., 2010).

Figure 2
Pharmacological effects of the central administration of RXFP3 receptor ligands and inhibition of the NI. Agonist effects are shown in green and an-
tagonist effects are shown in red. Infusion of relaxin-3 or RXFP3 receptor agonists in the lateral ventricle (LV) causes increased feeding and locomo-
tion, and decreased anxiety and depressive-like behaviour. Infusion of relaxin-3 into hypothalamic centres, especially the PVN, increased feeding
behaviour. Infusion of relaxin-3 into the third ventricle (3V) increased both feeding behaviour and plasma levels of corticosterone, ACTH, prolactin
and leptin. Infusion of RXFP3 receptor antagonist in the medial septum (MS) impaired spatial memory and decreased hippocampal theta activity,
whereas infusionof agonist in theMS increasedhippocampal theta activity. Finally, reversible inhibition (by lidocaine) of theNI causes impairment in
spatial and referencememory and irreversible inhibition (by CRF-saporin or electrolytic lesions) of theNI causes derangements in fear conditioning.
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Preclinical research on the mechanisms underlying anxiety
places most emphasis on the role of the amygdala, bed nu-
cleus of stria terminalis (BNST), ventral hippocampus (vHC)
and prefrontal cortex (PFC) – all of which have moderate to
strong connections with the NI (Goto et al., 2001; Olucha-
Bordonau et al., 2003; Santos et al., 2016).

Central infusions of RXFP3 receptor ligands suggest that
relaxin-3 signalling has an anxiolytic function physiologi-
cally (Figure 2) (Nakazawa et al., 2013; Ryan et al., 2013a)
(see Ma et al., (in press)). Relaxin-3 signalling has been shown
to alter oxytocin levels in the hypothalamus (Ganella et al.,
2013; Nakazawa et al., 2013). Oxytocin is a likely effector of
relaxin-3/RXFP3 receptor signalling based on the robust ex-
pression of these receptors in the hypothalamic nuclei syn-
thesizing oxytocin, the PVN and supraoptic nucleus and the
well-researched role of oxytocin in modulating behavioural
responses, such as anxiety, fear, social behaviour and stress re-
sponses (McCarthy et al., 1996; Carter, 2003; Slattery and
Neumann, 2010; Viero et al., 2010) and neuropsychiatric dis-
eases like autism and obsessive–compulsive disorder
(Leckman et al., 1994; Hollander et al., 2003; Hollander
et al., 2007).

Selective ablation of NI cells by CRF-saporin administra-
tion (Lee et al., 2014) and electrolytic lesions caused deficits
in fear conditioning, particularly in the extinction of condi-
tioned fear, with no effect on fear acquisition or retrieval of
extinction memory (Pereira et al., 2013). Extinction of
learned fear features in post-traumatic stress disorder, panic
disorder and phobias and is impaired in rats bred for high
anxiety (Anderson and Insel, 2006; Pull, 2007).

Studies of neuropeptides such as CRF, neuropeptide Y
(NPY), arginine vasopressin (AVP), oxytocin and substance
P highlight that standard behavioural tests are designed with
neurotransmitters in mind and may not be the most suited to
detect neuropeptide-mediated changes in anxiety (Hokfelt
et al., 2000; Rotzinger et al., 2010). In many cases, it is neces-
sary to introduce stress as an external stimulus to observe
neuropeptide-induced behavioural effects (Heinrichs et al.,
1994). This phenomenon has been demonstrated with regard
to relaxin-3/RXFP3 receptor signalling, whereby i.c.v. admin-
istration of RXFP3 agonist did not alter basal anxiety but at-
tenuated FG7142-induced elevated anxiety (Zhang et al.,
2015); suggesting the relaxin-3/RXFP3 receptor system may
be activated in states of elevated anxiety. This is of therapeu-
tic interest because, if the system is dysregulated in diseased
states, modulating it may not affect baseline functioning,
thus reducing side effects. Despite reports of apparent incon-
sistent phenotypes of relaxin-3 knockout mice in tests of in-
nate anxiety-like behaviour (Smith et al., 2009; Watanabe
et al., 2011a), studying how these knockout mice respond to
treatments that are designed to induce stress-induced anxiety
may better reveal the importance of relaxin-3 signalling.

Depression
Several neuropeptides have strong regulatory roles in the
function of the hypothalamic–pituitary–adrenal (HPA) axis,
which is dysfunctional in depressed patients (Rybakowski
and Twardowska, 1999; Maletic et al., 2007; Pariante and
Lightman, 2008). CRF, substance P, NPY, AVP and oxytocin
all offer novel therapeutic possibilities for treatment of de-
pression (Catena-Dell'Osso et al., 2013), and several studies

suggest relaxin-3 may influence the HPA axis (McGowan
et al., 2008; McGowan et al., 2014). Further, reduced
neurogenesis in the dentate gyrus has also been implicated
in depression, as patients have smaller hippocampus vol-
umes, and neurogenesis is required for effective antidepres-
sant action in preclinical models (Santarelli et al., 2003;
Small et al., 2011). Additionally, maturation of new neurons
may explain the time lag in antidepressant action (Malberg
et al., 2000). Interestingly, relaxin-3 fibres are present in the
dentate gyrus, and our unpublished data indicate that
neurogenesis and neuronal maturation is perturbed in an
age-, sex- and septotemporal axis-dependent manner in
relaxin-3 knockout mice (Dawe and Gundlach laboratories),
indicating a possible involvement of relaxin-3 in regulation
of adult neurogenesis in hippocampus and depression. In
the forced swim test, central infusion of a RXFP3 receptor ag-
onist reduced immobility (Ryan et al., 2013a), while one
strain of relaxin-3 knockout mice displayed increased immo-
bility (Smith et al., 2009), indicating that relaxin-3 has an an-
tidepressant effect. However, in another relaxin-3 knockout
strain, forced swim test behaviour was unaltered (Watanabe
et al., 2011b). These results highlight the pressing need for
detailed behavioural phenotyping of knockout strains in a
series of antidepressant assays including the tail suspension,
social interaction and sucrose preference tests, as well as sleep
EEG studies.

PET studies conducted in patients of major depressive dis-
order consistently reveal widespread reductions in binding to
5-HT1A receptors in the raphe, limbic and cortical regions
(Savitz and Drevets, 2013; Kohler et al., 2016). In this regard,
depletion of 5-HT in rats, by p-chlorophenylalanine
(fenclonine) administration, nearly doubled relaxin-3 mRNA
in the NI and these neurons express 5-HT1A receptor-like im-
munoreactivity (Miyamoto et al., 2008). Thus, dysregulation
of 5-HT in depression may be accompanied by altered
relaxin-3 tone, which could contribute to changes in sleep,
appetite, mood or stress responses. Infusion of an RXFP3 re-
ceptor antagonist, both i.c.v. and intra-BNST, prevented
stress-induced alcohol relapse in alcohol-preferring rats
(Ryan et al., 2013a) (see Ma et al., (in press)), linking relaxin-
3 signalling to stress and reward, perhaps similar to that in
depression where uncontrollable stress usually acts as a trig-
ger and anhedonia is a symptom. Depression is also charac-
terized by disturbances in appetite, as discussed below.

Appetite regulation
Appetite, which is regulated by central and peripheral mech-
anisms (Gao and Horvath, 2007; Lenard and Berthoud, 2008;
Keen-Rhinehart et al., 2013), is dysregulated in various
disorders such as depression, schizophrenia and anxiety,
which are associated with derangements in levels of neuro-
transmitters (dopamine and 5-HT) and neuropeptides, in-
cluding insulin, ghrelin, agouti-related protein, β-endorphin
(proopiomelanocortin), orexins and NPY.

There is good evidence that relaxin-3 is an orexigenic pep-
tide in the rat. Acute and chronic central administration of
relaxin-3 or RXFP3 receptor agonists consistently induced
hyperphagia, accompanied by weight gain and metabolic
changes (Liu et al., 2005; McGowan et al., 2005; Hida et al.,
2006; Kuei et al., 2007; Liu et al., 2009; Sutton et al., 2009;
Shabanpoor et al., 2012; Ganella et al., 2013; Hossain et al.,
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2013). This is likely to be due to actions in hypothalamic
areas such as the paraventricular, supraoptic and arcuate nu-
clei and the anterior preoptic area, as direct peptide injections
into these areas elicits a robust orexigenic effect (McGowan
et al., 2006; McGowan et al., 2007).

Weight gain is a common side effect of antipsychotic drug
treatments, and acute treatment of rats with antipsychotics
produced a distinct pattern of c-Fos expression in appetite-
related neuronal structures namely, arcuate nucleus, PVN
and paraventricular thalamic nucleus, and in the NI, suggest-
ing it may play a role in acute antipsychotic-induced hyper-
phagia (Rajkumar et al., 2013). An orexigenic action of
relaxin-3 in the hypothalamus thus presents a paradigm in
which to explore effects of selective RXPF3 antagonists for
treatment of appetite disorders, including management of
antipsychotic drug-induced weight gain and hyperphagia as-
sociated with depression.

Cognition
HC theta activity is strongly associated with memory consol-
idation, arousal, behavioural inhibition, anxiety, sleep states,
exploration and movement (Bland, 1986; Bland and Bland,
1986; Vinogradova, 1995; McNaughton and Gray, 2000;
Vertes et al., 2004; Vertes, 2005; Buzsaki and Moser, 2013;
McNaughton et al., 2013). Anatomical connections suggest
that the NI can influence rat HC theta rhythm via several
pathways, including bidirectional connections to (i) medial
septum/vertical limb of the diagonal band [later identified
to be both GABAergic (inhibitory) and glutamatergic (excit-
atory) in nature] (Ma et al., 2007; Cervera-Ferri et al., 2012)
and hippocampus; (ii) RPO, a brainstem ‘generator’ of HC
theta waves; (iii) habenula and interpeduncular nucleus,
known to control HC theta rhythm (Valjakka et al., 1998);
(iv) MRN, involved in desynchronizing theta rhythm
(Kinney et al., 1995; Vertes and Kocsis, 1997; Viana Di Prisco
et al., 2002); and (v) posterior hypothalamus (Bland et al.,
1994; Oddie et al., 1994).

The NI/relaxin-3 system has been shown to induce
(Nunez et al., 2006), display coherence with (Cervera-Ferri
et al., 2011) and fire in a phase-locked manner with
(Ma et al., 2013) HC theta oscillations and modulate relevant
behavioural functions such as spatial memory (Ma et al.,
2009; Albert-Gasco et al., 2016) (seeMa et al., (in press)). Inter-
estingly, tetanic stimulation of the NI in freely-moving rats
evoked robust forward locomotion at latencies consistent
with its modulation of premotor areas such as the SHS and,
probably, HC theta activity (Farooq et al., 2016).

We have explored the contribution of NI to the plasticity
in the HP-mPFC pathway. Firstly, it was demonstrated that
CRF1/2 receptor-like immunoreactivity was present in neu-
rons of the NI that project to the mPFC (Hoover and Vertes,
2007; Farooq et al., 2013). Secondly, electrical stimulation of
the NI suppressed spontaneous firing of mPFC neurons, as
reflected by a decreased firing rate, and infusion of CRF to
the NI suppressed the firing rate and burst firing observed
(Farooq et al., 2013). Thirdly, high frequency stimulation of
NI or exogenous CRF administration into the NI attenuated
LTP in the HP-mPFC pathway (Farooq et al., 2013). Further-
more, inactivation of NI with lidocaine, prior to high fre-
quency stimulation of the perforant path, affected LTP
induction in the dentate gyrus (Nategh et al., 2016). These

reports, along with the finding that direct infusion of
antalarmin into the NI reverses elevation stress-induced sup-
pression of LTP in the HP-mPFC pathway (Rajkumar et al.,
2016), reveal that CRF1 receptor-expressing neurons in the
NI contribute to synaptic plasticity in the HP-mPFC pathway
and via connections to the mPFC may affect cognitive pro-
cesses such as spatial, working and fear memory, under
stress-related conditions (Granon and Poucet, 1995; Seamans
et al., 1995; Delatour and Gisquet-Verrier, 1996; Laroche
et al., 2000; Burgos-Robles et al., 2009).

Future directions
Better targeting of RXFP3 receptors and novel peptide and drug
development. The lack of a broad range of molecular
tools to target RXFP3 receptors, including non-peptide
agonists and antagonists that penetrate the blood–brain
barrier seriously impedes behavioural neuroscience
research on the relaxin-3/RXFP3 receptor system. As
discussed, the NI/relaxin-3 system is a prospective target for
pharmaceutical intervention in a range of neuropsychiatric
disorders, and thus, suitable ligands active at RXFP3
receptors are crucial. Currently available RXFP3 receptor
agonists are human relaxin-3, R3/I5 (Haugaard-Jonsson
et al., 2008) and R3A(11–24,C15 → A)B (human relaxin-3
analogue 2); RXFP3-A2 (Shabanpoor et al., 2012), while the
available antagonists are R3(BΔ23–27)R/I5 (Kuei et al.,
2007), R3(B1–22)R (Haugaard-Kedstrom et al., 2011) and
human relaxin-3 analogue 3; RXFP3-R3 (Shabanpoor et al.,
2012) (Table 1) (see Patil et al., (in press)). Stapling of
peptides, whereby peptides are chemically stabilized by
crosslinking with small molecules, has been proposed as a
highly effective method of improving the “druggability” of
peptides (Verdine and Walensky, 2007; Jubb et al., 2012;
Higueruelo et al., 2013; Walensky and Bird, 2014). Recent
advances in stapling relaxin-3 B chain analogues (Hojo
et al., 2016; Jayakody et al., 2016) suggest that stapling may
hold promise for development of more ‘druggable’ peptide
ligands for the RXFP3 receptor (see Patil et al., (in press)).

Preclinical translational studies. The key avenues of
preclinical research in this area are to identify (1) regulation
of other neurotransmitter systems by relaxin-3; (2) interplay
of second messenger systems due to interactive effects of
relaxin-3, GABA and CRF in the NI neurons; (3) real-time
patterns of NI relaxin-3 neuron firing during
home cage activity and on exposure to stressors; (4) effects
of selective optogenetic stimulation/suppression of NI
relaxin-3 neurons in behaving rodents; (5) effects of
stimulation/suppression of NI neurons (including specific
populations) on cortical EEG and theta wave rhythms; (6)
use of DREADDs (Roth, 2016) to target relaxin-3 and/or
CRF1 receptor positive neurons to understand the effects of
acute and chronic activation/suppression of the NI neurons
(Ma et al., 2016); and (7) measuring expression levels of
target proteins or high resolution MRI of the NI during
basal conditions and in response to pharmacological
intervention especially, with drugs and ligands implicated
in neuropsychiatric conditions.

Importantly, research so far has been largely limited to the
investigation of NI neurons and relaxin-3/RXFP3 receptor
signalling in normal rodents. Thus, further research on the
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outcomes of disease pathologies in relevant preclinical dis-
ease models on NI neurons and the relaxin-3 system will be
crucial to understand its full physiological role more clearly
and its therapeutic potential as mapped out below.

Models of anxiety and depression. High anxiety (HAB) rats,
selectively bred based on elevated plus maze (EPM)
performance, display hyper-emotionality, hyper-reactivity of
the HPA axis, impaired fear extinction, passive coping
strategies and stronger responses to anxiolytics and
antidepressants (Liebsch et al., 1998; Henniger et al., 2000;
Ohl et al., 2001; Wigger et al., 2001; Landgraf and Wigger,
2002; Keck et al., 2003), suggesting they effectively model
co-morbid depression and anxiety, commonly observed in
the clinic (Landgraf et al., 1999; Keck et al., 2001). AVP
expression is elevated in the PVN of HAB rats compared
with their counterpart low anxiety rats and is functionally
relevant as intra-PVN infusion of a V1A receptor antagonist
produced an anxiolytic effect in HAB rats (Wigger et al.,
2004). CRF expression in the BNST is reduced, and CRF2
receptor binding in hypothalamic nuclei and amygdala is
increased in HAB rats (Wigger et al., 2004). Though not
entirely consistent, previous results indicate that the
NI/relaxin-3 system has an anxiolytic effect, and it is
possible that there is reduced relaxin-3 expression and
concentrations in the NI and/or key target regions like the
amygdala and BNST in HAB rats.

Similarly, the Flinders sensitive line (FSL) of rats were
developed through selective breeding to exhibit cholinergic
supersensitivity, a feature seen in depressed patients
(Overstreet, 1993). FSL rats display high levels of immobil-
ity in the forced swim test, low social interaction, altered
appetite and weight, impaired response to reward, lethargy
and particularly strong stress responses, such as increased
anhedonia in response to a chronic mild stress and behav-
ioural inhibition after a foot shock (Overstreet et al., 1995).
Reduced NPY expression in the hippocampus of FSL rats
indicates its involvement in the pathophysiology of de-
pression (Jimenez Vasquez et al., 2000). As relaxin-3 neu-
rons are stress-responsive, FSL rats may display an altered
profile of relaxin-3 signalling and provide insights into a
possible therapeutic opportunity in treating depression
symptoms. Furthermore, because relaxin-3 signalling has
been strongly implicated in stress-induced alcohol relapse
(Ryan et al., 2013b) (see Ma et al., (in press)), the fawn-
hooded rat, which is a model for co-morbid depression
and alcoholism displaying high immobility on the forced
swim test and high voluntary ethanol intake, is also worth
considering for relaxin-3 system studies (Overstreet et al.,
2007; Rezvani et al., 2002).

In addition to these life-long models created by selective
breeding, more convenient models with greater construct va-
lidity may be those induced by environmental behavioural
stressors. The chronic mild stress (CMS) model of depression,
which is preferred for rats but has also been used in mice, is
extensively validated and produces enduring changes in be-
haviour, neurotransmitter and hormonal concentrations
and the immune system (Overstreet, 2012; Abelaira et al.,
2013; Czeh et al., 2016). Notably, a similar 8-week chronic
stress regime imposed on relaxin-3 knockout mice resulted
in a sustained loss of body weight, but no marked changes

in the forced swim test (Smith et al., 2009). Further studies
in this area are warranted, including further tests of depres-
sive phenotypes such as those revealed by the
sucrose/saccharin preference test, because such changes
are a primary characteristic of mice undergoing CMS
(Katz, 1982; Willner, 2005).

Furthermore, a model of post-traumatic stress disorder
(PTSD) symptoms developed by exposing rats to ‘chronic
plus acute prolonged stress’ treatment (Green et al., 2011)
was reported to increase basal anxiety and fear responding
while impairing extinction of learned fear and altering
stress coping styles from active to passive, reducing HPA re-
activity to acute stressors and reducing glucocorticoid re-
ceptor expression in the mPFC (Roth et al., 2012).
Therefore, alterations in expression of relaxin-3 in the NI
or RXFP3 receptors in regions such as the amygdala, PFC,
BNST and vHC could be examined in this model. If
changes were observed, experiments could be designed to
examine the ability of RXFP3 receptor agonists and antago-
nists to improve or worsen behavioural phenotypes and
identify their main sites of action.

Need for clinical studies. While the vast majority of the
experimental studies of the NI/relaxin-3 system have
been preclinical, there have been some efforts to examine
links between relaxin-3 signalling and metabolic and
psychiatric disorders in patients, and the substantial body of
evidence supporting important roles for this neuropeptide
demands targeted translational studies. It is perhaps
prudent to base any systematic clinical investigations of the
relaxin-3/RXFP3 system on successful studies linking other
neuropeptide and neuropeptide receptor systems to
neuropsychiatric disorders. These have largely been through
molecular genetic studies combined with assays of peptide
content in CSF, blood serum and/or post mortem brain
samples from relevant patient groups. Recently, the serum
levels of circulating pituitary adenylate cyclase activating
polypeptide neuropeptide were positively correlated with
PTSD symptoms only in women, not men (Ressler et al.,
2011). A single nucleotide polymorphism in the PAC1

receptor gene could predict PTSD in women but not men
and was associated with elevated reactivity of the amygdala
and hippocampus to threatening stimuli as well as lower
functional connectivity between the two structures studied
via functional MRI (Stevens et al., 2014). Similarly, a single
nucleotide polymorphism of the neuropeptide S receptor
resulting in the mutated T-allele was found to be associated
with panic disorder, increased sensitivity to anxiety, greater
stress response, a hyperactive HPA axis and increased
activity of the basolateral amygdala when exposed to stress
(Kumsta et al., 2013). NPY expression has been found to be
reduced in the caudate nucleus and frontal cortex of suicide
victims and in the CSF of depressed patients (Widerlov
et al., 1988; Widdowson et al., 1992) and blood samples
from PTSD patients (Sah et al., 2009). Currently, intranasal
infusion of NPY is being developed and tested preclinically
as a treatment for PTSD, to enable rapid delivery to the
brain and avoid the side effects of peripheral administration
(Serova et al., 2013; Sabban et al., 2016).

Inthefirststudiesofthistyperelatedtotherelaxin-3/RXFP3
receptor system, polymorphisms in the relaxin-3 and RXFP3,
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RXFP4 receptor genes were reported to be associated with hy-
percholesterolemia, obesity and diabetes in patients being
treated with antipsychotic drugs, corroborating a likely role
of the relaxin-3 system inmetabolism and regulation of appe-
tite and body weight (Munro et al., 2012). In separate studies,
serum relaxin-3 levels were reported to be elevated in female
patients with metabolic syndrome (Ghattas et al., 2013) but
unaffected in patients with diabetes (Zhang et al., 2013), al-
though these studies did not fully demonstrate that their as-
says specifically detected the relaxin-3 peptide. However, if
these studies are reflective of the existence of detectable levels
of relaxin-3 in the bloodstream, it might be prudent to exam-
ine the profile of relaxin-3 levels in patients with eating disor-
ders and/or appetite irregularities associated with
neuropsychiatric diseases such as schizophrenia and
depression (Nestler et al., 2002; Newcomer, 2007; Lungu
et al., 2013).

Interestingly, in a gene association study of familial
schizophrenia, a mutation in chromosome 5p locus was iden-
tified, and the RXFP3 receptor gene is located on this chromo-
some (Bespalova et al., 2005). Based on preclinical data, the
relaxin-3 system could be linked to the cognitive impairment
as well as the negative symptoms of schizophrenia. While
this is only an anecdotal observation at present, with the
rapid increase in genetic information available from different
patient groups, due to improvements in and reduced costs of
gene sequencing,more detailed information about the profile
of RXFP3 receptors in neuropsychiatric disorders should be-
come available.

In a recent study of the neocortex of patients with
Alzheimer's disease (AD) and their age-matched controls,
we have found that alterations in the levels of RXFP1 and
RXFP3 receptors were more closely associated with depres-
sive symptoms than with cognitive decline or Aβ42 levels
(Lee et al., 2016). While RXFP3 receptor-like immunoreac-
tivity in the parietal cortex was up-regulated in depressed
AD patients and unchanged in non-depressed AD patients,
RXFP1 receptor-like immunoreactivity in the parietal cortex
was unchanged in depressed AD patients and down-
regulated in non-depressed AD patients (Lee et al., 2016).
Neuropsychiatric conditions such as depression, anxiety
and psychosis in AD patients (also known as ‘behavioural
and psychological symptoms of dementia’) are thought to
arise from degeneration of monoaminergic neurons and ac-
companying perturbations in neurotransmission (Francis
et al., 2010; Ramirez et al., 2014). Given the proposed role
for relaxin-3 in regulating monoaminergic transmission
(Miyamoto et al., 2008), the relaxin-3/RXFP3 receptor sys-
tem may represent a novel target for treating neuropsychi-
atric symptoms. Previous reports suggest that dysregulation
of the HPA axis in AD could underlie neuropsychiatric be-
haviours (Notarianni, 2013; Lucassen et al., 2014). Exoge-
nous relaxin-3 altered activity of the HPA axis and it is
possible that changes in endogenous relaxin-3/RXFP3 re-
ceptor signalling contribute to altered HPA axis function-
ing and adaptive plasticity in AD (Lee et al., 2016),
although further studies are required to understand this
relationship and confirm its existence in human brain.

Strong evidence demonstrates an association between the
disruption of synchronous brain neural oscillations, which
can be studied non-invasively, and neuropsychiatric diseases

(Buzsaki andWatson, 2012; Uhlhaas and Singer, 2012). Theta
and alpha-band activities evoked during sensorimotor gating
are significantly reduced in schizophrenia patients, as well as
their first-degree relatives (Hong et al., 2008). A similar associ-
ation exists between alterations of rhythmic activity and
depression, bipolar disorder and autism spectrum disorders
(Buzsaki and Watson, 2012). In this regard, the lack of direct
connections of the RPO and other brainstem modulating
structures to the SHS indicates that the NI relaxin-3 signalling
may provide an important relay centre for brainstem-
initiated signals driving HC theta activity and may play a
causal role in the disruption of theta activity associated with
neuropsychiatric diseases.

Brain imaging is a technique that has provided detailed
macroscale information about the distribution and magni-
tude of neurotransmitter systems. For instance, using PET
and single-photon emission computed tomography tracers,
dopamine transporter density has been found to be signifi-
cantly reduced in the basal ganglia of depressed patients
(Nutt, 2006). Although not tested in humans yet, PET tracers
have been developed and tested successfully preclinically for
Y5 receptors, which is linked to the pathophysiology of de-
pression, anxiety and obesity (Hostetler et al., 2011; Kumar
et al., 2016). Similarly, a labelled ligand specific for RXFP3
receptors would enable brain imaging of the densities of these
receptors in patients.

Thus, it may be informative to conduct studies of relaxin-
3 levels in the CSF (blood) and genetic variants of relaxin-3/
RXFP3 receptors in both control subjects and patients with
neuropsychiatric disorders to build a data set that might al-
low further rationally designed studies of causative associa-
tions. Comprehensive studies of relaxin-3 and RXFP3
receptor concentrations in post mortem brain samples from
key brain regions important in emotional regulation such as
amygdala, hippocampus and BNST from these populations
may also provide insights, particularly if the identity of the
RXFP3 receptor-expressing neurons in the different regions
can be discovered.

In conclusion, it is hoped that the substantial preclinical
evidence for the broad neurophysiological actions of
relaxin-3/RXFP3 receptor signalling and the growing
momentum of research in the area will encourage more basic
and clinical researchers to consider this conserved
neuromodulatory system in their investigations.
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