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Introduction: Subjects with erythropoietic protoporphyria rely on broad-spectrum

sunscreens with high sun protection factor, which is not informative on efficacy in

the absorption spectrum of protoporphyrin IX, spanning visible radiation and peaking

around 408 nm. Photoactivation of protoporphyrin IX is responsible for painful skin

photosensitivity in erythropoietic protoporphyria.

The authors assessed the protective efficacy of six sunscreens in vitro in the absorption

spectrum of protoporphyrin IX.

Method: Transmittancemeasurements were performed in the 300–850 nmwavelengths

on samples of six photoprotective products applied to polymethyl methacrylate plates.

Porphyrin protection factor was calculated in the 300–700 nm region to provide a

measurement for the efficacy of each product based on the action spectrum of

protoporphyrin IX.

Results: Product A showed the highest porphyrin protection factor among tested

products with a median value of 4.22. Product A is a sunscreen containing organic

filters, titanium dioxide and synthetic iron oxides, pigmentary grade active ingredients

that absorb visible radiation. Other products showed inefficient protection in the visible,

with transmittance between 75 and 95% at 500 nm. The low porphyrin protection factor

of inorganic filter product B was attributed to particle micronization, as declared by

the manufacturer.

Conclusion: Adding porphyrin protection factor to sunscreen labeling could help

patients with erythropoietic protoporphyria and other photosensitivity disorders identify

products tailored on their specific needs. The development of sunscreens providing

protection from visible radiation and excellent cosmetical tolerability could improve the

lifestyle of patients with erythropoietic protoporphyria.

Keywords: erythropoietic protoporphyria, photoprotection, protoporphyrin IX, sunscreen, cutaneous porphyria,
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INTRODUCTION

Erythropoietic protoporphyria (EPP) is a cutaneous porphyria
resulting from loss-of-function mutations in the ferrochelatase
gene (FECH) with autosomal recessive Mendelian inheritance
(1). Alternatively, gain-of-function mutations in aminolevulinic
acid synthase gene (ALAS2) are responsible for the closely related
phenotype termed X-linked protoporphyria (XLP) with X-linked
inheritance (2). Additional mutations have been reported (3) and
EPP can also develop de novo in the context of myeloproliferative
disorders (4, 5). Most commonly, EPP phenotype results from
the inheritance of a common hypomorphic FECH variant,
IVS3-48T/C, together with a loss-of-function allele of the
same gene (6). This leads to insufficient activity of the FECH
enzyme which inserts iron or zinc in the protoporphyrin IX
ring, finalizing heme formation in the inner mitochondrial
membrane (1). The result is excessive metal-free protoporphyrin
accumulation occurring in plasma and erythrocytes. Metal-free
protoporphyrin diffuses to plasma from erythrocytes, where it is
bound to hemoglobin and released following light irradiation,
and directly from reticulocytes in the bone marrow (7–9).
Metal-free protoporphyrin accumulates in plasma contributing
to photosensitivity and is bound to albumin, which provides
the only excretion pathway for this water-insoluble porphyrin
through the liver (9–11). Hydrophobic protoporphyrin deposits
in lipidic layers of cell membranes (12) in the skin, where acute
painful non-blistering photosensitivity develops. Liver damage is
an uncommon finding potentially complicating EPP in as few as
5% of cases (13, 14). However, the risk of gallstones containing
water-insoluble protoporphyrin is increased to up to 8% of
patients (14). Excluding patients who develop protoporphyria-
related hepatopathy, the risk for which cannot be accurately
predicted (15), life expectancy in EPP is not shortened compared
to the general population. This leads to lasting impairment on
employment and lifestyle due to the need to avoid sunlight.
Onset of photosensitivity in EPP occurs early in childhood, at
an average before the age of four (16) and with no difference
between sexes. However, diagnosis is commonly delayed to an
average of 13 years from the first symptoms (16), during which
undiagnosed children and adults endure unexplained pain and
withdrawal from daily social activities. Following exposure to
sunlight or fluorescent light sources, severe skin pain with or
without signs of erythema, edema, or blanching, develops acutely
after amedian of 20min and resolves after amedian of 3 days (14)
leaving little to no residual skin damage. Chronic changes may
affect the skin on the knuckles and back of hands and on the face
in patients subject to repeated light exposure (17–19). Physical
findings are related to individual differences in pigmentation,
degree of sun exposure and reportedly to a priming phenomenon
(14). The severity of symptoms is also dependent on the
level of erythrocyte protoporphyrin, for which no corrective
intervention is available. Protection from sunlight exposure is
the main strategy to manage the symptoms of EPP and to
limit impairment of educational and employment opportunities
in these patients. Therapies to increase light tolerance include
subcutaneous afamelanotide and oral beta-carotene. Synthetic
alpha-melanocyte stimulating hormone afamelanotide has been

available in Europe since 2014 as a 16mg subcutaneous implant
administered every 2 months 3 times a year to adult patients (20),
and effectively improves sunlight tolerance allowing patients
to engage in activities that would previously be avoided (21).
However, evidence supporting its use in pediatric patients is
lacking, as is safety data in pregnancy or in liver and kidney
disease (22). Use of beta-carotene proved beneficial in some
patients (23, 24); however, overall evidence is inadequate and
results of a randomized controlled trial showed no improvement
in light tolerance compared to placebo (25). Subjects with EPP
require photoprotection in the UV-A and visible light regions,
where the absorbance spectrum of protoporphyrin lies (26).
The efficacy of commercially available sunscreens is commonly
assessed in the UV-B and UV-A bandwidth; however, their
protective effect against visible light is generally not significant
and poorly characterized. A photoprotective index named
porphyrin protection factor (PPF) was recently introduced to
measure the in vitro efficacy of photoprotective products based
on the absorbance of protoporphyrin IX in the 300–450 nm
wavelength region (27). As current commercial sunscreens do
not significantly absorb in this region, specific effective topical
photoprotection is a current area of unmet need in EPP.

The present study aimed at assessing the in vitro protective
efficacy of six sunscreens by calculating PPF, as previously
described in the 300–450 nm region and extended to the 300–
700 nm wavelengths to include different absorption peaks of
protoporphyrin IX: an intense Soret band centered around
406 nm and four weaker Q bands in the visible range (26).

METHOD

Tested Photoprotective Products
Six sunscreens were independently selected by the investigators
among commercially available products labeled with high SPF
and wide-spectrum protection from radiations including UV-A
(Table 1).

In vitro Substrates
Samples were placed on polymethyl methacrylate (PMMA)
square plates (Schönberg GmBH & Co, Hamburg, Germany)
sized 50 × 50 × 2.5mm and with a rugosity around 6µm.
PMMA plates are appropriate substrates for in vitro assessments
of UV-A blockers according to COLIPA (European Cosmetics
Trade Association) guidelines (28) and are used in previous
published studies (27). Five samples of each product were
each applied to the upper surface of a PMMA plate using
a positive-displacement dispenser (Multipette; Eppendorf AG,
Hamburg, Germany). Samples were weighted using a precision
scale (1g = ± 0.1mg) to assess correct application rate and
consistent distribution among samples with a surface density
of 1 mg/cm2. Amounts of 1 mg/cm2 applied on PMMA plates
showed good correlation between in vitro and in vivo SPF in
previous studies (29). For the present investigation, a single
rate of application was chosen to allow comparison between the
absorbance curves of different samples in vitro. According to
the authors’ previous experimental results obtained for PMMA
plates with 1 mg/cm2 of product application, the correlation
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TABLE 1 | Labeling information with SPF, filter type and results of PPFs measurements in the 300–700 nm wavelengths of the six tested solar filters, expressed as median

[min;max]. COV, coefficient of variation.

Product (label SPF) Principal active components PPF 300-700 nm COV

A (50+) • Octocrylene,

• Methylene bis-benzotriazolyl tetramethylbutylphenol [nano],

• Butyl methoxydibenzoylmethane,

• Titanium dioxide (ci 77891),

• Bis-ethylhexyloxyphenol methoxyphenyl triazine,

• Iron oxides (CI 77492, 77491, 77499).

4.22 [3.34;4.78] 0.1226

B (30) • Zinc oxide (nano),

• Titanium dioxide (nano).

1.73 [1.66;1.75] 0.0270

C (100+) • Ethylhexyl methoxycinnamate,

• Diethylamino hydroxybenzoyl hexyl benzoate,

• Octocrylene,

• Ethylhexyl triazone,

• Titanium dioxide (nano),

• Bis-ethylhexyloxyphenol methoxyphenyl triazine.

1.86 [1.76;1.92] 0.0365

D (50+) • Ethylhexyl methoxycinnamate,

• Methylene bis-benzotriazolyl tetramethylbutylphenol (nano),

• Bis-ethylhexyloxyphenol methoxyphenyl triazine,

• Ethylhexyl salicylate,

• Diethylamino hydroxybenzoyl hexyl benzoate.

1.82 [1.73;1.84] 0.0259

E (50+) • Octocrylene,

• Ethylhexyl salicylate,

• Butyl methoxydibenzoylmethane,

• Ethylhexyl triazone,

• Bis-ethylhexyloxyphenol methoxyphenyl triazine.

1.65 [1.61;1.68] 0.0171

F (50+) • Bis-ethylhexyloxyphenol methoxyphenyl triazine,

• Ethylhexyl triazone,

• Diethylamino hydroxybenzoyl hexyl benzoate,

• Diethylhexyl butamido triazone.

1.53 [1.52;1.59] 0.0190

between in vitro measurements and in vivo SPF does not yield
a 1:1 correspondence but can be described with a regression
line (30, 31). For this reason, evaluation of in vitro SPF values
remained beyond the scope of this study.

Transmittance Measurements
Transmittance measurements were performed in the 300–
850 nm range using an integrating sphere spectrophotometer
(Cary 5000; Varian Medical Systems, Inc., Palo Alto, CA, U.S.)
with photomultiplier tube R928 (Hamamatsu Photonics K.K.,
Hamamatsu City, Japan). Single measure statistical error for this
equipment is reported around 1%. Transmittance of substrates
(T%) was expressed as percentage of the baseline transmittance
of each PMMA plate before application of each sample.

Calculation of in vitro Protection Factor
In vitro efficacy of each sunscreen was expressed using porphyrin
protection factor (PPF), as previously defined in the literature
as ratio of two integrals calculated in the spectral range of 300–
450 nm (27) and as modified by the authors in the range of
300–700 nm to include measurement of protective effect against
damage from visible light:

PPF =
∫

λ=700
λ=300 PP(λ)I(λ)dλ�∫

λ=700
λ=300 PP(λ)I(λ)10−A(λ)dλ

(1)

Calculations are based on the absorbance A(λ) retrieved by
the transmittance value, and on action spectrum PP(λ) of
protoporphyrin IX and on the standard solar spectral irradiance
I(λ) with air mass of 1.5 G (32).

Statistical Analysis
Analyses were performed using the SAS 9.4 package (SAS
Institute Inc., Cary, NC, USA) on Windows. The continuous
variable PPF was presented as median and range of the
measurements for the substrate of each sample. Comparison
of PPF between the six different samples was performed using
the Kruskal-Wallis test, a non-parametric test for multiple
independent samples. When significance was found from this
test, the Dwass-Steel-Critchlow-Fligner test, a two-sided non-
parametric procedure, was used to determine which groups
were different. Results were considered significant at p <

0.05. Differences between medians estimated using the Hodges-
Lehman statistics were presented as 95% confidence intervals.

RESULTS

Product A, a physical barrier cream, resulted in a median PPF
value of 4.22 [range = 3.34–4.78], the highest among tested
products. In vitro PPFs for the remaining samples are reported
in Table 1 (=median [range]). The Kruskal-Wallis test on the
six samples showed significance (p < 0.0001) and PPFs were
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FIGURE 1 | Absorbance (A) spectrum of protoporphyrin IX measured in the

range 300–700 nm.

then compared pairwise between products demonstrating a
statistically significant difference (p < 0.05) between medians of
product A and each of the five other samples (95% confidence
interval): vs. product B (1.68;3.03), vs. C (1.77;2.84), vs. D
(1.61;2.94), vs. E (2.00;2.98), vs. F (1.82;3.19).

DISCUSSION

Porphyrins are photoactive compounds that cause damage to
biological molecules, following activation by light and transfer
of energy to highly oxidizing oxygen species (12, 33–35).
Protoporphyrin IX absorption occurs between 320 and 595 nm
and peaks in the 400–420 nm wavelength, known as the Soret
band for porphyrins, which lies in the visible range close to UV-
A light (36) (Figure 1). Poor quality of life in EPP patients is
related to sunlight avoidance that, though effectively preventing
symptoms, restricts recreational and productive activities (37).
The appropriate management of this condition must therefore
focus on providing strategies to maximize light tolerance and
allow engagement in normal daily activities. Topical sunscreens,
combined with hats and protective clothing when outdoors
and lifestyle adaptations (38, 39), are a key photoprotective
intervention in EPP.

Commercially available products contain organic and
inorganic filters that are well characterized according to their
protection from UV-B and UV-A radiation (40, 41) but lack clear
efficacy against visible light, which is the culprit in EPP (42).
Subjects with EPP commonly rely on broad-spectrum sunscreens
with SPF of 30 or higher. Conventional SPF, however, is not
informative on the protective efficacy in the visible radiation
and especially around 408 nm, where protoporphyrin IX has its
highest peak of absorption. For this reason, PPF was previously
introduced as an index independent of SPF and PFA.

In 1991, an in vitro study first investigated the protection
efficacy in UV-A and visible wavelengths of an inorganic filter
with 20% zinc oxide combined with pigmented iron oxide (43).

FIGURE 2 | Measured transmittance for each of the six tested products.

Transmittance of substrates is calculated as percent of the baseline

transmittance of each PMMA plate before sample application (T%).

FIGURE 3 | Absorbance (A) spectrum of protoporphyrin IX before (black line

represents baseline damage) and after subtracting the action spectrums of

each of six tested products (lower red line represents protection of product A).

A later study proposed a photosensitivity protection factor, based
on the conventional SPF formula adjusted to include wavelengths
up to 600 nm, to assess inorganic filters containing 4% titanium
dioxide and 5% zinc oxide (42). In 2017, Teramura et al. further
adapted this index and introduced PPF calculated in the spectral
range of 300–450 nm, which is most harmful for individuals with
EPP. The authors demonstrated high PPF values in a make-up
base emulsion and liquid and powder foundations containing
colored and absorbing pigment iron oxide (27). Moreover, the
products were tested for 6 months in EPP patients showing
efficacy over 78% and no adverse reactions (27).

The photoprotective products tested in this study include
organic and inorganic filters devised to shield UV-B and
UV-A radiations, that are the main culprits of erythema in
generally healthy subjects and show transmittance close to 0%
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in these wavelengths. Protection is inefficient in the visible, with
transmittance for products B-F between 75 and 95% at 500 nm.
On the other side, product A transmitted <40% of radiation at
the same frequency (Figure 2).

Our preliminary results show that product A has the highest
PPF among tested products with a median value of 4.22. Product
A is a sunscreen containingmultiple organic UV filters, inorganic
filter titanium dioxide and synthetic iron oxides. The latter are
colored pigments that absorb radiation in the range 300–700 nm
and, together with inorganic filters titanium dioxide and zinc
oxide, justify the performance of this sunscreen (44). Product
B scored a poor PPF attributed to micronization—declared by
the manufacturer—of inorganic filters zinc oxide and titanium
dioxide that shifts protection away from visible wavelengths and
toward UV-B and UV-A (45).

The main limitation to the present study is the absence
of a proper skin surrogate; though PMMA is a widely used
substrate, transmittance measures can be affected by uneven
sample distribution and porosity on the material’s surface. The
authors prepared five samples of each product to improve
reproducibility of PPF. According to the preliminary results
of this study, a sunscreen containing organic and inorganic
filters with pigmented iron oxides, such as product A, showed
the highest PPF, with a median of 4,22 among photoprotective
products tested in vitro (Figure 3).

In conclusion, PPF is indicative of sunscreen protection in
vitro and could help patients with EPP, as well as those with
other disorders of photosensitivity, identify products tailored on
their specific needs (45). Effective protection in real life requires
correct use of sunscreens with reapplication of product every 2 h
of sun exposure. Finally, future research in skin pharmacology
could provide filters that significantly absorb visible radiation
while improving cosmetical tolerability for patients.
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