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Abstract: Surface-enhanced Raman spectroscopy (SERS) is a powerful technique for the discrimination,
identification, and potential quantification of certain compounds/organisms. However, its real
application is challenging due to the multiple interference from the complicated detection matrix.
Therefore, selective/specific detection is crucial for the real application of SERS technique. We summarize
in this review five selective/specific detection techniques (chemical reaction, antibody, aptamer,
molecularly imprinted polymers and microfluidics), which can be applied for the rapid and reliable
selective/specific detection when coupled with SERS technique.

Keywords: surface-enhanced Raman spectroscopy; specificity; selectivity; chemical reaction; antibody;
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1. Introduction

Sensitive detection of target analytes among myriads of other components is of vital importance
for sample analysis, process monitoring and mechanism study. Nowadays the “gold standard”
methods for this aim are chromatography-related techniques, such as high performance liquid
chromatography tandem mass spectroscopy (HPLC-MS) and gas chromatography tandem mass
spectrometry (GC-MS) [1]. However, these methods invariably need expensive equipment and
highly trained technicians. In addition, these techniques are neither cost-effective nor time-saving in
high-throughput screening of large amounts of samples. Therefore, spectroscopic techniques (especially
fluorescence, ultraviolet-visible and Raman spectroscopy) have been introduced to overcome
such drawbacks.

Raman scattering is the inelastic scattering of photons which can reflect the vibrational or
rotational modes of the interacting molecules [2]. Raman spectroscopy has many unique features
compared to other spectroscopic techniques. For example, the frequency shifts of Raman scattering
can provide “fingerprint” information of analyte’s chemical structure. Besides, Raman peaks are very
narrow, which facilitate multicomponent analysis and quantification. Additionally, water has negligible
influence on the final Raman spectrum, which is an advantage to apply Raman study in aqueous or
physiological environment. However, only a very small fraction of the scattered photons (about 1 out of
10 million possibility) are scattered inelastically, the cross section of Raman scattering is also very
small (about 14 orders lower than that of fluorescence emission; the cross section of two interacting
particles is the area transverse to their relative motion in which they will meet and scatter from each
other, the scattering cross section of particles interacting through electromagnetic force is generally
larger than their geometric size). Therefore, the Raman signal is very weak and can hardly be used for
trace detection.
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In 1973, Fleischmann et al. found that the Raman signal of pyridine adsorbed on a roughened silver
electrode can be significantly enhanced [3]. This phenomenon was later termed SERS, which describes
the unusual Raman signal enhancement when molecules are adsorbed or are close to rough metal
surfaces or nanostructures [4]. Two main mechanisms have been proposed to explain this SERS
phenomenon. Electromagnetic enhancement theory believes that the incident light can excite electrons
on the nanostructured metal surfaces to generate localized surface plasmon resonance (LSPR),
such electromagnetic enhancement in an electromagnetic field induced by LSPR plays a leading
role in SERS enhancement. In comparison, chemical enhancement (also called charge-transfer effect)
mechanism can only apply on species that can form chemical bonds with metal surfaces. Due to the fact
that SERS enhancement factor can reach as high as ~1011, which make even single molecule detection
possible [5], SERS has already been widely accepted as a sensitive and high-throughput technique.

However, issues still need to be addressed before exploiting SERS method for analyte diagnosis
in multicomponent systems. The most serious problem is that SERS itself, as a spectroscopic technique,
is good at structure characterization but poor in component separation. In a multicomponent system
each component contributes to the final SERS spectrum, especially those that have large Raman
scattering cross section or have strong interactions with SERS substrates. Though this problem can
be alleviated by pretreatment methods such as extraction/centrifugation, the final SERS spectrum
may still be influenced by homologues or compounds bearing similar properties with target analytes.
Chemometric methods also can’t provide satisfying discrimination result in samples where the target
analyte is among dozens of impurities. Therefore, in order to achieve selective/specific SERS detection,
separation/specific recognition method is in demand before spectral collection. Either chemical or
physical method can be applied in the separation/specific recognition process. Five reprehensive
selective/specific detection techniques tandem SERS method (chemical reaction-SERS, antibody-SERS,
aptamer-SERS, molecularly imprinted polymer-SERS and micro-fluidics-SERS) will be reviewed in
this article.

2. Reaction-SERS Method

Analytes possessing little affinity to the SERS substrate or having small Raman cross sections are
usually difficult to be detected by SERS technology [6]. In addition, gaseous analytes are also difficult
to be analyzed by SERS because of their volatility and low molecular weight [7], which result in poor
sensitivity, selectivity and accuracy. Besides, some unstable analytes also need to be converted into
stable products before the detection [8]. In such cases, chemical reactions are introduced before SERS
detection. The schematic diagram of Raman detection and chemical reaction-SERS can be seen in
Scheme 1. Though chemical reactions have already been used in conjunction with other analytical
methods such as LC-MS [9,10], HPLC [11,12], HPLC-MS [13], fluorescence spectrometry [14,15],
colorimetric methods [16] and so on to improve the sensitivity or selectivity, these methods are either
time consuming or cost efficient.

In general, compounds with conjugated structures have strong SERS response. Increasing
the Raman scattering cross section can improve the SERS signal but reducing the Raman scattering cross
section has the opposite effect. Additionally, there are some rules that should be followed in chemical
reaction—SERS. Firstly, the compound should have a weak fluorescent background in order not to
interfere SERS measurement. Simultaneously, it should have groups like –SH or –NH2 which can firmly
combine with the SERS substrate. Thirdly, reagents should possess obvious spectra variations before
and after chemical reactions. It can be classified into three cases, including “signal on”, “signal off” and
“signal change” in which both reactants and products have strong SERS signals. Finally, the reaction
reagent should have a good selectivity to the analyte which can be analyzed by the fingerprint spectrum.
To sum up, chemical reactions—SERS can be divided into three categories.
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Scheme 1. (A) Schematic diagram of Raman detection; (B) Schematic diagram of chemical reaction
assisted SERS detection [17].

2.1. Improving Analyte Affinity with SERS Substrate

Many analytes having low affinity with gold or silver are not suitable for SERS detection.
It can be solved by reacting with derivative reagents which can strongly bind to SERS substrates.
Such derivative reagents normally bear thio or amino groups that can strongly bind with gold or silver
SERS substrates. This method is flexible, easy to use and has high sensitivity and selectivity. However,
the prerequisite of both analyte-reacting group and gold/silver binding group limits the choice of
the derivative reagents. Camden et al. [6] reacted hydrazine with ortho-phthaldialdehyde to form
phthalazine, which had better affinity toward the SERS substrate than hydrazine (Figure 1). The limit
of detection (LOD, normally defined as signal to noise = 3) was 8.5 × 10−11 M, more sensitive
than 6.3 × 10−11 M detected by GC/MS which was the best detection limit reported previously.
Wang et al. [18] reported the derivatization of 4-amino-5-hydrazino-3-mercapto-1,2,4-triazole (AHMT)
with HCHO (Figure 2A). SERS band at 832 cm−1 was then applied for HCHO quantification.
This method is convenient, organic solvent free, low cost and can be used for on-site rapid detection of
trace HCHO. Harris et al. [19] immobilized 8-hydroxyquinoline on the surface of the silver electrode
by azo reaction with 4-aminothiophenol (Figure 2B) to coordinate with Cu2+. They observed that
the tautomerization equilibrium could be controlled through the applied potential.

Figure 1. Scheme for SERS-based hydrazine detection derivatized with a phthaldialdehyde probe [6].

Figure 2. Derivatization reaction of HCHO and 4-amino-5-hydrazino-3-mercapto-1,2,4-triazole (AHMT)
under alkaline conditions (A) [18]. Synthesis of p-([8-hydroxyquinoline]azo)benzenethiol (SHQ) (B) [19].
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2.2. Increasing the Raman Scattering Cross-Sectional Area

Reactions that can increase the Raman scattering cross-sectional area of analytes are especially
suitable of the SERS detection of small molecules. This chemical derivatization reaction can highly
enlarge the SERS signal of analytes with simple structures which have no obvious Raman signal.
Furthermore, it also can change the affinity of analytes to the SERS substrates, which can widely
expand the application area of SERS technique. For example, Li et al. [20] used the derivative
reagent of 3-Methyl-2-benzothiazolinone hydrazone (MBTH) hydrochloride monohydrate to detect
trace formaldehyde in aquatic products by SERS (Figure 3A). Tian et al. [17] detected acetone
via a derivatization reaction between 2,4-dinitrophenylhydrazine (2,4-DNPH) and acetone (Figure 3B).
This method is fast, convenient, and economic to detect acetone in artificial urine and human urine
samples. Pittman Jr. et al. [21] utilized thiobarbituric acid (TBA) to react with malondialdehyde (MDA)
to monitor lipid peroxidation (Figure 3C). SERS detection limit of TBA–MDA was 0.45 nM (Figure 3D).

Figure 3. (A) Chemical derivatization reaction between MBTH hydrochloride and formaldehyde
azine [20]; (B) Chemical derivatization reaction between acetone and 2,4-dinitrophenylhydrazine to
form 2,4-dinitrophenyl hydrazine [17]; (C) Chemical derivatization reaction between thiobarbituric acid
and malondialdehyde [21]; (D) Correlation between the SERS intensity at 1265 cm−1 of HPLC-purified
TBA-MDA adduct and its concentration in picomolar, both in logarithm scales. Inset: representative
SERS spectra of TBA–MDA with concentration of (a) 4.5 µM; (b) 0.45 µM; (c) 45 nM; (d) 4.5 nM;
and (e) 0.45 nM [21].

2.3. Reducing the Raman Scattering Cross-Sectional Area

Contrary to increasing the Raman scattering cross-sectional area, another reaction method that
can be applied in SERS detection is to reduce the Raman scattering cross-sectional area of the analyte.
For example, Li et al. [22] reported the reaction of bis[4,4′-dithiodiphenylazophenol] (DTDPAP) with
sodium dithionite. This method is used to detect sodium dithionite and has fast response (5 min),
low LOD (0.08 µM), and good selectivity. Whatever increasing or reducing the Raman scattering
cross-sectional area, these two methods both have the disadvantages that it is a challenge to choose
the reagents which possess obvious spectra variation before and after reactions.
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Some special reactions were also developed to detect target analytes, especially gas targets by
SERS. For example, Li et al. [7] used bromine-thiourea and OPA-NH4

+ derivative reagents to derivatize
with ethylene and SO2, respectively, which have low molecular weight and strong volatility.

2.4. Application of Reaction-SERS Method

Reaction-SERS method has been widely used in many fields. As mentioned previously, reaction-SERS
method is especially suitable for gas detection. For example, p-aminothiophenol (4-ATP) was used to
detect gaseous aldehydes as biomarkers of lung cancer [23]. Compared with other gaseous molecule
detection techniques such as GC-MS, ion mobility spectrometry, selected ion flow tube MS and chemical
sensors, reaction-SERS method avoid time consuming pretreatments and can detect low concentration
chemicals in air.

Reaction-SERS method was also applied in the detection of hazardous chemicals. Wu et al. [24]
monitored the aldol condensation of surface-bound 4-(methylthio)benzaldehyde with free acetone and
4-nitrothiophenol was used as an internal standard (IS) to improve the SERS quantification. In another
case, nitric acid and sulfuric acid produced by NO2 and SO2 were reacted with ammonium hydroxide
to produce the corresponding ammonium salt without loss of chemical discrimination [25]. The LOD
by this method was about 4 orders lower compared with that of LC method.

Reaction-SERS method was also applied in mechanism study. Cu2+ mediated o-phenylene-diamine (OPD)
oxidation [26] on the surface of AuNPs was monitored by SERS. Hu et al. [27] reported that
palladacycle-mediated carbonylation with carbon monoxide (CO) as a C1 source could be monitored in situ
by SERS. In another case, the mechanism of two p-aminothiophenol molecules [28] oxidatively transforming
into 4,4′-dimercaptoazobenzene (DMAB) by azo reaction was monitored by SERS. What’s more, chemical
reactions could also be used to remove signal interferences from impurities that have strong SERS signal.
We used an azo coupling pretreatment to remove the interference of urea and detected adenosine directly
from urine samples [29].

Last but not the least, Reaction-SERS was also widely used in cells. Tian et al. [30] reported
that the reactions of 4-mercaptophenol (4-MP) with ClO− and glutathione (GSH) on the surface of
gold flowers (AuF/MP) could be monitored by SERS. This SERS system showed high selectivity for
the detection of ClO− and GSH even in the presence of other reactive oxygen species and amino
acids. NO in human body [31] could be detected by SERS through catalyzing OPD molecules to
benzotriazole. Although colorimetry, electrochemical detection, mass spectrometry and fluorescence
probes approaches had been developed to better elucidate the pathophysiological roles NO plays.
However, most NO detection methods were not suitable for in situ detection in living cells [31] and
fluorescence approach was limited by photobleaching and phototoxicity induced by the excitation
light [32].

Chemical reactions in conjunction with SERS method can improve the selectivity and sensitivity of
some analytes. Representative studies of reaction-SERS methods are summarized in Table 1. However,
this method is difficult to distinguish homologues due to their similar functional groups and spectral
information [33]. Another issue is the limited reaction types which can be used in reaction-SERS
system. In addition, low reproducibility [34] was reported in some cases due to the uncontrolled
aggregation of plasmonic NPs during reaction. Therefore, suitable SERS substrates that are more stable
during reactions need to be developed.
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Table 1. Representative studies of reaction-SERS methods.

Analytes Reagents Substrates Matrix LOD 1 Linear Range 2 Ref.

hydrazine ortho-phthaldialdehyde AgNPs water 8.5 × 10−11 M 10−5–10−10 M [6]

ethylene and SO2 bromine-thiourea and OPA-NH4
+, respectively AuNPs fruits 1.7 µg/L and 12.0 µg/L,

respectively
14.7–21.1 µg/L and

35.1–35.9 µg/L [7]

formaldehyde 4-amino-5-hydrazino-3-mercapto-1,2,4-triazole AgNPs water and food 0.15 µg/L 1–1000 µg/L [18]
formaldehyde 3-Methyl-2-benzothiazolinone hydrazone Au/SiO2 NPs aquatic products 0.17µg/L 0.40–4.8 µg/L [20]

acetone 2,4-dinitrophenylhydrazine iodide modified Ag nanoparticles
(Ag IMNPs) urine 0.09 mM 9.6–96 mg/L [17]

malondialdehyde thiobarbituric acid AgNPs 0.45 nM 0.45–4.5 µM [21]
sodium dithionite bis[4,4′-dithiodiphenyl azo-phenol] A single cabbage-like Au microparticle industry 0.08 µM 0.5–20 µM [22]

acetone 4-(methylthio)benzaldehyde Ag@AuNCs [24]
HNO3 and H2SO4 ammonium hydroxide Klarite substrate 100 ppb [25]

NO o-phenylenediamine AuNPs living cells 10−7 M [31]
1 LOD: The minimum concentration obtained by the minimum analysis signal that can be reasonably detected by the specific analysis step; 2 Linear range: The range of the concentration
(or amount) of the analyte corresponding to the linear portion of the calibration curve which can be measured by a specific method.
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3. Antibody-SERS

Together with the specificity of antibody-antigen interactions and the sensitivity of SERS,
antibody-SERS method has already been applied in the selective detection of analytes in
multicomponent systems, especially in physiological environments. Compared with other detection
technique (fluorescence (FL), UV-Vis and chemoluminescence) in immunoassay, SERS has its unique
advantages. The Raman signal of different Raman tags can be acquired utilizing one laser source.
What’s more, peaks in SERS spectrum are very narrow compared to that of FL and UV-Vis,
which enables the multianalyte detection at the same time. Furthermore, SERS signal is less vulnerable to
photobleaching, quenching, and environmental factor variations (temperature, viscosity, pH value, etc.).

Figure 4. SERS-based immunoassay platform [35]. Antibodies were fixed on a platform to capture
antigen, Ag or Au NPs conjugated with both Raman tags and detection antibodies can then be captured
for SERS detection.

Rohr et al. reported the first Antibody-SERS study in 1989 to detect thyroid stimulating
hormone (THS) utilizing sandwich immunoassay [36]. Figure 4 shows a representative indirect
antibody-SERS sandwich-structure. The capturing antibodies were immobilized on the surface of
a SERS substrate. Antigens from the sample solutions were then captured by these immobilized
antibodies. These antigens can then capture Ag or Au NPs which were conjugated with both Raman
tags and antibodies. The amount of antigen can then be indirectly acquired by measuring the SERS
intensities of Raman tags.

Nowadays the antibody-SERS researches are mainly focus on how to increase sensitivity and
decrease non-specific adsorption. One way to increase the sensitivity is to introduce more SERS
tags. Porter et al. designed bifunctional SERS tags which contain a disulfide group for anchoring
on nanoparticle surface and a succinimide group for antibody coupling [37]. This can minimize
the separation steps and maximize the number of labels on each particle. SERS detection of free
prostate-specific antigen (PSA) using this method showed a LOD of approximately 1 pg/mL in human
serum and approximately 4 pg/mL in bovine serum.

Silver staining can also be applied to increase sensitivity. Mirkin et al. [38] found that SERS
signal of the labeled immunogold can be significantly enhanced by silver staining. Xu et al. [39] also
reported a SERS immunoassay using probe-labeling immunogold nanoparticles with silver staining
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enhancement, the detection limit for Hepatitis B virus surface antigen was found to be as low as
0.5 mg/mL.

Another way to increase SERS sensitivity is the introduction of different shapes of nanoparticles.
Shape dependent SERS intensity of Raman probes utilizing gold-Raman probe-silica sandwich as
substrates has been investigated [40]. Li et al.’s result showed that among three types of gold cores
(gold nanospheres, nanorods and nanostars), nanostars had the highest SERS enhancement factor
while nanospheres had the lowest. However, issues such as batch-to-batch variations and long-term
stability hamper the practical SERS application of noble metal nanoparticles with different shapes.

Non-specific adsorption remains to be a big issue in immunoassay diagnosis. Systematic investigations
by Porter et al. [41] showed that optimization of experimental parameters such as salt concentration, binding
buffer, pH value and sample agitation can significantly reduce the nonspecific adsorption. A thin layer of
SiO2 on noble nanoparticles can not only prevent the releasing of Raman tags, but can also played the similar
role of albumin from bovine serum (BSA) in inhibiting the nonspecific bindings [42]. Kim et al. [43]
showed that the agglomeration of AgNPs in highly concentrated buffer solutions could be prevented
by the layer-by-layer deposition of cationic and anionic polyelectrolytes, and the nonspecific adsorption
of proteins could be suppressed by the introduction of poly(ethylene glycol) into the immunoassay.
Chuong et al. [44] linked one Raman reporter to immunogold and another to a gold film, the binding
of target protein can create a “hot spot” with strong SERS spectra from both Raman reporter molecules,
whereas signals generated by nonspecific binding lack one or the other label. By this way they can
efficiently distinguish true from false positive results.

The introduction of magnetic nanoparticles can help to increase the sensitivity and decrease
the nonspecific adsorption at the same time. Magnetic nanoparticles can not only facilitate
highly efficient analyte separation and enrichment, but can also generate enough hot spots for
SERS signal enhancement. What’s more, since all reactions occur in solution, this can also
solve the problem of slow diffusion-limited immunoreaction on a traditional solid substrate [45].
SERS-based sandwich immunoassay with antibody coated magnetic nanoparticles have been applied
in the detection of IgG (LOD 1–10 ng/mL) [46], lung cancer marker carcinoembryonic antigen (CEA,
LOD 1–10 pg/mL) [45], Escherichia coli (LOD 8 cfu/mL, cfu represents colony-forming units) [47],
etc. we also developed a magnetic immunosensor based on SERS spectroscopy to detect intact but
inactivated influenza virus H3N2 (A/Shanghai/4084T/2012). This immunosensor could detect H3N2
down to 102 TCID50/mL (TCID50 refers to tissue culture infection dose at 50% end point) [48].

4. Aptamer-SERS

Aptamers are mainly oligonucleotide molecules that can bind to specific target by folding into
specific three-dimensional (3D) structures [49], which are mainly screened by Systematic Evolution of
Ligands by Exponential Enrichment (SELEX). The strong aptamer−analyte interaction can enhance
the specific recognition and enrichment of analyte from mixture samples. Compared with antibodies,
aptamers have their special advantages in recognition, such as cost-effective synthesis, high binding
affinities for specific targets [50], mild reaction condition, tolerance to internal labeling [51] and good
stability [52]. What’s more, some small molecules do not have the corresponding antibodies due to
the lack of immunoreaction. On the contrary, aptamers is more suitable for small molecules recognition
by 3D DNA/RNA strand folding after aptamer-analyte interaction. Therefore, the range of analytes
that can be detected by aptasensor is broader than that of antibody based technique. Furthermore,
aptamers can be produced in a large quantity with high reproducibility and purity [53].

In SERS-based aptasensor, aptamers are introduced via electrostatic interaction [54] or covalent
binding on Ag or Au of diverse sizes and morphologies (nanoparticles [55,56], nanostars [57],
nanorods [58,59] or other irregular Ag/Au surface). Aptamers can bind to various targets, such as
ions, small molecules, proteins, nucleic acids, virus, cells and even bacteria, tissues and organisms.
When the analytes can provide distinct Raman signals of their own, they can be detected directly [60].
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Otherwise, analyte information is indirectly acquired by the SERS signal changes of the Raman
tag-labeled aptamers [61].

4.1. Metal Ion

Heavy metal ion pollution is one of the most serious problems in recent years. SERS-based
aptasensor has already been applied in the recognition of many metal ions such as Pb2+ [62],
As3+ [63,64] and Hg2+. Wang et al. [65] used a SERS-based aptasensor to detect Hg2+ (Figure 5).
The formation of thymine (T)-Hg2+-T caused the aggregation of AgNPs, which leads to the increased
number of hot spots and enhanced Raman signals. This simple method shows high sensitivity
(LOD is 5 nM) and selectivity. Zhu et al. [66] designed a polyadenine (Poly A)-mediated core-satellite
nanoassembly to detect Hg2+ in a real system with good selectivity and sensitivity (LOD is 100 fM).
The nanoassembly structure can be adjusted by altering the length of Poly A block (Figure 6). A bases in
the Poly A tail were completely adsorbed on core Au NPs. Therefore, Poly A tails could provide anchors
as well as density control for nonthiolated oligonucleotides. The reproducibility of this aptasensor can
be further improved by immobilizing those nanoassemblies on a silicon wafer. Kang et al. [67]
immobilized tetramethylrhodamine (TMR)-labeled aptamers onto the AgNPs. After anchoring
the AgNPs on glycidyl methacrylate-ethylene dimethacrylate (GMA-EDMA) substrates by thiol group,
this substrate showed high stability and reproducibility in Hg2+ detection with a LOD of 2.5 nM.

Figure 5. The formation of thymine (T)-Hg2+-T caused the aggregation of AgNPs [65].

Figure 6. (A) A polyadenine mediated core-satellite nanoassembly immobilized on the silicon
wafer [66]. (B–D) are SEM images of the interparticle gaps of satellite Au NPs of Au-Au NPs mediated
by Poly A10, Poly A30, and Poly A50.
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4.2. Small Molecule

Pesticides are essential in modern agriculture practices [68]. Pang et al. [69] design a SERS-based
aptasensor that can detect four pesticides simultaneous in apple juice. The aptamer-linked-Ag dendrites
were modified with 6-mercaptohexanol to cut down nonspecific binding. Different pesticides can be
detected based on their own fingerprint Raman spectra. The LOD of profenofos, phorate, omethoate and
isocarbophos are 5 ppm (14 µM), 0.1 ppm (0.4 µM), 5 ppm (24 µM) and 1 ppm (3.4 µM), respectively.

Adenosine triphosphate (ATP) plays an important role in life system. Chen et al. [70] employed
a Poly A mediated nanostructure to detect ATP. The number of aptamers on a single AuNPs can be
adjusted by the length of Poly A block. The LOD is 10 µM. This system can also be used in intracellular
ATP molecules Raman mapping.

Mycotoxins can make damage to the nervous, immune and reproductive system. Aflatoxin B1 (AFB1)
is common found in foods and feeds stuffs, which is the most toxic one in the aflatoxin family [71].
Li et al. [72] fabricated a SERS-based aptasensor based on gold nanostar core-silver nanoparticles satellites
to detect AFB1 in liquid. The Raman tag is modified on the surface of silver satellites. When the AFB1 is
present, the satellite nanoparticles will be attached to the gold core nanostar. Thus, the SERS signal will be
enhanced. Li et al. [73] described a recycling SERS-based aptasensor chip for detecting AFB1 (Figure 7).
To ensure the specificity and sensitivity, they enhanced the Raman signal by using the exonuclease.
The LOD is calculated to be 0.4 fg/mL.

Figure 7. A recycling SERS-based aptasensor chip using the exonuclease to amplify the Raman signal [73].

4.3. Biomacromolecules

As indicators/biomarkers of many diseases, the detection of biomacromolecules is essential in
diagnosis and treatment. Prostate-specific antigen (PSA) is one of the several generally accepted
organ-specific biomarkers. Yang et al. [74] designed a sandwich-like structure aptasensor to detection
PSA selectively, the LOD can be as low as 5.0 pg/mL. However, the PSA is only organ-specific
and no tumor-specific. To solve this practical problem, Hao et al. [75] designed a nanoparticle
assembled pyramids structure, which can detect thrombin and PSA in the meantime. The LOD
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of PSA and thrombin is 3.2 × 10−20 M and 5.7 × 10−17 M, respectively. Although the system detects
two different analysts at the same time, it still keeps selective and sensitive and has been applied in
real sample diagnosis.

Alpha fetoprotein (AFP) is a biomarker for germ cell tumor, hepatocellular carcinoma and certain
gastric carcinomas. Wu et al. [76] use AgNPs-aptamer and its complementary strands to fabricate
Ag-trimers for the detection of AFP. The existence of AFP caused the separation of the trimers, causing
the decreased number of hot spots and SERS signal. The LOD of this signal-off system is 0.097 aM.
Feng et al. [77] established a bimetallic core (gold nanorods)—satellite (silver nanoparticles) assemblies
for the detection of a specific breast cancer marker protein, Mucin-1 (Figure 8). The existence of
Mucin-1 will cause the separation of aptamer and its complementary strand, leading to the decreased
number of hot spots and SERS intensity. The LOD is 4.3 aM.

Figure 8. (A) Mucin-1 detection based on SERS with bimetallic core (gold nanorods)—satellite (silver
nanoparticles) assemblies [77]. (B) SERS spectra of Mucin-1 detection; (C) Standard curve for Mucin-1
detection with corresponding peak intensities at 1142 cm−1.

Different miRNA or DNA targets can also be detected simultaneously. Su et al. [78] synthesized
mushroom-like Au-Ag composite nanoparticles with different aptamers. The formation of gap
structures was mediated by the DNA and Raman tags inside the gap can be significantly enhanced.
Multidetection can be achieved by anchoring different tags on different aptamers.

Aptamers have also been employed in SERS mapping as well. As is known to all that fingerprint
is useful and sufficient for individual identification. In Zhao’s study [52] an aptamer-modified SiO2

shell is used to avoid interference of the external environment and identifying lysozyme, one of
the polypeptide components universal in fingerprints.

4.4. Living Organisms

Pathogenic bacteria are an ineluctable point when it comes to security issues. Zhang et al. [79] used
Fe3O4 magnetic NPs coated with two kinds of aptamers (for S. typhimurium and S. aureus). They also
used two kinds of AuNPs, each was coated with one kind of aptamer (for either S. typhimurium or
S. aureus) and Raman tag. The magnetic NPs will be linked with the AuNPs when the targets existed.
The formation of a sandwich-like nanostructure caused the increased number of hot spots. The LOD is
15 cfu/mL and 35 cfu/mL for S. typhimurium and S. aureus, respectively.

Medical research and patient treatment rely on live optical imaging in many ways. Raman imaging
overcomes some of the limitations of other methods [80]. Firstly, narrow peaks help identify various
analytes simultaneously. Secondly, it can be excited by near infrared laser, with the advantage of
imaging in deep tissue. What’s more, the superior signal stability is also beneficial. Huang et al. [58]
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demonstrated the use of aptamer-gold nanorods for targeted photothermal therapy. Deng et al. [81]
traced the therapeutic process of targeted aptamer/drug conjugate on cancer cells. By real-time SERS
spectra, the process is clearly recorded.

In addition to some organ-specific biomarkers, circulating tumor cells (CTCs) also have attracted
more attention in medical biology, practice diagnosis and cancer treatment assessment. CTCs are
cells that drop from a primary tumor and take part in body fluid circulation. Mocellin et al. [82] have
proved that CTC status is correlated with both tumor-node-metastasis stage and survival. Wu et al. [83]
presented a selective SERS method to CTC detection via using reductive bovine serum albumin and
folic acid receptor. To provide the accuracy of detection, various aptamers are introduced into the lab
test detection. Sun et al. [84] developed a rapid method to capture and identify of CTCs with specific
aptamers. With the presence of magnetic beads and 4-mercaptobenzoic acid (4-MBA), SERS image can
be obtained and the CTCs will be separated and enriched. The capture efficiency is 73% and 55% in
buffer and whole blood sample, respectively. Compared with the traditional methods, a SERS-based
aptasensor can trace the origin of the specific tumor and tumor metastasis.

Representative studies of aptamer-SERS methods are summarized in Table 2, including
SERS Mapping.

Table 2. Studies of SERS-based aptasensors.

Target Analyte Matrix LOD Ref.

metal ion

Pb2+ Water 20 nM [62]
As3+ Water 59 ppt [63]
As3+ Lake water 0.1 ppb [64]
Hg2+ Water 5 nM [65]
Hg2+ Lake water 100 fM [66]
Hg2+ River water 2.5 nM [67]

Small molecules

profenofos Apple juice 5 ppm [69]
phorate Apple juice 0.1 ppm [69]
phorate Apple skin 0.05 mg/L [85]

omethoate Apple juice 5 ppm [69]
isocarbophos Apple juice 1 ppm [69]

ATP Water 10 µM [70]
AFB1 Peanut milk 0.48 pg/mL [72]
AFB1 Peanut 0.4 fg/mL [73]

biomacromolecules

PSA Serum 5 pg/mL [74]
PSA Serum 3.2 × 10−20 M [75]

Thrombin Serum 5.7 × 10−17 M [75]
DNA Serum 100 fM [78]

MiRNA Serum 10 fM [78]
Mucin-1 Serum 4.3 aM [77]

Alpha fetoprotein Serum 0.097 aM [76]
Lysozyme [52]

living organisms

S. typhimurium Pork 15 cfu/mL [79]
S. aureus Pork 35 cfu/mL [79]

Hela cells [81]
CTC Blood 1 cell/mL [83]
CTC Blood 20 cells/mL [84]

mapping

ATP intracellular ATP
molecules [70]

Lysozyme different substrates [52]
membrane protein Hela cells [58]
membrane protein HepG2 cells [81]

5. MIPs-SERS

The concept of molecularly imprinted polymers (MIPs) was proposed in 1972 by
Wulff and Sarhan [86]. Molecular recognition site can be created by imprinting template molecules
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in a polymer matrix through the noncovalent/covalent interactions between templates and
functional monomers. The removal of templates after polymerization generates the recognition
sites complementary to the shape, size, and functionality of templates [87]. These recognition sites
can selectivity rebind with template with high affinity, similar to those of antibody-antigen systems.
Therefore, molecularly imprinted material has been called “artificial” antibody. It has the advantages
of cavity predetermination and specific recognition. In addition, it shows much better stability than
natural antibody [88].

Combination of SERS with molecularly imprinted polymers (MIPs) is a promising analytical
method to improve the selectivity of SERS technique. As shown in Figure 9, AuNPs as SERS substrate
were doped in the MIPs and can be applied in the sensitive and specific SERS detection [89]. Combining
the specific selectivity of MIPs with the high-sensitivity offered by SERS has been proven to be a very
powerful tool for the detection of specific analyte in complex surroundings.

Figure 9. Schematic of the one-pot controlled synthesis of AuNPs@MIPs for improved SERS
sensing (a) [89]. After the template removal, target molecules can selectively rebind with the cavities,
and the analytes can closely contact with the Au NPs in the imprinted layer (b), which significantly
improves the selectivity and sensitivity.

The simplest MIPs-SERS system is the analyte extraction/enrichment by MIPs and then rinsed out
for SERS detection. In this strategy, MIPs only play a role as solid phase extraction (SPE) reagents with
molecular recognition cavities for the specific enrichment of organic compounds from a complex
matrix [90]. For example, MIPs-SERS/colorimetric dual sensor was developed to determinate
chlorpyrifos (CPF) in apple juice [91]. MIPs particles were synthesized by bulk polymerization
and packed into SPE column to selectively adsorb and separate CPF from apple juice. The enriched
CPF in the column was then eluted and mixed with AgNPs for SERS/colorimetric detection. In this
process AgNPs acted as both color indicator and SERS-active substrates. This method can detect
CPF in apple juice with concentration as low as 0.01 mg/L. Similarly, other groups used MIP-based
SPE/SERS to detect trace levels of six Sudan dyes in chili powder samples [92], melamine adulteration
in milk [93], chloramphenicol residues in honey and milk [94] and α-tocopherol in vegetable oils [95].

MIP-based SPE can effectively remove impurities and interfering substances [96]. The enriched
analyte were then extracted out and mixed with SERS substrates (such as AuNPs or AgNPs) for
SERS detection. However, some analytes might have poor affinity with SERS substrates, and it is also
difficult for hydrophobic analytes to adsorbed evenly on hydrophilic SERS substrates, both will affect
the final SERS result [93]. An integrated MIPs system in which the SERS substrates are embedded in
the MIPs can address such issues. This can be done by bringing plasmonic nanoparticles or introducing
their precursors into the MIPs polymerization process followed by precursor reduction and template
removal. This “one step” MIPs-SERS sensor can enrich and detect target analyte at the same time,
showing better analysis efficiency. Liu [97] developed SERS-based sensor for the determination of
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theophylline by imprinting the target molecules on the surface of in-situ reduced AgNPs. The desired
recognition sites after template removal were homogeneously distributed on the AgNPs. Similarly,
Hu [93] used this one-step approach MIPs-SERS approach to rapidly detect melamine in tap water
and milk.

MIPs fabricated by bulk polymerization need to be pulverized, ground and sieved. To overcome
the disadvantage of time-consuming step, alternative forms of MIPs such as MIP monolithic
columns [98–100] (prepared by in situ polymerization directly inside columns) and thin films [101–103]
become increasingly attractive for efficient affinity separations. Jia [104] developed a molecularly
imprinted composite membrane for SERS rapid detection of hypoglycemic agents. The molecularly
imprinted membrane (MIM) was prepared by using filter paper as a carrier, and Ag NPs were
added before the polymerization to simplify the process. Although the LOD is only 5 mg/L, it is
a good attempt to simplify MIPs-SERS fabrication. Some researchers proposed the concept of surface
molecularly imprinting(SMI), in which most of the binding sites are distributed on the particle
surface [105]. The most well-known among them is the MIP core-shell structure. For example,
a highly-controllable core-shell SERS sensor was developed to detection of R6G in water [106].
AgNPs as the SERS substrates were in-situ reduced on amino-functionalized SiO2 followed by
polymerization to for MIPs shell. The shell thickness can be tuned by the concentration of EGDMA.
When the shell thickness was 40 nm the SERS signal was the strongest. With the increase of shell
thickness the SERS signal weakened, proving that Raman signal of analytes adjacent to rather than far
away from SERS substrates can be significantly enhanced (Figure 10). The LOD of SiO2/Ag/MIPs
for R6G was 10−12 mol/L. The Raman intensity of R6G on SiO2/Ag/MIPs was much stronger than
that of RB and CV under the same concentration. Similarly, Xue [107] fabricated surface-imprinted
core-shell gold nanoparticles for selective detection of bisphenol A by using the core-shell technique.
Gold nanoparticle was the core and then a MIP layer was anchored on the surface of Au NPs directly
to form MIP-Au NPs.

Figure 10. The TEM images of SiO2/Ag/MIPs with different shell thickness: 40 nm (a), 170 nm (b)
and (c) the SERS detections of different thicknesses of SiO2/Ag/MIPs to the same concentration of
R6G at 10−6 mol L−1 (40 nm (a), 100 nm (b), 170 nm (c)) [106].

Core-shell structured MIPs-SERS platform has many merits. In those irregular MIPs-SERS
systems the complete extraction of templates which were deep inside the bulk materials is quite
difficult due to the high cross-linking nature of MIPs [108–110]. Some templates have strong
SERS signal. Therefore, the remained template might strongly influence the final SERS result.
Some strategies such as pseudo template, synthetic structural analogues and dummy molecularly
imprinted polymers (DMIPs) [111,112] was introduced to address this issue in bulk materials.
On the contrary, templates within the thin shells of core-shell MIPs-SERS sensors can be completely
removed to form effective recognition sites. What’s more, core-shell nanoparticles possess good
dispersibility, high surface-to-volume ratio and rapid binding kinetics [113,114].

So far most imprinting targets are small molecules, such as pesticide [115,116], additives [92,93],
and metal ions [117,118]. However, detection of bacteria or large proteins such as toxins and
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hormones [119] in organisms has severe challenges [120]. Imprinting of proteins represents a major
challenge that arises from their large size and multiplicity of functionalities [121] and poor stability
during polymerizaton. Ye et al. [122] reported a boronate-affinity sandwich assay (BASA) for
the specific and sensitive detection of trace glycoproteins. BASA relies on the formation of sandwiches
between boronate-affinity molecularly imprinted polymers, target glycoproteins, and boronate-affinity
SERS probes (Figure 11). The feasibility of this method in real application was proved by
the determination of trace alpha fetoprotein (AFP) in human serum. The whole process only takes
30 min. Lv et al. prepared MIPs-SERS sensors by the self-polymerization of dopamine on the surface
of gold nanorods to detect protein biomarkers .The feasibility of this new approach is demonstrated
with detection of transferrin in human serum [123]. Representative studies of MIPs-SERS methods are
summarized in Table 3.

Figure 11. Schematic representation of the boronate-affinity sandwich assay of glycoproteins [122].
Target glycoprotein can be captured specifically by a boronate-affinity MIP array. The captured
glycoprotein is then labeled with boronate functionalized AgNPs for SERS detection.

Table 3. Representative studies of MIPs-SERS methods.

Target Detector MIPs-Sensor Type Functional Monomer Matrix LOD Ref.

Chlorpyrifos MISPE-SERS Methacrylic acid (MAA) Apple juice 0.01 mg/L [91]

Sudan dyes MISPE-SERS 3-(trimethoxysilyl)propyl
methacrylate (TPM) chili powder 1.5 ng/g [92]

Melamine MISPE-SERS MAA Milk 0.005 mM [93]
Chloramphenicol MISPE-SERS Acrylamide (AM) Honey and milk 0.1 ppm [94]
Alpha-tocopherol MISPE-SERS MAA Vegetable oils 10 ppb [95]

Sudan IV Au NPs doped MIPs MAA Sudan derivatives [89]
Theophylline Ag NPs doped MIPs MAA Green tea drinks 3.5 µM [97]

Metformin MIM-SERS MAA Hypoglycemic agents 5 mg/mL [104]
R6G Core-shell AM Water 10−12 M [106]

Bisphenol A Core-shell 3-(triethoxysilyl)propyl
isocyanate (TEPIC) River water 0.1 mg/L [107]

Transferrin Core-shell Polydopamine (PDA) human serum 10−8 M [123]
Glycoproteins Sandwich structure Boronic acids human serum 13.8 ± 3.3 ng/mL [122]

6. Microfluidics-SERS

Microfluidic device is a platform that can achieve the miniaturization, integration and automation
of analysis processes. Operations such as centrifugation, mixing, separation, reaction and detection
can all be integrated in a microfluidic device. Microfluidic systems can couple with different
detectors for accurate and reliable detection, characterization and diagnosis. SERS is a newly
emerged detection technique in microfluidic devices due to its advantages such as non-destructiveness,
highly sensitivity, rapidity and low aqueous interference. Combination of SERS with microfluidic
techniques (Microfluidics-SERS) can manipulate and detect small amount of samples in a rapid,
sensitive, reproducible and high-throughput mode.

Microfluidic platforms can be divided into five groups according to different liquid propulsion forces:
pressure, capillary, centrifugal, electrokinetic and acoustic [124]. Among them pressure, capillary and
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centrifugal driven microfluidics are the most familiar ones. Pressure-driven microfluidic devices mainly
include laminar flow, segmented flow and continuous flow microfluidic devices, in which the segmented
flow microfluidics have already been applied in conjunction with SERS. Droplet-based microfluidic
chips are the most popular in segmented flow microfluidic device [125]. A typical droplet-based
microfluidic-SERS platform is depicted in Figure 12a. Aqueous droplets are generated in the continuous
phase of the mineral oil. AgNPs and KCl solution or H2O are injected in the existing droplets. The mixing
of the analytes is assured by two meandering channels. The SERS spectra were acquired continuously with
fixed integration time in the channel [126]. Popp’s [127] group has done a lot of works on the application
of SERS detection technique in a liquid/liquid segmented microfluidic system. Their results proved
that combination of segmented microfluidic system with highly sensitive SERS technique results in
a reproducible quantification of analytes. They found that the introduction of analytes’ deuterated
isotopomers as internal standards in the liquid-liquid two phase segmented flow lead to reproducible
and comparable SERS results independent from the used colloid [128]. A novel wash-free magnetic
immunoassay technique for prostate-specific antigen (PSA) detection that uses a SERS-based microdroplet
sensor is depicted in Figure 12b, the separation process through a magnetic bar is embedded in
the droplet-based microfluidic system. This approach is expected to be useful as a potential clinical
tool for the early diagnosis of prostate cancer [129].

Figure 12. A typical microdroplet base SERS sensing platform: ports 1–5 are used for the injection
of an aqueous solution containing the sample, the SERS active substrates, and their aggregation
agent [126]; (b) Schematic illustration of the SERS-based microdroplet sensor for wash-free magnetic
immunoassay. The sensor is composed of five compartments with the following functions: (i) droplet
generation and reagent mixing; (ii) formation of magnetic immunocomplexes; (iii) magnetic barmediated
isolation of immunocomplexes; (iv) generation of larger droplets containing the supernatant for SERS
detection and (v) generation of smaller droplets containing magnetic immunocomplexes [129].

Centrifugal microfluidics is a rapidly growing lab-on-a-chip technology, in which fluid movement
is achieved by spinning a disc [130]. A series of processes include metering, switching, aliquoting,
etc. [124] are controlled by the frequency protocol of a rotating microstructured substrate within
centrifugal microfluidics. The first paper which combined centrifugal microfluidics with SERS
technique took advantages of the centrifugal force of a rotational CD to effectively concentrate
analytes for effective label-free environmental and biomolecular SERS detections. The CD-based
SERS platform is shown in Figure 13. This kind of CD-based SERS platform provide high-throughput,
high-sensitive and large-area uniform SERS substrates for ultrasensitive label-free sensing [131].
Another report showed that ionic wind near a corona needle tip above a small liquid reservoir can
generate microcentrifugal flows and trap suspended bacteria within a few minutes. Bacteria decorated
with antibody-functionalized SERS micro-tags were concentrated and enriched at the reservoir bottom
and can then be recognized and quantified by SERS signals from the tags [132].

Conventional microfluidic fabrication included photolithography, electron beam lithography,
printing, and molding. These steps usually involved high-cost technology and skilled operation
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with expert technicians. However, low-cost microfluidic devices are welcomed in real applications.
Therefore many researchers have focused on the fabrication of paper-based microfluidics [125].
The liquids in paper-based microfluidics, like in other capillary microfluidic system, are driven
by capillary forces [124]. Paper microfluidic devices can be designed into various types depending on
their applications. Conventional fabrication methods of 2D paper-based microfluidic devices include
wax printing, digital inkjet printing, photolithography, flexographic printing, plasma treatment,
laser treatment, wet etching and wax screen-printing. Conventional materials for 2D paper-based
microfluidic devices include cellulose-based filter papers and membranes. White’s group used filter
paper as the substrate, AgNPs were printed onto the substrate by an inexpensive inkjet printer to
form sensing arrays [133]. In this way they fabricated a very simple paper SERS devices that enable
the concentration of analyte molecules into a small detection volume [134]. The measurements showed
that the technique is quantitative. In addition to the paper substrate, nitrocellulose membrane has high
trapping ability for protein and other biological macromolecules. Therefore, without any pretreatment
procedure, SERS detection of glucose in blood samples can be directly carried out on the hydrophilic
channel of the nitrocellulose membrane [135].

Figure 13. Optofluidic SERS-CD platform and preconcentration mechanism. (a) Schematic illustration
of the optofluidic SERS-CD platform with high-throughput sample preparation; (b) The mechanism
of preconcentration consisting of 4 steps. I: Fabrication of SERS-active sites; II: Injection of
a sample solution; III: Adsorption of target molecules on the SERS-active site during drying process
prior to SERS measurement; IV: Accumulation of the adsorbed molecules by the repetition of
the steps II and III. (c) The enhanced SERS intensity due to the preconcentration of the target molecule
with increasing ‘filling–drying’ cycles [131].

Conventional fabrication method of 3D paper-based microfluidic devices is stacking alternating
layers of paper and water-impermeable double-sided adhesive tape. Details of each fabrication
technique of microfluidic paper-based analytical devices can be found in a recent review [136].
3D paper-based microfluidic devices were firstly proposed by Whitesides’ group [137]. Another
studiers [138] also report fabrication of 3D paper-based microfluidic devices based on the principles
of origami. The entire photolithographic process is completed by a hot plate, UV lamp, and a mask
produced on a printer. A switch-on-chip multilayered microfluidic paper-based analysis device
was fabricated by Luo et al. as a portable SERS immunoassay to detect clenbuterol from swine hair.
Antigen was directly anchored in pattern on the paper chip, as shown in Figure 14. Unwieldy multistep
operations in traditional immunoassay were simplified, which make this kind of paper chip very
attractive for fast, cheap, accurate and on-site specific detection of clenbuterol from real samples [139].
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Figure 14. (a) The photograph of the switch-on-chip and (b) the enlarged view of the inlet and
the pretreatment zone [139].

Microfluidic-SERS technique has the advantages of low sample doses needed, multiplexing
of microchannels, rapid and sensitive analysis, on-chip detection, etc. The incorporation of
selective/specific recognition reagents (such as antibody, aptamer or MIPs) into microfluidic-SERS will
make microfluidic-SERS chip a very promising platform for fast, ultrasensitive and specific analyte
detection. Up to now the incorporation of antibody into the microfluidic-SERS system has been
reported by many groups. For example, Zou et al. [140] reported the CEA detection in raw blood
samples exploiting microfluidics. After capturing CEA by antibody coated magnetic nanoparticle,
the immunocomplex were then mixed with AuNPs coated with both antibody and Raman tag to detect
CEA in whole blood with picomolar precision. Cui et al. [141] studied cell–cell communications in situ
with surface enhanced Raman scattering (SERS) nanoprobes and microfluidic networks for screening of
immunotherapeutic drugs. Multiple immunosuppressive proteins secreted by cancer cells in a tumor
microenvironment were quantitatively analyzed by a SERS-assisted 3D barcode immunoassay with
high sensitivity (1 ng/mL).

There were also some reports on the incorporation of aptamers into microfluidic-SERS systems.
Catala et al. [142] reported the on-chip SERS quantification of Staphylococcus aureus in human fluids.
SERS-encoded particles were functionalized with either an antibody or an aptamer can form a dense
collection of electromagnetic hot spots on the surface of S. aureus. Quantification is achieved by
passing the bacteria-nanoparticle aggregates through a microfluidic device with a collection/ detection
window. They found that aptamers show much larger affinity for bacteria than antibodies. Therefore
the final SERS intensity for aptamers is larger than that for antibodies. Fu et al. [143] reported
the sensitive and selective polychlorinated biphenyls detection on a aptamer-based microfluidic-SERS
sensor. Mercapto aptamer of 3,3′,4,4′-tetrachlorobiphenyl (PCB77) can capture PCB77 and immobilized
on Ag nanocrown array detection zone to improve both sensitivity and selectivity. Chung et al. [144]
detected trace mercury(II) ions using aptamer-modified Au/Ag core-shell nanoparticles by SERS
technique in a microdroplet chip. The LOD was below 10 pM.

7. Final Statements

SERS itself is a fast, ultrasensitive detection technique, however, in complicated matrix
the “fingerprint” recognition capability of SERS may fail due to the multiple interferences. Therefore,
selective/specific detection is crucial for the real application of SERS technique, this can be done by
the 5 approaches mentioned above. Chemical reaction-SERS method is more suitable for those analytes
possessing little affinity to SERS substrate or having small Raman cross sections. However, the limited
choice of reaction types hampered its wide application. It is hard to tell which of the three specific
recognition approaches (antibody, aptamer and MIPs) is more effective. Antibodies have been
widely used in immunoassays due to their strong recognition and binding capability. However,
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the modification reaction and the unfavorable condition may deteriorate their recognition capability.
Compared to antibodies, aptamers show better batch-to-batch consistency and are more robust in
different environments. As to MIPs, though the theoretical recognition and binding capability is not
as good as antibody or aptamer, it’s the only technique among the 3 that can be applied in extreme
conditions or non-aqueous environments.

Microfluidics-SERS may hold the greatest promise among all the approaches mentioned in
this review. The reason is manifold. Firstly, by careful chip design and fine parameter control,
the best recognition/detection result and repeatability can be guaranteed. Secondly, by simple
modification (surface decoration, stationary phase incorporation) the microchannels of the microfluidic
device can effectively separate different analytes according to chromatography principles (size, charge,
hydrophobicity and affinity) [145]. SERS detection can then be performed on places where analytes
locate to achieve selective/specific detection. However, there’s only a few report on on-chip separation
and SERS detection [146]. Thirdly, it’s easy for microfluidic chips to incorporate with other specific
recognition technique, which has already been mentioned in Section 6.

In conclusion, SERS is a rapid, sensitive and non-destructive detection tool. With the development
of Raman spectroscopy fabrication technique, more powerful portable Raman machine has
been introduced with cheaper prices. This makes SERS more favorable in in-field detection.
Selective/specific recognition techniques such as chemical reaction, antibody, aptamer, MIPs and
microfluidic devices can address the issues of multiple interferences during SERS detection.
Together with the selective/specific recognition techniques, SERS may find broader application in
real application, especially in high-throughput screening, quality control, in-field environmental
monitoring and point-of-care testing.
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