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Abstract

The purpose of this work is to describe the dynamics of the COVID-19 pandemics
accounting for the mitigation measures, for the introduction or removal of the quaran-
tine, and for the effect of vaccination when and if introduced. The methods used
include the derivation of the Pandemic Equation describing the mitigation measures
via the evolution of the growth time constant in the Pandemic Equation resulting in an
asymmetric pandemic curve with a steeper rise than a decrease and mitigation mea-
sures. The Pandemic Equation predicts how the quarantine removal and business
opening lead to a spike in the pandemic curve. The effective vaccination reduces the
new daily infections predicted by the Pandemic Equation. The pandemic curves in
many localities have similar time dependencies but shifted in time. The Pandemic
Equation parameters extracted from the well advanced pandemic curves can be used for
predicting the pandemic evolution in the localities, where the pandemics is still in the
initial stages. Using the multiple pandemic locations for the parameter extraction allows
for the uncertainty quantification in predicting the pandemic evolution using the
introduced Pandemic Equation. Compared with other pandemic models our approach
allows for easier parameter extraction amenable to using Artificial Intelligence models.
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1 Introduction

The management of the COVID-s19 pandemics requires a difficult trade-off between
limiting the spread of the disease and trying to control and limit the horrendous damage
to the economy. Opening the USA could limit the damage to the economy and relieve
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economic and psychological pressures but could also lead to a spike in the COVID-19
infections. To address this problem, many states have chosen a partial opening. For
example, most of the state of Virginia was open on May 14, 2020. However, Northern
Virginia, Richmond, and Accomack County were all granted 2-week delays.

The predictive models could guide the pandemic response by learning from the past
[1]. Some are based on Lotka-Volterra (prey-predator) equation [2], others use com-
parisons with previous epidemics [3]. There are many attempts to address more specific
issues, such as a lockdown impact [4] or explore the evolution of Intensive Unit bed
availability [5] or effects of tracing [6]. Some of the models focus on predicting the
average number of infections caused by an infected person [7], the effects of the social
contact patterns [8] and estimating the severity of the coronavirus disease [9]. The
models range from those assessing the global impact of the COVID-19 pandemic [10]
to the models focusing on European countries [11] [12], Asia [13] (including China)
[14] and on the low- and middle-income countries [15] [16], with the latter addressing
opposing effects of the limited health care options and having a younger population on
the pandemic trends. The pandemic models also address the effects of the seasonal
variations on the pandemic growth [17]. Many of the COVID-19 models are presented
at the Center for Disease Control and Prevention COVD-19 forecasting site [18] and
ForecastHub [19]. Predictive mathematical models of the COVID-19 Pandemic are
reviewed in Reference [20] It has been even claimed that simulations drive the world’s
response to COVID-19 [21]. Models, such as Advanced Autoregressive Integrated
Moving Average (ARIMA) Model [22], have been used to predict the trends of the
COVID-19 pandemic for the most affected countries. The factors affecting the accuracy
of such models have been widely discussed (see, e.g., [23] and references therein).
They include uncertainties in estimating asymptotic infections and time lag between
infections and deaths, possible underestimation of the COVID-19 deaths [24] [25],
issues related to establishing COVID-19 recovery [26], and strikingly different patterns
of the pandemic in different countries and even in the different regions of the same
country [27] [28]. The challenging problem is to account for the balance between
controlling the pandemic growth and negatively affecting the economy [29] [ 30].
,These difficulties and uncertainties highlight the case for the development of the
unified model with an established parameter extraction procedure and parameters that
have a clearly understood meaning and could be related to the factors, such as
mitigation measures or factors specific to a given locality.

I now propose a unified model based on a new equation that I call the
Pandemic Equation. This equation has as simple analytical form but could accu-
rately fit different pandemic evolution curves and account for the effects of
mitigation measures and/or of opening and closing the economy. This allows for
establishing a balance between limiting the spread of the virus and the economic
hardship. The equation could be used to predict pandemic trends. The predictive
time range of the Pandemic Equation could be estimated by using a partial set of
the fitted pandemic data for the prediction of the pandemic evolution. The
calculated results could be then compared with the entire available data set. The
results of such a procedure could be used for the uncertainty quantification of the
future pandemic evolution. The parameter extraction and the uncertainty quantifi-
cation procedures could be incorporated into trainable Artificial Intelligence
models for the big data processing approach to the pandemics.
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2 Pandemic Equation

The unique feature of our model is having a limited number of the pandemic curve
evolution parameters with an easily understood meaning and well-defined parameter
extraction procedure. The model parameters are directly linked to the mitigation
measures, such as the introduction or removal of the quarantine, and to the effect of
vaccination when and if introduced. The quarantine removal and business opening lead
to a spike in the pandemic curve predicted by Pandemic equation. The effective
vaccination reduces the new daily infections described by the Pandemic equation.
The pandemic curves in many localities have similar time dependencies but shifted
in time. The Pandemic Equation parameters extracted from the well-advanced pan-
demic curves can be also used for predicting the pandemic evolution in the localities,
where the pandemics is still in the initial stages or having a rebound. Using the multiple
pandemic locations for the parameter extraction allows for the uncertainty quantifica-
tion in predicting the pandemic evolution. Future work will use artificial intelligence to
train the Pandemic Equation model for the parameter optimization based on the history
of multiple pandemic locations.

The Pandemic Equation could be applied to other pandemics using different parameter
sets. It could be also find applications for describing other processes, such as stock price
evolution that could be correlated with the market conditions and management changes.

Table 1 summarizes the parameters of the Pandemic Equation curve and relates
these parameters to specific events and measures during the pandemic.

Table 1 Pandemic Equation curve parameters and related characteristics

Parameter Unit Meaning Comment
N Number of people infected from
pandemic start
N, - Total number of people who
could be infected
N, Number of infected people Typical values 1 to 20
at pandemic start
fo - Initial infection ratio fo=N,/N;
Ty day Initial growth time constant Typical values from 2 to 5 days
T day Time dependent growth time constant T=T,+at
@ - Curve flattening parameter(7= 7, + o) « is extracted from
pandemic peak time, £,
By Ba-..Fa - Mitigation parameters for Negative Scorrespond to
1, 2, ...n Mitigation events lifting restrictions. Typical
values —3 to 1
tg1, ta.. ton day Times of mitigation events Typically larger that the
pandemic peak time
TBls T+ Thn day Time constants of mitigation events. Typically very small
From 1/Nto 10/N,
b day Time of the pandemic peak Time of the first peak for

multiple peaks
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As seen from Table 1, all parameters of the Pandemic Equation have a very clear
meaning and, as shown below, their y extraction from the pandemic evolution data is
straightforward.

We start from the standard rate equation (see, for example [31, 32],) that we
generalize to obtain the Pandemic Equation.

dN _ (1-N/N)N W

dr To

Here N is the total number of infections (not of the infected people because some
infected people recovered and some, unfortunately died), 7,is the characteristic time of
the pandemic growth, and N, is the total number of people who could be infected (the
infection pool). N, is smaller than the number of people N, in the population because
some people could have genetic immunity to the virus or isolated from the community.
The herd immunity ratio

fherd:Nl/Np< 1 (2)

was estimated to be 60-70% [33], but it could strongly depend on a specific locality,
since it depends on the transmission ratio that varies a great deal depending on the
population’s habit (e.g., it could be much smaller in South Korea, where people have
been used to wearing masks than in the USA).

From Eq. (1), the ratio of the total infection to the infection pool f'= N/Nis

a _ (1=f)f
@, ©)
The solution of Eq. (3) is
f= eXp(I/Tg) (4)

~exp(t/7,) +exp(Cy)

Here C; is the integration constant to be determined form the initial conditions f0) =£,

fo=(1+e)" (5)
Sincef, <<1, f,=e ' and Eq. (4) becomes

fo oWt _ oexp(x)

B foexp(t/Ta) + 1 o foexp(x) + 1 (6)
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Hence, the total number of the infected people &, is given by

_ Ntf‘oexp(x) (7)
Foexp(r) + 1

Herex =t/7. For following the pandemic evolution, the daily number of the new

infections AN is more important than the total number of infections to date. From

Eq. (7)

N Nuf e (®)
dt

AN .
(1+e/mf, )T,

As seen from Fig. 1, this approach to modeling pandemic might only work at the initial
stage of the pandemics (during its exponential growth).
The maximum of this symmetric curve is reached at

two = TIn(1/f,) )

The pandemic evolution should be described by a more complex time dependence of
the new infections with a typical asymmetrical curve. This could be accounted for by
making the pandemic growth time constantrand the infection pool Nto be a slow (on
the scale ofr,) functions of time:

t/7(1)
AN, = N(t)f e . (10)
(1+foe/™0) 7 (1)

This approach is similar to the adiabatic approximation in the quantum theory of solids
of allowing two time scales for slow (atomic) and rapid (electronic) motion [34]. We
call Eq. (10) the Pandemic Equation.
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Fig. 1 Solutions of the rate equation: the number of infected people and the number of people infected per day
as a function of time from pandemic start
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The total number of the infected people as a function of time is then given by
L ’ !
N,-(t):fAN,(:)dt (11)
0
We will show that we could fit a variety of data using the following function

T="T,+ at (12)

leading to

Nta (a)faet/(ro+o¢t)
(1 + £, e/t (7, + o)

AN, = (13)

Here « is the flattening parameter responsible for “flattening the curve” as illustrated by
Fig. 2(a) showing an asymmetric pandemic curves reproduced using the time depen-
dence of .

The maxima of the daily infections reached at approximately

- Toln(l/fo)
" an(1/7,) "

This expression is obtained from Eq. (13) assuming that o < < 7,/t,,, so that the terms
at are only kept in the exponential functions in Eq. (13). Figure 2(b) shows the
dependence given by Eq. (14). As seen, Eq. (14) agrees well with the position of the
maxima in Fig. 2(a) and it could be used for the parameter extraction. Our numerical
calculations show that Eq. (14) works as a reasonable approximation if a < <t,,,=
In(1/£,). As seen from Fig. 2(a), varying the curve flattening parameter a reproduces
well different degrees of the curve flattening and, as seen from Fig. 2(b) could be easily

3 1200 a=0 T 3
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2 1000 o~
=
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g s
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< € 25}
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(7] ©
2 =
E 200 e 20
z £
20 46 60 80 100 = 0.01 0.02 0.03 0.04 0.05
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Fig. 2 a Number of people infected per day as a function of time from pandemic start. b Time of the pandemic
peak versus flattening parameter (solid line calculated using Eq. (14), dots are calculated numerically) (b).
Parameters used in the calculation: N,=N,, =10, 000,f;, = 1/N,,, 7= 2days
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extracted based on the initial time constant of the pandemic growth and the time of the
first pandemic peak.

We now introduce the effect of the mitigation measures, such as contact tracing,
closing or opening the economy, introduction or removal or the quarantine, and
requiring wearing masks and social distancing in public places. Now the Pandemic
Equation becomes

AN () = AN (1, @) (1—5/ (1 +exp <tf_—:’>)> (15)

Here fis the mitigation parameter, 75 is the characteristic time constant of the control
measures introduction, and#sis the characteristic time of the control measures introduc-
tion (the effect of the measures starts at approximately 73—373 and finishes at
approximatelyzg + 373).

The Pandemic Equation could be further generalize to account for multiple govern-
ment mitigation events as follows

By y
1+exp((t-t31)/751)

AN@lﬁz"'ﬁn(t) = ANi(l‘, a) (1—

(16)
1- b e 1= b
1+ exp((t—l‘gz)/T/jz) 1+ exp((t—t‘@,,)/m,,)

3 Results and Discussion

We start from simulating different mitigation effects using the Pandemic Equation and
then discuss the parameter extraction that we apply to the COVID19 data for New City
and the Commonwealth of Virginia.

Figure 3 shows the simulated effect of vaccination for different vaccine efficiencies
represented by the values of the mitigation parameter 3=0.1, 0.5, and 1. The value of
(=1 corresponds to the limiting case of the totally effective vaccination.) The ability of
our model to account for the vaccination effectiveness is very important. Typically, for

2 Vaccination
s 20000 4
F= effectiveness B=0
g 600 % eusdeacnie
‘€ =
E Vaccination § 15000 B=05
s ffectiveness °
g 400 e k]
2 B=0 £ 10000
=
g 7% s 5
£ 200 . p=0. ] G oE
> Vaccination |\ B=1 -E 5000 Vaccination
‘© start 2 S start
o e z
20, 40 G0 80 100 0 .20 40 60 80 100
Time (days from start) Time (days from start)

Fig. 3 Simulated effect of vaccination for different vaccine efficiencies represented by 5=0.1, 0.5, and 1
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a flu vaccination, the vaccine effectiveness is between 40 and 60% according to CDC
[35]. Recent reports estimate the COVID-19 vaccine effectiveness to be approximately
90%. However, the US public, for example, is divided over whether to get the COVID-
19 vaccine [36]. All these factors could be accounted for by the values of the mitigation
parameter corresponding to vaccination and could be reproduced by varying the
mitigation parameter. It is also important that the model accounts for the characteristic
time of the vaccine deployment.

Figure 4 shows the simulated effects of relaxing the COVID-19-induced restrictions
and opening the economy. We could relate the values of 5= — land 3= —2to Phase 1
and Phase 2 of lifting the COVID-19-related restrictions.

Figure 5 shows relaxing the simulated combined effect of lifting and re-introducing
restrictions, such as opening and the closing down economy. As seen, the Pandemic
Equation reproduces well the complicated shapes of the pandemic evolution by
accounting for multiple events corresponding to positive and negative values of the
mitigation parameter and related time constants.

We now use the Pandemic Equation for fitting the pandemic evolution curves for the
Commonwealth of Virginia and New York City. The parameter extraction for the
Pandemic Equation starts from plotting the number of the natural log of the total
infections as a function of time. This dependence is linear at the beginning of the
pandemic. The slope and intercept of this line yield 7, and f,, respectfully. From the
time of the first peak, we estimate parameter « using Eq. (17)

- tn=ToIn(1/f,)
“" twIn(1/f,)

Parameter N; is then extracted from fitting the peak value of the daily infections.
Finally, we choose the values of parameters(,z3 ands. Figure 6 and Fig. 7 show the
resulting fits.

The Pandemic Equation is capable of reproducing the pandemic evolution curves
with multiple events leading to the second spike. However, a more important applica-
tion of the Pandemic Equation in its predictive capability to be endowed by the
parameter extraction and interpretation from the localities, where the pandemic has
run its course or at least the pandemic is far enough on the decreasing slope. Future
work should include developing the Al approach to train the Pandemic Equation model

(17)
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Fig. 4 Simulated effects of relaxing the COVID19 induced restrictions and opening the economy
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Fig. 5 Combined effect of lifting and re-introducing restrictions, such as opening and the closing down
economy

for the parameter optimization based on the history of multiple pandemic locations with
well advanced pandemic history.

Fitting the data for New York City and Commonwealth of Virginia pandemic
evolution revealed interesting trends. The fitted values of the population pools for the
infection (105 for NYC and 2.4 x 10 for Commonwealth of Virginia) are much smaller
than the total New York and Virginia populations, respectively. Also, the curve
flattening parameters are quite large (0.067 for Virginia and 0.0631 for NYC). We
speculate that these results could be explained by having loosely connected infection
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Fig. 6 Fitting the Commonwealth of Virginia pandemic evolution (solid line: the Pandemic Equation fit)
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Fig. 7 Fitting the NYC pandemic evolution (solid line: the Pandemic Equation fit)

clusters. One such cluster could be international fliers who brought the initial infection
from China or Italy and their friends and relatives belonging to the NYC more affluent
society. Another cluster might be low-income population that includes waiters, porters,
and cab drivers getting infected serving the original infected people. Still another
cluster in NYC is the nursing home population. A large fraction of the population
has remained relatively unaffected. It is also possible that more affected individuals
transmit the decease at a higher rate but they die or recover first making the transmis-
sion less likely. The NYC data also reveal a very long low infection rate tail. The
duration of this tail allows to estimate the low limit of the acquired immunity, which
seems to exceed four months. More fitting by the Pandemic Equation for different
localities and longer periods of time might prove or disprove these speculations but
they show that presenting the noise pandemic data by a few clear parameters driving
the pandemic is very useful for the analysis of the trends and predicting our future.

The evolution of the new cases for Virginia (see Fig. 6) is very different. If we again
apply the cluster hypothesis to the pandemic evolution a much smaller per capita first
peak for the Virginia pandemic means that the intra-cluster herd immunity has not been
reached in contrast to the New York situation and the rebound potential was higher
when the state was opening up.

4 Conclusion

The Pandemic Equation is the modified rate equation with slowly varying parameters.
This approach is similar to the adiabatic approximation in quantum theory of solids.
The Pandemic Equation describes the pandemic evolution curves accounting for curve
flattening and mitigation measures, such as the introduction or removal of the quaran-
tine and for the effect of vaccination when and if introduced. Extracting these param-
eters from the well-advanced pandemic curves allows for reaching conclusions about
the pandemic trends and might enables the Pandemic Equation to predict the pandemic
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evolution for the locations where the pandemics is not yet very advanced including the
effects of different mitigation measures.

Future work should include linking the model parameters to different measures and
events affecting pandemic. The simplicity and relative ease of the parameter extraction
should make this model to be a tool that could be widely used by local governments
and communities for understand the past and trying to predict the future trends. This
work could be supplemented by an artificial intelligence model to be trained to
recognize the features of the pandemic curves and automatically extract the model
parameter, similar to how it was done for extracting the image features during inte-
grated circuit testing [37].
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