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Decreases in the costs of high-throughput sequencing technologies have led to

continually increasing numbers of livestock RNA-Seq studies in the last decade.

Although the number of studies has increased dramatically, most livestock

RNA-Seq experiments are limited by cost to a small number of biological

replicates. Meta-analysis procedures can be used to integrate and jointly

analyze data from multiple independent studies. Meta-analyses increase the

sample size, which in turn increase both statistical power and robustness of the

results. In this work, we discuss cutting edge approaches to combining results

from multiple independent RNA-Seq studies to improve livestock

transcriptomics research. We review currently published RNA-Seq meta-

analyses in livestock, describe many of the key issues specific to RNA-Seq

meta-analysis in livestock species, and discuss future perspectives.
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1 Introduction

The development of RNA-sequencing (RNA-Seq) as a high-throughput gene

expression quantification technology has been crucial in the advancement of livestock

genomics research. In the last decade, the number of annually published livestock

transcriptome studies has nearly tripled (Figure 1). For most of these studies, raw

sequence data is stored in public repositories, such as National Center for

Biotechnology Information Sequence Read Archive (NCBI SRA). To-date, NCBI SRA

houses RNA-Seq data from over 3,100 different livestock projects, comprised of

approximately 59,000 samples (Figure 2). In addition, multiple consortiums, including

Functional Annotation of Animal Genomes (FAANG; Giuffra et al., 2019) and Farm

Animal Genotype-Tissue Expression (FarmGTEx; Liu et al., 2021), are continuing to

collect, curate, and house RNA-Seq data for multiple livestock species. Data from these

resources is easily accessible and can be utilized for integrated analyses to generate new

knowledge and scientific findings.

Despite its widespread use, challenges remain in RNA-Seq data analysis. One major

issue that has been observed in gene expression studies, in livestock and other species, is

non-reproducibility of results (Shi et al., 2008). Due to sequencing costs, livestock RNA-
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Seq experiments are typically performed on a small number of

biological replicates, which limits their power to detect

differentially expressed genes (DEG) between experimental

conditions. In addition to small numbers of replicates, inter-

study variability due to technical differences (e.g., sample

preparation, library protocols, batch effects) as well as

biological differences (e.g., environmental, management, and

genetic effects) also contributes to reproducibility issues.

One way to improve reproducibility of RNA-Seq is by

integrating data from multiple independent studies via meta-

analysis. It should be noted that the term meta-analysis is an all-

encompassing term, used to describe a systematic synthesis of

quantitative results from different empirical studies. Hence,

meta-analysis can be used to describe a large breadth of

analyses with different goals. In this review, we focus

specifically on meta-analysis procedures for integrating RNA-

Seq data across independent studies to identify differential gene

expression.

Meta-analysis procedures increase the sample size by

incorporating samples from different studies, increasing both

statistical power and robustness of the results. Recently, the

number of publications involving differential gene expression

meta-analysis has increased drastically, with most studies

conducted on human samples (Toro-Domínguez et al., 2021).

In humans, meta-analysis has been widely used in identification

of biomarkers related cancer (Chen et al., 2014; Bell et al., 2017;

Kori and Arga, 2018) and other diseases, including hypertension

(Huan et al., 2015), Alzheimer’s disease (Su et al., 2019; Wan

et al., 2020), autoimmune disorders (Kröger et al., 2016), and

schizophrenia (Piras et al., 2019).

To-date, few livestock RNA-Seq studies have utilized meta-

analysis procedures to analyze differential gene expression. This

is likely due to several issues, including, but not limited to, high

levels of inter-study variation, availability of metadata, and

limited technical guidance for conducting a meta-analysis. In

this review, we discuss many of the key issues specific to RNA-

Seq meta-analysis in livestock species. The first two issues are

related to data acquisition and pre-processing, while the

remaining issues relate to choosing a meta-analysis procedure

and interpretation of results. Lastly, we discuss other points

related to meta-analysis of livestock RNA-Seq data, including

additional applications of meta-analysis procedures outside of

differential expression analysis, new methodologies for large

scale RNA-Seq, and single-cell RNA-Seq.

2 Applications of RNA-Seq differential
gene expression meta-analysis in
livestock

As described by Toro-Domínguez et al. (2021), a wide range

of contexts exist for meta-analysis of gene expression data. In this

work, we will focus on the use of meta-analysis of RNA-Seq data

across multiple studies with the same phenotypic groups in order

to increase the statistical power to detect genes showing

consistent differences between groups. To-date, four livestock

studies have reported the use of RNA-Seq meta-analysis

procedures for differential expression analysis, all of which are

cattle studies (Keel et al., 2018; Lindholm-Perry et al., 2020;

Ghahramani et al., 2021; Lindholm-Perry et al., 2022). Traits of

FIGURE 1
Number of published livestock transcriptome studies by year since 2012. Data was compiled via PubMed search: “TRANSCRIPTOME” and
“species” and “year” (accessed 12 August 2022).
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interest in these studies include those related to feed efficiency

and lactation.

There have been numerous transcriptome studies that aim to

identify DEG related to feed efficiency in beef cattle. Minimal

overlap in the results from these studies is an ongoing issue. In

order to identify DEG predictions that would be more robust across

the beef cattle industry, companion studies in skeletal muscle (Keel

et al., 2018) and mesenteric fat (Lindholm-Perry et al., 2020)

identified DEG associated with body weight gain and feed intake

in beef steers across five different cohorts of crossbred animals

reared at the same facility. Data used in these studies included

nineteen beef breeds from the GPE population (Retallick et al.,

2017), as well as both fall and spring seasons over 3 years. Several of

the DEG in both skeletal muscle and mesenteric fat had been

previously identified as candidate genes for feed efficiency or

DEG associated with feed efficiency in livestock.

In addition to the aforementioned studies, where data from

multiple cohorts reared in the same facility were utilized, meta-

analysis techniques have been used to combine data across

independent studies with common aim to detect DEG associated

with cattle feed efficiency. Differentially expressed genes in the

rumen epithelium of beef steers with high and low residual feed

intake (RFI) phenotypes (Lindholm-Perry et al., 2022) were

identified from a meta-analysis of two unrelated and physically

distant populations, one located in the U.S. and the other in Canada.

A total of 83 DEGwere identified in the meta-analysis, compared to

12 and 119 DEG in the individual U.S. and Canadian studies,

respectively. Twenty of the DEG from the meta-analysis were

classified as robust, meaning they passed a jackknife sensitivity

test (for details on jackknife sensitivity testing see Section 4.2).

These robust DEG were not identified in either of the individual

analyses. Several DEG from the meta-analysis were involved in

TORC2 signaling and proteasomal ubiquitin-independent protein

catabolic biological processes. While gene ontology and pathway

analyses of DEG in the individual studies did not identify these

mechanisms, protein turnover viamTOR and ubiquitin-proteosome

pathways have been identified as mechanisms involved in RFI in the

rumen tissue of beef cattle in another study (Elolimy et al., 2019).

This suggests that the meta-analysis approach can facilitate the

discovery of more robust DEG through increased statistical power.

Transcriptomic studies related to bovine lactation have also

taken advantage of meta-analysis approaches. Ghahramani et al.

(2021) combined meta-analysis data from both publicly available

RNA-Seq and microarray to investigate DEG associated with

E. coli mastitis in dairy cattle. Separate meta-analyses were

conducted for RNA-Seq (2 datasets) and microarray

(6 datasets). A total of 360 DEG were common between the

two meta-analyses. Common DEG were subjected to multiple

downstream analyses, including ontology, protein-protein

interaction (PPI) network analysis, and co-expression network

analysis. Many of the significant biological pathways and DEG

that were hubs in the PPI networks had been previously

associated with mastitis in the literature, but no single study

was able to identify all of them at once, indicating the meta-

analysis provides a more robust biosignature.

3 Key issues in RNA-Seq meta-
analysis workflow

In this section we discuss key steps and important

considerations in the RNA-Seq meta-analysis workflow.

3.1 Identifying data sets and data
acquisition

Eligibility criteria for inclusion of data sets is dependent on

the aim of the study. Typical biological criteria include species,

breed, disease status, treatment, tissue, age, and/or phenotypic

group. Public repositories, such as the NCBI SRA database, have

search options to easily identify data sets linked to specific

keywords and ontologies. Careful attention should be given to

the metadata associated with each data set and how different

parameters could affect the results of the study. For example, if

the goal of a given meta-analysis is to investigate differential gene

expression associated with feed efficiency in a specific tissue,

FIGURE 2
Livestock RNA-Seq datasets in NCBI SRA database. Data was
generated using the online “Run Selector” tool on the NCBI SRA
website (https://www.ncbi.nlm.nih.gov/sra; accessed 12 August
2022). The outer ring represents the number of biosamples in
the database (N = 59,634), and the inner ring represents the
number of distinct bioprojects in the database (N = 3,130).
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using a data set where animals have been inoculated with a

bacteria or virus may not be appropriate due to feeding behavior

differences associated with the disease state of the animal. In

addition, diet (i.e., forage versus concentrate diets for cattle) and

sampling location within a large tissue like the liver may also

significantly affect gene expression.

Onemajor issue with data in publicly available omics repositories,

which is not unique to livestock, is the incompleteness of dataset

descriptions, called metadata. Metadata can include many different

pieces of information, including sources of data, dates of data

collection, methods used, etc., (Koltes et al., 2019). Although

stakeholders have come together to design and jointly endorse a

concise and measurable set of guidelines for metadata, referred to as

FAIRData Principles (Wilkinson et al., 2016), the degree to which the

research community follows these principles is varied. Recently,

Rajesh et al. (2021) evaluated the completeness of public metadata

accompanying transcriptomic data of patients with sepsis and

corresponding controls (3,125 samples across 29 data sets). They

found that, on average, only 65% of clinical phenotypes were reported

in the publication and/or public repository, with 35% of the

information thus being lost from the publication to the repository.

Metadata standards and infrastructure are crucial for meta-

analysis across data sets. Under the Open Science initiative

(Nosek et al., 2015), funding agencies and journals have

begun to require that data used in a study be made publicly

available, but in most databases the number of metadata entries

required is still minimal. In order to incentivize authors to submit

high-quality metadata, a prototype streamlined workflow for

conversion of European Nucleotide Archive (ENA) genomic

metadata into a data manuscript has been proposed

(Dimitrova et al., 2021). Currently, this workflow is focused

on genomic data, but future plans are to expand the workflow

to include other repositories and data types.

To support submission of standardized rich metadata in

animal genomics, the Functional Annotation of Animal

Genomes (FAANG) consortium has developed the FAANG

Data Portal (Harrison et al., 2021). The Data Portal offers

open access to a wealth of data following FAIR Data

Principles produced by an ever-growing number of FAANG

consortia. To ensure that data submissions are of high-quality

with complete metadata, the portal includes a contextual

metadata validation. Changes to the metadata standards in the

Data Portal can be proposed by anyone in the research

community via their GitHub page. Adoption of metadata

practices like those of ENA and FAANG, described herein,

should be considered by other public repositories to facilitate

the reuse of omics datasets.

3.2 Data preprocessing

Data preprocessing is an important step in the meta-analysis

process. Unfortunately, there is no optimal pipeline for the

variety of different applications and analysis scenarios in

which RNA-Seq can be used, and preprocessing protocols

may vary greatly from study to study (Conesa et al., 2016).

For meta-analysis, data preprocessing should be as standardized

as possible between studies in order to minimize technical

heterogeneity. Although preprocessed data is often available in

public repositories, it is best to start from the raw data and

process all data sets using a unified pipeline. Conesa et al. (2016)

provide an extensive review of the major steps involved in

processing RNA-seq data.

Standard quality control, read mapping, and quantification

procedures should be performed on raw RNA-Seq data at the

start of any meta-analysis (Conesa et al., 2016). Briefly, raw reads

should be analyzed for sequence quality, GC content, adaptor

presence, overrepresented reads, and duplicated reads.

Acceptable levels of duplicated content differ by organism but

should be homogeneous for samples in the same experiment. It is

recommended that outliers with more than 30% disagreement be

discarded (Conesa et al., 2016). After initial quality checking of

raw sequence reads, reads should be trimmed to remove adaptor

sequences, low-quality reads, and poor-quality bases. Trimmed

reads should then be mapped to the reference genome, and

libraries with low read mapping percentage (organism

dependent) removed from downstream analysis. After read

mapping, quantification of transcript/gene expression should

be performed.

One important, often overlooked, aspect of data

preprocessing for meta-analysis is how to handle data

generated using different RNA library preparation protocols.

During RNA-Seq library preparation, the highly abundant

ribosomal RNA (rRNA), which constitute over 90% of the

RNA in the cell, are removed. The two most utilized methods

for rRNA removal are polyA-selection and rRNA-depletion,

which generate distinct fractions of the transcriptome (Sultan

et al., 2014; Bush et al., 2017). Using two ovine RNA-Seq data

sets, identical except for RNA selection method, Bush et al.

(2017) demonstrate that although expression levels estimated

by the two methods were correlated, rRNA depleted libraries

systematically produced lower estimates of the relative

expression of protein-coding genes. Using a common

processing pipeline, in particular a common threshold for

filtering lowly expressed genes, for data sets produced using

differing RNA selection methods would then result in

incompatible downstream data. However, equivalent

expression levels between polyA-selected and rRNA-depleted

libraries can be achieved using a combination of reference

transcriptome filtering and a ratio-based correction.

3.3 Choosing a meta-analysis procedure

Meta-analysis procedures for gene expression data have been

utilized since the early 2000s, with the earliest methods being
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proposed in the context of microarrays (Tseng et al., 2012). For

microarray data, proposed meta-analysis methods include

p-value combination (Marot et al., 2009), combining effect

sizes (Choi et al., 2003), and ranking genes within each study

(Breitling et al., 2004). Several reviews and comparisons of these

methods are available (Hu et al., 2006; Hong and Breitling, 2008;

Tseng et al., 2012).

Many of the meta-analysis techniques used for microarray

data are not suited for RNA-Seq due to differences in the

underlying structure of the data (Rau et al., 2014). Microarray

data analyses utilize standard or moderated t-tests, which assume

that data are continuous and can be approximated by Gaussian

distributions after log-transformation (Smyth, 2004; Jaffrézic

et al., 2007). RNA-Seq data, which come in the form of gene

read counts, are often modeled by overdispersed Poisson (Auer

and Doerge, 2011) or negative binomial distributions (Anders

and Huber, 2010; Hardcastle and Kelley, 2010; Robinson et al.,

2010). Under these models, calculation and interpretation of

effect sizes is not straightforward (Rau et al., 2014).

Commonly used meta-analysis procedures for RNA-Seq data

include p-value combination and generalized linear models

(GLM) with a fixed study effect. Performance of these

methods has been linked to inter-study variability and the

number of studies included in the analysis. Figure 3 illustrates

examples of meta-analysis with low (Figure 3A) and high

(Figure 3B) inter-study variability. Using both real data from

human melanoma cells and simulated data, Rau et al. (2014)

evaluated the performance of these methods for differing levels of

inter-study variability, number of studies, and number of

biological replicates per study. The methods considered

FIGURE 3
Examples of RNA-Seq data with low and high inter-study variability exhibited via principal components analysis (PCA). (A) Low inter-study
variability in the muscle transcriptome of high (HBW) and low (LBW) body weight gain from five cohorts of steers reared at the U.S. Meat Animal
Research Center (Keel et al., 2018). (B) High inter-study variability in the rumen transcriptome of cattle with high (HRFI) and low (LRFI) residual feed
intake from a Canadian population and a United States population (Lindholm-Perry et al., 2022).

Frontiers in Genetics frontiersin.org05

Keel and Lindholm-Perry 10.3389/fgene.2022.983043

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.983043


included per-study p-value combination using the inverse

normal (Liptak, 1958) and Fisher (1932) methods and a

negative binomial GLM with fixed study effect. Results from

the two p-value combination techniques were nearly identical.

For low inter-study variability, the results from p-value

combination were very close to those of the global GLM with

study effect. As the inter-study variability increased, however, the

gains in performance for p-value combination were significant

compared to the global GLM, particularly for the analysis of data

from more than two studies. Given these results, the use of

p-value combination is likely the best choice for most meta-

analyses. In some cases, it may be useful to utilize the union of

results from the p-value and global GLMmethods. In their meta-

analysis of human melanoma samples, Rau et al. (2014) found

that the sets of genes uniquely identified by Fisher p-value

combination and global GLM, as well as the set of genes

found in common, all appeared to include genes related to

cancer or melanoma.

Additional data filtering is required if using the p-value

combination approach. A critical underlying assumption for

the statistics in p-value combination is that p-values for all

genes in the per-study differential analyses are uniformly

distributed under the null hypothesis (Rau et al., 2014). This

assumption is, however, not always satisfied for RNA-Seq data; in

particular, a peak is often observed for p-values close to one due

to the discretization of p-values for very low counts (Rau et al.,

2013). To circumvent this issue, weakly expressed genes should

be filtered from the analysis. Data-based methods, such as

HTSFilter (Rau et al., 2013), are preferred over ad-hoc

filtering procedures, as they can account for differences

between studies resulting from sequencing depth, intra-

condition variability, and other technical factors.

4 Interpreting meta-analysis results

In this section, we discuss key considerations for interpreting

the results of RNA-Seq meta-analysis.

4.1 Fold changes

It is not uncommon for genes in a meta-analysis to exhibit

conflicting expression patterns among studies. For example,

Lindholm-Perry et al. (2022) identified nearly 50% of rumen

epithelial DEG (37 of 83 DEG) as discordant in their direction of

expression between two unrelated, geographically distant

populations of cattle. A similar phenomenon was observed in

meta-analyses of muscle and mesenteric fat tissues across five

cohorts of related cattle that were reared in a common facility

(Keel et al., 2018; Lindholm-Perry et al., 2020).

Fold changes must be handled differently for global GLM and

p-value combination techniques. For global GLM with study

effect, fold changes are readily calculated using software such as

DESeq2 (Love et al., 2014) and edgeR (Robinson et al., 2010).

These fold changes have the same interpretation as those in single

study analyses, as they are computed by averaging gene

expression values across the conditions being compared. On

the other hand, fold changes for the p-value combination are

calculated on a per-study basis and can exhibit differing patterns

between studies.

In the context of microarrays, approaches for overcoming

conflicting expression patterns between studies for the inverse

normal (Marot et al., 2009) and Fisher (Owen, 2009) p-value

combination methods have been proposed. Bothmethods rely on

the use of a two-tailed gene expression distribution, where under-

and over-expressed genes reside in the tails of the distribution.

However, for RNA-Seq data, where the data follows an

overdispersed Poisson or negative binomial distribution,

under- and over-expressed genes cannot be separated into

distribution tails.

It has been suggested that DEG with differing expression

patterns between studies be removed post hoc (Rau et al., 2014).

However, genes with both concordant and discordant gene

expression patterns across studies could be of interest. For

example, sample collection time points will often be different

between studies. The expression of some genes may be higher at

earlier sampling time points and lower at later sampling time points.

Hence, these genes would still be of biological interest and should be

considered. Recently, there have been methodologies proposed for

identifying and exploring discordant DEG sets (Lai et al., 2016; Ye

et al., 2021), but additional research is needed to improve our

understanding of underlying causes of these differences and how

they contribute to the mechanisms of complex phenotypes.

4.2 Robustness of differentially expressed
genes in p-value combination

Differential expression results, especially those derived from

small sample sizes, are known to be susceptible to heterogeneity (Cui

et al., 2021). As a result, reproducibility of DEG is often poor from

study to study. For this reason, robustness of DEG arising from

meta-analysis should bemeasured by replication validity rather than

in independent data, such as cross-validation (Keel et al., 2018).

Jackknife sensitivity analysis has been employed to measure the

robustness of meta-analysis DEG (Ch’ng et al., 2015; Keel et al.,

2018; Lindholm-Perry et al., 2020; Lindholm-Perry et al., 2022).

Jackknife sensitivity analysis consists of repeating the meta-

analysis procedure multiple times, each time removing a single

study from the analysis (Miller, 1974). Suppose a meta-analysis

consists of N studies. A gene is said to pass a jackknife sensitivity

test if it is identified as a DEG in the jackknife analysis. Genes that

pass all N jackknife analyses can be considered highly robust, as

their statistical significance is spread across studies, i.e., they are

not being driven by any one study. Genes failing multiple
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jackknife studies can also be interpreted as robust, with a higher

number of failed jackknife tests corresponding to greater

robustness. The interpretation is derived as follows. A gene

that fails only one jackknife analysis indicates that the meta

p-value was being driven by the p-value of a single study,

i.e., there is a significant amount of study bias. Similarly,

genes that fail multiple jackknife analyses are being driven by

p-values from multiple studies. This indicates a reduced level of

study bias, i.e. a more robust result.

4.3 Downstream analysis

In RNA-Seq studies, DEG lists are subjected to several different

downstream analyses with the intention of identifying gene

signatures that link to the phenotype of interest. The most

popular type of downstream analysis is gene set enrichment

analysis (GSEA). In GSEA, the list of DEG is compared to a

background gene set with known biological processes, such as

gene ontology (GO) or biological pathways. An enrichment score,

which indicates the degree by which a gene set is overrepresented in

the list of DEG, is used to identify biological processes potentially

associated with the phenotype (Subramanian et al., 2005).

There are three primary approaches to GSEA, overrepresentation

analysis, functional class scoring, and pathway topology-based

methods (Khatri et al., 2012). Over-representation analysis (ORA)

approaches statistically evaluate the fraction of genes in a particular

ontology/pathway found among the set ofDEG. Themost commonly

used tests in ORA are based on the hypergeometric, chi-square, or

binomial distribution (Huang et al., 2009). ORA methodologies only

utilize lists of DEG, disregarding other quantitative measures of the

genes such as fold change. In functional class scoring (FCS) methods,

use a similar approach to ORA but adds in quantitative information

from the genes (Mootha et al., 2003). A gene score is calculated for

each gene, and individual gene scores are used to calculate a gene set

score. Significance of gene set scores is assessed and differentially

enriched gene sets are reported. Topology-based (TB) methods for

GSEA go a step further by utilizing the network structure of a gene

pathway to quantify a gene’s importance to a given pathway (Draghici

et al., 2007).

Currently, researchers are using the same downstream analyses

for DEG sets coming from meta-analysis as are used for single

studies. While ORA tools are directly applicable to meta-analysis

results, current FCS and TB methodologies are not since they are

designed to be used with a single set of information for each gene,

e.g., a single fold change. Integration of DEG expression profiles

across studies in a meta-analysis could shed light on the molecular

mechanisms governing phenotypes across environments, especially

for DEG exhibiting discordant fold changes across studies. To our

knowledge, there are currently no bioinformatic approaches that

integrate meta-analysis results in this way. Future development of

algorithms to incorporate this type of data would help harness the

full potential of gene expression meta-analyses.

5 Additional discussion points

5.1 Other applications of RNA-Seq meta-
analysis in livestock

Asmentioned in the introduction, the termmeta-analysis is used

to encompass many different types of analyses, all with an underlying

common goal of synthesizing results across different empirical studies.

In this review, we focused specifically onmeta-analysis procedures for

analyzing differential gene expression. In addition to this approach,

meta-analysis procedures have been used to integrate analyses of

functional genome information with large-scale GWAS data to

discover trait- and disease-relevant tissues and cell types.

In an effort to establish connections at the RNA level between

tissue/cell types and complex traits, Fang et al. (2020) uniformly

assembled and analyzed, via meta-analysis techniques, over

700 bovine RNA-Seq data sets, encompassing 91 tissues and

cell types. Tissue- and cell-specific genes were detected and

classified in terms of their biological characteristics such as

biological function, DNA methylation, and evolution. Tissue-

specific genes were integrated with large scale GWAS data to

detect candidate genes for 45 complex, economically relevant

traits via transcriptome-wide analysis study (TWAS). This study

laid the groundwork for the FarmGTEx project, which seeks to

characterize tissue-specific gene expression and genetic

regulation in livestock.

In the seminal manuscript from the FarmGTEx project,

Liu et al. (2021) built the Cattle GTEx (http://cgtex.roslin.ed.

ac.uk/) utilizing 11,642 bovine RNA-Seq data sets.

Transcriptome landscape across over 100 tissues was

described, and gene expression in different tissues was

linked to 43 economically relevant traits via TWAS and

colocalization analyses. Similar efforts in swine (PigGTEx)

are ongoing in the FarmGTEx project (Fang, personal

communication, 24 May 2022). With more transcriptomics

data becoming available across diverse tissues in livestock in

the near future, from projects such as FarmGTEx and FAANG

(Giuffra et al., 2019), the use of this type of meta-analysis will

be powerful in providing novel insights into the genetic and

biological mechanisms underpinning traits and thus

enhancing genomic improvement programs.

In addition to its use in integrating multiple RNA-Seq

experiments with GWAS data, network meta-analysis has

been utilized for differential expression analysis across

independent livestock studies. Fonseca et al. (2020)

identified DEG between high- and sub-fertile cows in two

independent studies and utilized network meta-analysis

(Winter et al., 2019) to obtain combined test-statistics for

each of the genes. These test-statistics are like those described

in Section 3.3. The use of network meta-analysis for RNA-Seq

data sets is relatively new and, to our knowledge, has not been

systematically compared to the meta-analysis procedures

described in Section 3.
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5.2 New RNA-Seq protocols to reduce
costs in large-scale expression studies

There are many different options for library preparation and

sequencing that users must consider when designing an RNA-Seq

experiment. One of the most critical and costly steps in RNA-Seq is

the construction of the cDNA library (Hou et al., 2015). In the classic

whole-transcriptome approach, cDNA are generated from reverse

transcribing randomly sheared fragments of the extracted mRNA.

Although these approaches are generally considered unbiased, there

are some subtle biases that are introduced, such as differentially

expressed genes being more likely to be enriched for longer

transcripts (Oshlack & Wakefield, 2009). Recently, 3’ RNA-Seq

have been introduced to address this bias. In addition, 3’ RNA-

Seqmethods, such as QuantSeq (Moll et al., 2014), have been shown

to significantly reduce associated financial and labor costs associated

with library preparation. These cost reductions will make large-scale

expression studiesmore feasible, especially in livestock where budget

is typically the most limiting factor.

The most widely deployed 3’ RNA-Seq method, QuantSeq,

produces fragments for sequencing close to the 3’ end of

polyadenated [poly(A)] mRNA, generally from the last exon or

the 3’ untranslated region (UTR) (Moll et al., 2014). Total RNA is

used as input with no prior poly(A) enrichment or rRNA depletion.

QuantSeq differs from traditional RNA-Seq in that it sequences a

smaller part of the transcript and produces only one fragment per

transcript. Therefore, less sequencing is required. In fact, the

QuantSeq vendor, Lexogen, recommends sequencing only

10 million reads per sample for mammalian transcriptomics

(Corley et al., 2019). It has been shown that gene expression levels

in QuantSeq and Illumina TruSeq are strongly correlated (Corley

et al., 2019). Themajor limitation of QuantSeq is that it is restricted to

assessing gene expression changes of poly(A) mRNA. It does not

provide information regarding mutations or novel transcripts. For

longer transcripts with many isoforms or non-poly(A) transcripts,

traditional RNA-Seq may be more appropriate. To date, QuantSeq

has been deployed in transcriptomic studies of multiple livestock

species, including cattle (Pascottini et al., 2021; Beak and Baik, 2022;

Busato et al., 2022; Pedroza et al., 2022), sheep (Kubik et al., 2018),

chicken (Ibrahim et al., 2021) and pigs (Dong et al., 2018; Kroeske

et al., 2021; Schroyen et al., 2021; Kramer et al., 2022).

One drawback to QuantSeq, as well as traditional RNA-

Seq library preparation, is that the user needs to process each

sample on an individual basis. To address this limitation, early

multiplexing protocols, which label individual samples during

the reverse transcription reaction, have been developed

(Alpern et al., 2019). Once individual samples have been

labeled, they are pooled, and the remainder of the library

processing steps are performed in bulk. This shortens the time

and cost of library preparation. Early multiplexing

methodologies are available for traditional RNA-Seq library

preparation (BRB-seq; Alpern et al., 2019), as well as 3’ RNA-

Seq library preparation (3’Pool-seq; Sholder et al., 2020).

Utilization of these approaches results in a significant

reduction in cost per library for library preparation and

sequencing. In fact, 3’Pool-seq can reduce the per-library

cost of library preparation and sequencing from over

$160 in traditional RNA-Seq to under $15 (Sholder et al.,

2020).

The technologies mentioned above have many strengths,

including reducing cost and streamlining experimental

procedures. They will facilitate new opportunities for future

large-scale transcriptomics studies in livestock. Future work

should focus on evaluating and comparing these methodologies

in terms of various robustness metrics, including gene expression

quantification accuracy and DEG detection. Understanding how

data generated from these approaches compares with traditional

RNA-Seq data will be crucial for conducting meta-analyses across

studies with differing RNA-Seq technologies.

6 Conclusion

Although the cost of next-generation sequencing technologies

continues to decrease, livestock transcriptomic studies are often

performed on a small number of samples due to financial

constraints. Small sample sizes result in decreased detection

power for DEG. Utilization of meta-analysis procedures to

combine and analyze data across multiple related studies can

increase statistical power and robustness of results. The aim of

this paper was to present and discuss several key considerations for

meta-analysis of livestock RNA-Seq data.

The use of meta-analysis in livestock transcriptomic data

should provide identification of DEG that underly complex

phenotypes as they account for some of the potentially

confounding issues that may influence gene expression in a

single study such as, sire lines, environment, and

management. Differentially expressed genes identified from

analysis across multiple populations will likely be more robust

biological markers. Additional research is needed to develop

techniques for downstream analysis of meta-DEG that integrate

expression profiles across studies.
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