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Gold compounds are not only well-explored for cytotoxic effects on tumors, but are also
known to interact with the cancer immune system. The immune system deploys innate and
adaptive mechanisms to protect against pathogens and prevent malignant transformation.
The combined action of gold compounds with the activated immune system has shown
promising results in cancer therapy through in vivo and in vitro experiments. Gold
compounds are known to induce innate immune responses; however, these
responses may contribute to adaptive immune responses. Gold compounds play the
role of a major hapten that acts synergistically in innate immunity. Gold compounds
support cancer cell antigenicity and promote anti-tumor immune response by inducing the
release of CRT, ATP, HMGB1, HSP, and NKG2D to enhance immunogenicity. Gold
compounds affect various immune cells (including suppressor regulatory T cells), inhibit
myeloid derived suppressor cells, and enhance the function and number of dendritic cells.
Gold nanoparticles (AuNPs) have potential for improving the effect of immunotherapy and
reducing the toxicity and side effects of the treatment process. Thus, AuNPs provide an
ideal opportunity for exploring the combination of anticancer gold compounds and
immunotherapeutic interventions.
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INTRODUCTION

In recent years, accumulating evidence has suggested that all types of cancer therapies, including
surgery, radiation, chemotherapy. and targeted drugs, (except for immunotherapy), might result in
opposing effects on systemic and cancer-associated immunological parameters. It is well-established
that chemotherapy may result in immunosuppression (Brown et al., 2018). However, an appropriate
combination of immunotherapy and cytotoxic chemotherapy may exhibit a highly synergistic
anticancer activity. Tumorigenesis is the result of gene mutations, abnormal expression, or deletions
under the influence of genetic and environmental factors, which eventually leads to abnormal cell
proliferation. A non-compromised immune system can detect, recognize, and eradicate tumor cells.
However, the interaction between tumor cells and the immune system is regulated by a large number
of immune activator/inhibitor molecules. Due to genetic instability, tumors show a high degree of
heterogeneity, which is a characteristic of malignant tumors. Heterogeneity results in multiple
interactions between the tumor and the host immune response, affecting immunotherapy.
Consequently, an anti-tumor immune response is produced to inhibit the occurrence and
development of tumors. The main anticancer reactions induced by anticancer drugs include
elimination of immunosuppressive cells, activation of immune effectors, and sensitization of
tumor cells to lysis. Ideally, appropriate anticancer therapeutic agents should achieve all three of
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these beneficial effects (Figure 1). However, due to the
immunosuppressive factors in cancer patients, the effect of
immunotherapy alone remains insufficient. Consequently,
decreasing tumor immunosuppression and improving anti-
tumor immune responses have become the major research
focus areas in the development of effective anticancer
therapies. A class of cytotoxic agents that show potential for
novel combination strategies with immunotherapies are
anticancer metal drugs, including gold compounds. This
review implicates a complex interplay between novel
anticancer gold compounds and the anticancer immune
response, both directly affecting immune effectors and cancer
cell immune recognition.

ANTICANCER GOLD COMPOUNDS AND
THE IMMUNE SYSTEM
Immune Response Contributes to the
Anticancer Activity of Gold Compounds
Gold compound-based anticancer therapeutics induce immune-
potentiating effects that are predominantly initiated by damage to

the cancer cells, signals released by drug-exposed tumor tissues,
and the recruitment of effector immune cells into the cancer
lesions, which counteract the immune-resistant milieu of the
tumor microenvironment (TME) (Rivera Vargas and Apetoh,
2017). Gold (I) compounds not only act on tumor cells and
immune cells directly, but also affect the expression of cell
adhesion molecules on endothelial cells (Eisler, 2003).
Chemotherapy has been shown to increase the risk of
secondary infections via myelosuppression and
lymphocytopenia, indicating that it may lead to immune
suppression (van der Most et al., 2005). However, an
appropriate combination of cytotoxic chemotherapy and
immunotherapy may exert a highly synergistic anticancer
activity (Gandhi et al., 2018). Chemotherapy can potentially
affect certain immune cells that may result in enhanced
anticancer effects and reverse “immune evasion” of cancer
cells. Cytotoxic chemotherapy and anticancer immune
responses are multifaceted and complex events (Brown et al.,
2018; Wu and Waxman, 2018). Additionally, dose, schedule, and
interconnection in treatment modalities also affect prognosis.
Recent advances in the field suggest that anticancer metal drugs in
combination with immunotherapies might become novel focus

FIGURE 1 | Mechanisms of effective anti-tumor therapies on immune responses. Antitumor therapeutics can eliminate immunosuppressive cells (blue circle),
activate immune effectors (pink circle), or sensitize tumor cells to lysis (yellow circle). iDC, immature dendritic cell; TAM, tumor associated macrophage; MdSC, myeloid
derived suppressor cells; Tconv, conventional T cell; ATRA, all-trans-retinoic acid; TKI, tyrosine kinase inhibitors.
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areas for effective anticancer therapeutic interventions (Dilruba
and Kalayda, 2016).

Efficacy of Gold Compounds in Cancer
Therapy
Gold (Au) has been used in medicinal preparations since ancient
times, with the earliest records by the Chinese and Egyptians
dating back to ∼2500 BC (Faa et al., 2018). Metal drugs, including
gold (Au) and arsenic (As) compounds, are some of the oldest
remedies employed by humans ranging from the ancient Chinese
to modern societies to fight a broad array of diseases, including
cancer (Nicolis et al., 2009; Nobili et al., 2010). The synthesis and

application of novel anticancer drugs remains an active field in
inorganic medicinal chemistry (Allardyce and Dyson, 2016;
Johnstone et al., 2016). Although only few metal drugs have
been approved for clinical use in oncology, metal drugs still play a
key role in therapeutic interventions for many cancers (Muggia
et al., 2015). In addition to some clinically approved platinum
drugs, several other metal drugs such as ruthenium (Ru), titanium
(Ti), gallium (Ga), and gold compounds, have entered the stage of
clinical evaluation (Chitambar, 2017; Lazarevic et al., 2017; Liang
et al., 2017). The development of new metal-based cancer
therapeutics apart from platinum drugs is a major goal of
modern medical and bio-organometallic chemistry research.
Gold compounds such as RANCE-1 are worth investigating

FIGURE 2 | The chemical structure of several common gold compounds. (A) Auranofin; (B) AuIIICl2(DMDT); (C) AuX2(MSDT) X�Cl, Br; (D) Au(III)Br2(DMDT); (E)
Au(III)Br2(ESDT); (F) [Au(en)2]Cl3; (G) Au(C-C-2-NC5H4)(PTA).

Frontiers in Pharmacology | www.frontiersin.org September 2021 | Volume 12 | Article 7394813

Zhou et al. Gold Compounds and Anticancer Immune

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


for their role in anticancer immune surveillance (Madeira et al.,
2012). Gold complexes show great potential for entering clinical
trials because certain gold complexes are highly cytotoxic to solid
cancerous tumors in vitro and in vivo, while causing minimal
systemic toxicity. Accordingly, these complexes have become the
subject of increased anticancer research in recent times.

Despite massive chemical synthesis, preclinical evaluation
approaches, and virtual generation of thousands of metal
complexes with anticancer activity, only a handful of
complexes are clinically approved. This challenging task can
be successful only if underpinned by enhanced knowledge on
the complex effects of metal-based chemotherapy on the host’s
immune system. The elemental forms of gold, principally
metallic and colloidal gold, are stable. Au(0), Au(I), and
Au(III) are the most important oxidation states for gold
(Nobili et al., 2010). Au(I) complexes are thermodynamically
more stable than Au(III) because Au(III) is more reactive than
Au(I) which has been suggested to be responsible for its high
toxicity and adverse effects (Faa et al., 2018). Auranofin
(Figure 2A) is a gold compound that can induce ROS and
apoptosis in cancer cells via the Au(I)/Au(III) redox system
(Hou et al., 2018). Au(III)-methylsarcosinedithiocarbamate
(MSDT) complexes are significantly more active than both
cisplatin and their platinum(II) and palladium(II)
counterparts under the same experimental conditions and
induce apoptosis, especially in HL60 cells (Giovagnini et al.,
2005). Additionally, AuIIIX2(MSDT) (Figure 2C) compounds
have been tested on myelogenous leukemia cell lines such as
K562 cells, and the results showed that AuIIIX2(MSDT) inhibits
cell growth in all tested myeloid cell lines with IC50 values ten-
fold lower than those of the palladium(II) analogs (Nobili et al.,
2010). AuIIICl2- dimethoxydiphenyltrichloroethane (DMDT)
(Figure 2B) exhibits the best in vitro cytotoxic activity towards
the androgen-resistant prostate cancer PC3, by inducing
apoptosis, and APO2.7 (a mitochondrial membrane protein
exposed on the surface of cells undergoing apoptosis)
expression (Cattaruzza et al., 2011). AuIIIBr2- DMDT
(Figure 2D) has been shown to inhibit cell proliferation in
several breast cancer cell lines. It exhibits greater in vitro
cytotoxic activity than cisplatin (Milacic et al., 2006).
AuIIIBr2-ethylsarcosinedithiocarbamate (ESDT) (Figure 2E)
shows high toxicity but causes no significant changes in
both urinary and renal cortical biomarkers, accounting for
the almost complete lack of nephrotoxic side effects
(Ronconi et al., 2006). Gold compounds, such as
Na3Au(S2O3)2·2H2O, induce the release of IL-8 from
monocyte-derived dendritic cells (MoDCs), PBMCs, or
THP-1 cells. Gold compounds result in modest dendritic cell
maturation via increased membrane expression of CD40 and
CD80 (Rachmawati et al., 2015). Additionally, other gold
compounds such as [Au(en)2]Cl3 (Figure 2F) play a role in
inducing anticancer activity (Isab et al., 2011; Garcia-Moreno
et al., 2015). Accordingly, several studies outlined in the
following sections implicate a complex interplay between
novel anticancer metal complexes, including gold
compounds, and the anticancer immune response, both of
which directly affect cancer cell immune responses (Terenzi

et al., 2016). At present, Au(I) and Au(III) compounds are
promising candidates for anticancer therapy (Table 1).

Gold Compounds and Innate Immunity
Innate immunity forms the first line of defense in the human
immune system. NK cells are natural immune effector cells with a
direct killing function that plays a key role in the clearance of
tumor cells. Metal drugs can upregulate signals on cancer cells
that are perceptible to the NK cell compartment, such as the
NKp30 ligand B7-H6F (Cao et al., 2015). NKG2 families, such as
NKG2D, may also be highly expressed by several T cell subsets,
including NKT and γδ T cells, and activated CTLs, which are
directly cytotoxic to cancer cells (Jelencic et al., 2017). Metal
drugs damage DNA directly or indirectly by generating redox
products, such as ROS (Lai et al., 2015) and NKG2D, and by
activating DDR. These phenomena effectively render gold
compound-treated cancer cells generally more responsive to
both innate and adaptive immunity in an MHC-independent
manner. Gold compounds such as Au(C-C-2-NC5H4)(PTA)
(Figure 2G) induce colorectal carcinoma cell death via ROS-
mediated necroptosis by activating TNF-α and NF-κB signaling
(Marmol et al., 2017). Gold(I) compounds may exert an
immunosuppressive role by inhibiting IB kinase activation and
promoting cell apoptosis (Jeon et al., 2003; Kim et al., 2004).
Au(I) compounds reduce TNF-α via the action of certain immune
cells, including neutrophils and macrophages, and Au(I)
compounds enhance leukocyte adhesion to endothelial cells,
both of which are important in the pathogenesis of
rheumatoid arthritis (RA) (Madeira et al., 2012). Au(I) can
oxidize inside phagocyte lysosomal compartments, resulting in
Au(III), which plays the role of a major hapten that acts
synergistically in innate immunity (Baeck and Goossens,
2012). An experiment using the p38 MAPK blocker SB203580
has shown that it strongly suppresses the gold-induced IL-8
production by THP-1 cells, indicating that innate signaling by
gold involves p38 MAPK phosphorylation. The innate triggering
capacity of the metal may contribute to its irritant properties and
also play a role in the induction of autoimmunity (Mutter, 2011).
Elie et al. investigated the anti-metastatic effects of gold
compounds in renal cancer cells and revealed strong inhibition
of several cytokines (IL17A, IL-8, IL-6, and IL-5) by gold
compounds (Elie et al., 2018). Gold compounds, such as
Na3Au(S2O3)2·2H2O, induce the release of IL-8 from MoDCs,
PBMCs, or THP-1 cells. Furthermore, they have been shown to
result in modest dendritic cell maturation via increased
membrane expression of CD40 and CD80. Various studies
have shown that gold compounds can elicit an innate immune
response, which can be ascribed to the triggering of TLR3 rather
than TLR4 (Rachmawati et al., 2015). Additionally, gold
nanoparticles (AuNPs) efficiently deliver synthetic thiolated
CpG oligodeoxynucleotides (ODNs) into cultured cells and
increase the expression of proinflammatory cytokines (Chen
et al., 2014).

Gold Compounds and Adaptive Immunity
Adaptive immunity against an infection targets only a specific
pathogen. It usually develops after stimulation with
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microorganisms and other antigenic substances and reacts
specifically with antigens. Gold compounds are known to
induce innate immune responses; however, these responses
may contribute to adaptive immune responses, as reflected in
cases of skin and mucosal allergies (Rachmawati et al., 2015).
Gold compounds contribute to the frequent development of
adaptive immunity by directly triggering TLR3 and increasing
the expression of downstreammediators (Martin et al., 2011). Ma
et al. attempted to mimic the function of an adaptive immune
response built from AuNPs. These mechanisms mimic the
differentiation and coordinated interaction of three key
immune cells, namely the T lymphocytes, B lymphocytes, and
dendritic cells, upon exposure and subsequent response to an
invading pathogen. The results show that adaptive immunity can
sense and clear the corresponding pathogen and simultaneously
respond more effectively and rapidly upon invasion by the same
pathogen for a second time (Ma et al., 2020).

Gold Compounds Support Cancer Cell
Antigenicity
Since the discovery of the first tumor antigen in 1991 (van der
Bruggen et al., 1991), more than 100 tumor antigens have been
identified successively (Cheever et al., 2009). Tumor antigens are
only expressed in tumor tissues but not in normal tissues and
include antigens produced by the integration of oncogenic viruses
into the genome and mutant proteins. New antigens not only
have high specificity, but also have strong immunogenicity
because they have not been screened during negative selection
in the thymus (Rizvi et al., 2015). Since virus-mediated tumors
account for only a small proportion of all tumor types, new
antigens derived from mutations are the most ideal targets for
immunotherapy (McGranahan et al., 2016). Currently, AuNPs
used in vaccination are being combined with other
immunostimulants, especially cytosine guanine dinucleotide

(CpG). The suitability of CpG is being assessed for use in
human vaccines as adjuvants as they are strong immunogenic
DNA fragments that distinguish friend or foe recognition systems
between mammalian DNA and bacteria (Staines, 2005). Gold
compounds could be leveraged to facilitate delivery of the
ovalbumin peptide antigen (OVA) as well as the CpG
adjuvant and enhance their therapeutic effects in tumor
models. Gold NP delivery of OVA (AuNP-OVA) and CpG
(AuNP-CpG) increases the efficacy of both agents and induces
strong antigen-specific responses. Furthermore, AuNP-OVA
delivery alone is adequate for producing antigen-specific
responses, leading to anticancer activity and prolonged
survival (Almeida et al., 2015). Another method of activating
immunocompetent cells with gold is to conjugate AuNPs with
CpG oligodeoxynucleotides (ODNs) (Wei et al., 2012). Several
studies have shown that AuNPs possess a strong potential to
activate cellular immunity and immunological memory to
promote immune response. Gold conjugated to CpG ODNs
can enhance intracellular penetration and increase the
secretion of proinflammatory cytokines, such as TNF-α and
IL-6. Particularly, AuNPs coupled with CpG ODNs are much
more immuno-stimulatory than native CpG ODNs. AuNPs
combined with CpG show enhanced efficiency in cellular
delivery and the immuno-stimulatory effect of CpG because of
the high cellular uptake of CpG-AuNPs. Furthermore, CpG-
AuNPs could potentially be used for immunotherapy in vivo.
Another study revealed that TNF-α levels stimulated by CpG-
AuNPs was approximately 15-fold higher than that stimulated by
CpG ODNs, indicating that high cellular uptake of CpG-AuNPs
was significantly associated with immunostimulatory activity.
Moreover, AuNPs had nearly no effect on TNF-α secretion,
indicating that CpG ODNs may elicit immunostimulatory
activities (Luo et al., 2019). Further research is essential for
better understanding the mechanism underlying the combined
use of AuNPs and CpG ODNs (Wang et al., 2016). The CpG

TABLE 1 | Experiments involving gold compounds for cancer therapy.

Gold compounds Mechanism Cancer types Subjects References

AuIIICl2(DMDT) Alters mitochondrial functions, stimulates ROS, and strongly
inhibits the activity of the selenoenzyme TrxR

Prostate cancer PC3 cells Cattaruzza et al.
(2011)

AuIII(MSDT) Promotes tumor cell apoptosis Cervical carcinoma,
Leukemia

HeLa cells, HL60
cells

Giovagnini et al. (2005)

AuIIIX2(MSDT) Promotes early apoptosis, induces cell cycle perturbations, and
high DNA fragmentation

Leukemia K562 cell Nobili et al. (2010)

AuIIIBr2(DMDT) Inhibits proteasome activity, accumulates protein p27, and
induces massive apoptosis

Breast cancer Nude mice Milacic et al. (2006)

AuIIIBr2(ESDT) Induces a dramatic inhibition of DNA synthesis; lack of
nephrotoxic side-effects

Breast cancer Mice Ronconi et al. (2006)

Na3Au(S2O3)2·2H2O Release IL-8 from MoDCs, PBMCs, or THP-1 cells Leukemia THP-1 cells Rachmawati et al.
(2015)

[Au(Spyrimidine)(PTA-
CH2Ph)]Br

Inhibits colon cancer cell proliferation Colon cancer Caco-2/PD7 cells Garcia-Moreno et al.
(2015)

[Au(en)2]Cl3 Induces cell cycle blockage, interrupts the mitotic cell cycle,
apoptosis, or necrosis

Prostate cancer, Gastric
carcinoma

PC-3 cells, SGC-
7901 cells

Isab et al. (2011)

Au(C-C-2-NC5H4)(PTA) Produces ROS, which triggers necroptosis Colorectal cancer Caco-2 cells Marmol et al. (2017)
Induces necroptosis dependent of TNF-α and TNFR1 binding,
activates RIP1 and NF-κB signaling

X � Cl, Br; PTA � 1,3,5-triaza-7-phosphadamantane.
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delivery system based on AuNPs can induce a strong immune
response even at a low dose of CpG by effusively interacting with
TLR9 (Figure 3). Immune cells, including Th cells, CTLs, and
macrophage polarization, can be affected by cytokine profiles,
thereby maintaining a balance between drug resistance and
immune-stimulatory behaviors. Gold compounds, such as
RANCE-1, warrant further investigation to enhance the
antigenicity of cancer cells (Madeira et al., 2012). T cells are
currently considered the only cells that can specifically kill tumor
cells. DCs present antigens to T cells, which induces the activation
and proliferation of T cells, including CD4+ helper T cells and
CD8+ killer T cells. Tumor antigen-specific T-cells are important
players that facilitate tumor treatment. Currently, the ongoing
anti-tumor immunotherapy employing T cells can be divided into
two categories: T-cell adoptive therapy, which mainly includes
Professor Steve Rosenberg’s tumor-specific T cell expansion from
patients’ tumor-infiltrating lymphocytes (TILs) for reinfusion,
and ectopic expression of receptors that can recognize tumor
antigens on the surface of normal T cells by gene modification,
including T cell receptor (TCR) - modified T cells (TCR-T) and
chimeric antigen receptor (CAR) - modified T cells (CAR-T). The
immune system identifies cancer cells based on the detection of
“self” antigens with deregulated expression including
differentiation and germ cell antigens, all of which belong to
the class of “tumor-associated antigens” (TAA) (Lewis et al.,
2003). The expression of these tumor-associated antigens in
tumor cells is stimulated by metal drugs that enhance their
antigenicity. MHC class I presentation of viral peptides or
mutation/fusion protein-derived immunogenic neoantigens by
malignant cells determines the response time of T cells and the
tumor rejection response (Braunlein and Krackhardt, 2017). This
is similar to anticancer metal drugs that are considered
mutagenic. Metal drugs induce chromosomal aberrations,
especially during the development of resistance (Castedo et al.,
2006). As a cell that can specifically kill tumor cells, adoptive
transfusion of T cells has created a precedent for tumor

immunotherapy. As early as 1985, Rosenberg et al. found that
injection of IL-2 and LAK cells in vivo could cause metastatic
melanomas to regress for a long time, suggesting that there was
specific T cell expansion (Rosenberg et al., 1985). To produce
specific T cells for other tumors, a corresponding technology was
developed. First, the researchers inserted the normal TCR, which
can recognize tumors and present tumor antigens through MHC
molecules, into the T cells of patients, which were subsequently
expanded and reinfused into the patients. Furthermore, it was
revealed that recognition of gold by T cells consisted of MHC-
restricted and MHC-independent pathways (Hashizume et al.,
2008). Researchers have also shown that T cells specifically
expressing TCR that recognize MART-1 melanoma can induce
tumor regression for the first time in 2006 (Morgan et al., 2006).

Known tumor antigens can be produced by synthesizing
peptides or nucleic acids encoding specific tumor antigens
(Anguille et al., 2012; van den Ancker et al., 2010). For
undefined tumor antigens, DC vaccines are usually prepared
by repeatedly freezing and thawing tumor cells, using
apoptotic tumor cells or apoptotic bodies to obtain tumor
antigens, or fusing tumor cells with DCs (Yao et al., 2014).
Tumor exosomes play an important role in determining organ
metastasis preference and early diagnosis because they contain
extensive information about tumor cells (Hoshino et al., 2015;
Zhang et al., 2015) and can also be used as a source of tumor
antigens to load DCs (Romagnoli et al., 2014). The advantage of
DC loading with different forms of tumor cell-derived antigens is
that they can obtain all the antigens of tumor cells; however, this
may also cause the presentation of unrelated antigens or
autoantigens, induction of tolerance, or autoimmunity (Chiang
et al., 2015). However, necrotic tumor cells can release a large
number of HSPs and HMGB1, which promote the maturation of
DCs. Apoptotic tumor cells can express a large amount of
calreticulin (CRT) on the surface of DCs and release HSPs
and HMGB1 (Guo et al., 2014; Chiang et al., 2015), which can
effectively fight against IL-10 or TGF-β, which have a negative

FIGURE 3 | The CpG delivery system based on gold nanoparticles (AuNPs) can induce strong immune response even at low dose of CpG via TLR9 interaction.
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regulatory effect. Therefore, studies have shown that DCs loaded
with necrotic or apoptotic tumor cells can induce an effective
CTL response (Ruben et al., 2014). To induce DCs to uptake
tumor antigen in vivo, antibodies against DC receptor can be used
to form chimeric protein with a specific antigen. Some studies
have found that the antibody cross-linked antigen of endocytosis
receptor on the surface of DCs can increase the efficiency of DCs
to activate T cells by 100 times more than that of liquid antigen,
thus effectively promoting the anti-tumor effect of DCs (Mahnke
et al., 2000). However, it should be noted that different DC
subpopulations can stimulate different immune responses, so
CD205 antibody recognizing CD8+ DCs and 33D1 antibody
recognizing CD8− DCs can ultimately stimulate different anti-
tumor immune responses. CD8+ DCs can present antigens
through MHC class I and MHC class II molecules, while
CD8− DCs can only present antigens through MHC class II
molecules (Soares et al., 2007). At the same time, targeting DCs is
not limited to antigen delivery. Researchers have also detected the
effects of different costimulatory signals on DCs, such as
DECTIN-1, DC-SIGN, and CD40, which also promote the
activation of DCs. Gold compounds selectively kill cancer cells
based on enhanced ROS production, but at the same time protect
phagocytic cells such as DCs in the TME (Oommen et al., 2016).
Na2Au(I)TM hinders T cell receptor-mediated antigen
recognition by mouse CD4+ T cell hybridomas specific for
antigenic peptides. However, it should be noted that different
activation signals can cause polarization of the DC function. For
example, DC-ASGPR can cause DCs to secrete IL-10 and
negatively regulate the anti-tumor effects of DCs
(Kochenderfer et al., 2012). Additionally, DNA damage of
cancer cells by anticancer drugs, such as metal compounds,
induces cell-autonomous production of pro-inflammatory
cytokines (Wan et al., 2012; Beyranvand Nejad et al., 2016).

Gold Compounds Enhance the Anti-tumor
Immune Response by Enhancing
Immunogenicity
In healthy adults, cells are lost every second due to programmed cell
death, even in the absence of disease or systemic inflammatory
responses (Kroemer et al., 2013). This phenomenon is a self-
balancing cell death, usually through apoptosis, which is
considered to be immune tolerant (Green et al., 2009; Galluzzi
et al., 2012). Immunogenic cell death is a form of cell death that
can stimulate the immune response to anti-death cell antigens,
especially those derived from tumor cells (Zitvogel et al., 2011).
Clinical evidence shows that a tumor-specific immune response can
serve as a determinant for the application of traditional cytotoxic
drugs in anticancer treatment. Gold compounds in combination with
CRISPR/Cas9-mediated disruption of PD-L1 andmild hyperthermia
induce the activation of immunogenic cell death (Tang et al., 2021).
Additionally, gold compounds eliminate primary tumors and induce
immunogenic cell death via the release of damage-associated
molecular patterns (DAMPs), activation of effector cells, and
induction of dendritic cell maturation. These phenomena, in a
coordinated manner, eventually evoke systematic anticancer
immune responses (Liang et al., 2018).

Induction of Calreticulin Exposure on the Surface of
Dying Cells
CRT is a cytoplasmic calcium-binding protein that is the most
abundant protein in the endoplasmic reticulum (Biwer and
Isakson, 2017). It is known to play a pivotal role in increasing
the immunogenicity of cancer. Anticancer drugs, including gold
compounds, not only induce the transfer of CRT from the
cytoplasm to the cell membrane of dying cells, but also target
CRT to interfere with cancer cell protein folding. The death of
immunogenic cells results in the induction of CRT exposure, and
the activation of the immune response is closely related to the
expression of CRT on the surface of tumor cells. During
immunogenic cell death, CRT exposure occurs at a relatively
early stage, when the cells still have normal morphology and lack
phosphatidylserine exposure. Therefore, one of the potential ways
to achieve anti-tumor therapy is to increase the exposure of CRT
on the cell surface. CRT is a key factor that determines the
immunogenicity of dead cells. The uptake and phagocytosis of
apoptotic cells and cancer cells involves the assistance of CRT on
the cell surface. Moreover, the body’s anti-tumor immune
response can be stimulated by CRT purified from tumors. The
possible underlying mechanism might involve binding of the
tumor antigen polypeptide to CRT, which results in cell
membrane resurfacing and presentation of the antigen peptide
to the antigen-presenting cells during CRT eversion to the cell
membrane. This ultimately stimulates the body’s anti-tumor
immune response (Gardai et al., 2005) when CRT is
recognized and bound by cells with membrane penetrating
receptor CD91 and transmits phagocytic signals (Kim TG.
et al., 2010), enhancing the immune recognition and clearance
of tumor cells by DCs. Furthermore, gold compound
nanoclusters (AuNCs) specifically recognize surface-bound
CRT and serve as fluorescent bio-probes (Ramesh et al., 2016).

Induction of ATP Secretion by Dying Cells
ATP is the most abundant intracellular metabolite and an
important autocrine/paracrine messenger. It transmits signals
by binding to purine receptors of ion transporters (P2X) or
metabolizers (P2Y) (Zhao et al., 2020). Additionally, many
chemotherapeutic drugs promote apoptotic cells to release
ATP, which then binds to P2X7 on the surface of immune
cells [(Zitvogel et al., 2012)]. When ATP binds to P2RX7 on
DCs, K+ and Ca+ efflux further activates the NLRP3
inflammasome, stimulating proteolysis maturation and
secretion of IL-1β and IL-18, which ultimately enhances the
body’s anti-tumor immune response (Andersson and Tracey,
2011).

Induction of High Mobility Group Box 1 Release From
Dying Cells
High mobility group box 1 (HMGB1) is usually expressed in
nucleated cells and is the most abundant non-histone nuclear
protein. It is actively secreted by innate immune cells in response
to pathogens and released when cells are in the initial or
secondary necrosis (Sharabi and Ghera, 2010); moreover, it
exhibits nuclear retention by inhibiting its release from
activated macrophages (Zetterstrom et al., 2008). HMGB1 can
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bind to Toll-like receptor 4 (TLR4), promote the release of
proinflammatory cytokines from monocytes/macrophages and
regulate the function of endothelial and cancer cells (Ladoire
et al., 2011). In a co-culture experiment employing both TLR4
and HMGB1, DCs halted the cross presentation of tumor
antigens (Apetoh et al., 2007). Furthermore, in vitro
experiments involving the application of HMGB1 to DCs
expressing TLR4 showed an increased production of IL-1β,
resulting in abrogation of lysosomal digestion of phagocytic
tumor antigen, which is a prerequisite for cross presentation.
Thus, DCs rely on the combination of TLR4 and HMGB1 to
facilitate their function of antigen presentation.

Inducing Expression of Heat Shock Proteins in
Apoptotic Tumor Cell
Heat shock proteins (HSPs) can form peptide HSP complexes
with tumor antigen peptides, which can improve the uptake of
tumor cells and antigen presentation by DCs (Miragem and
Homem de Bittencourt, 2017; Bryant et al., 2019).

Chemotherapy drugs induce apoptosis of gastric cancer cells
exposed to HSP70, accompanied by increased phagocytosis
and antigen presentation of apoptotic cells, increased secretion
of IL-12, and activation of heat shock protein (HSP) promoter-
driven protein expression (Nakatsuji et al., 2017). Apoptotic
myeloma cells treated with the proteasome inhibitor
bortezomib have been shown to transmit activation signals to
DCs, which depends on the direct contact between DCs and dead
tumor cells and the exposure of HSP90 on the surface of dead cells
(Bryant et al., 2019).

Induction of NKG2D Expression on Tumor Cell Surface
NK group 2 member (NKG2D) is expressed in NK cells, CD8+

T cells, and γδ T cell active receptors, which recognize the
corresponding ligands, such as major histocompatibility
complex class I chain-related molecule A or B (MICA/B) and
UL16-binding protein (ULBP) (Perez et al., 2019; Cadoux et al.,
2021). Tumor cells can escape NKG2D- mediated immune
monitoring by downregulating the expression of NKG2D

FIGURE 4 | DAMP signals during exposure to gold compounds. Dying tumor cells expose CRT on their surface and release ATP, HMGB1, HSPs, etc. and bind to
their respective surface receptors onmyeloid or lymphoid cells. These danger signals favor the uptake of debris and dead cells by antigen presenting cells, including DCs.
The dying tumor cells induce release of IL-17 and IL-1β, which favor the recruitment of T cells. These phenomena eventually lead to the priming of an anticancer immune
response.

Frontiers in Pharmacology | www.frontiersin.org September 2021 | Volume 12 | Article 7394818

Zhou et al. Gold Compounds and Anticancer Immune

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


ligands on the cell surface. Some chemotherapeutic drugs can
upregulate the expression of NKG2D ligands in tumor cells, thus
enhancing the recognition and killing effect of effector
lymphocytes, such as NK cells, on tumor cells (Butler et al.,
2009). The activation of ataxia telangiectasia-mutated (ATM)/
ataxia telangiectasia-Rad3-related (ATR) signaling pathway may
be one of the mechanisms of DNA damage induced by
chemotherapeutic drugs (Sayitoglu et al., 2020). Gold
compounds effectively guide NK cells to concentrate around
cancer cells for effective gene therapy without affecting cell
activity (Zhuo et al., 2019) (Figure 4).

Effects of Anticancer Metal Drugs on
Immune Cells
Suppressor Regulatory T Cells
Regulatory T cells (Tregs) are a subset of CD4+ T cells with
immunosuppressive functions. Its phenotype is CD4+, CD25+,
Foxp3+, which can inhibit the activities of CD4+ and CD8+ T cells
as well as the DC and NK cells. Au(I) compounds show high
activity in inhibiting cancer cell activation and proliferation
(Kiely et al., 2000). Studies have shown that there is enhanced
aggregation of Treg population and inhibition of anti-tumor
immune response in patients with a variety of solid tumors
and malignant hematomas (Wada et al., 2009). Furthermore,
low-dose chemotherapy drugs can inhibit the function of Tregs in
vivo, reduce their population, and increase the number of
antigen-specific T-cells. However, they have few side effects on
other immune cells in vivo, thus enhancing the body’s immune
response to tumors (Vicari et al., 2009; Ishizaki et al., 2011).

Inhibition of Myeloid Derived Suppressor Cells
Myeloid-derived suppressor cells (MDSCs) are a group of
immature myeloid cells that can inhibit the activity of T cells.
MDSCs accumulate in the tumor host and inhibit anti-tumor
immune response. Low-dose chemotherapeutics are generally
selective for inhibiting MDSCs, which can significantly reduce
the number of MDSCs in tumor-bearing mice and enhance
tumor-specific CD8+ T cell responses without any significant
decrease in other immune cells (Ko et al., 2007; Ishizaki et al.,
2011). However, the number of MDSCs in the body increases
when high-dose chemotherapy drugs are used (Kim HS. et al.,
2010). Therefore, it can be concluded that the intrinsic
characteristics and dose of chemotherapy drugs might be
responsible for determining their impact on MDSCs.

Enhancement of the Function and Number of DCs
Rachmawati et al. analyzed the effect of gold compounds on
innate immune cells and showed that the gold compound
Na3Au(S2O3)2·2H2O can induce moderate DC maturation via
TLR3 signaling (Rachmawati et al., 2015). Furthermore, some
low-dose chemotherapy drugs can enhance the function of DCs
by upregulating the expression of important functional
molecules, including antigen processing machinery (APM),
MHCII, and costimulatory molecules, including CD40, B7-1,
B7-2, and IL12 (Shurin et al., 2009). Certain chemotherapeutic
drugs have also been shown to induce DC maturation without

causing significant cell death. Most topoisomerase inhibitors and
anti-microtubule drugs have been shown to exert this effect (Le
Naour et al., 2021). The number of immature DCs in peripheral
blood has also been shown to increase significantly after the use of
a large-dose quantitative therapy. TLR3 agonists induce DC
maturation and migrate to the lymph nodes. These DCs then
amplify antigen-specific CD8+ T cells. Therefore, it is safe to
conclude that the effect of chemotherapy drugs on DC
proliferation depends on the degree of lymphocyte inhibition.
The greater the drug dose, the stronger the inhibition of
lymphocytes and more significant the effect on DC
proliferation (Rinaldi et al., 2021).

Nanoparticles of Gold Compounds and the
Immune Response
Among the many nanomaterials being developed for
nanomedicine applications, AuNPs have been promising in the
treatment of cancer owing to their unique properties. AuNPs are
small gold particles with diameters in the range of 1–100 nm.
AuNPs have good stability because of their small size and surface,
optical effects, and their unique biological affinity. The process of
AuNP production was as follows: 1 ml 1% HAuCl4 solution was
added into 100 ml ultra pure water heated until boiling, and
2.5 ml 1% trisodium citrate solution was quickly added under
strong stirring. The solution was boiled until it turned wine red.
The solution was nano gold reserve sol (concentration was
56.02 mg/L) and stored in dark at 4°C (Figure 5). AuNPs are
the most thoroughly investigated metal-based NPs for cancer
therapy. The clinical effectiveness of metal anticancer drugs is
limited due to certain factors; hence, NP-based platforms have
been employed to encapsulate anticancer drugs and selectively
deliver them into tumors to overcome poor tumor specificity
(Vila and Walcarius, 2020). NPs concerning metal nanomaterials
consist of a metal core (e.g., AuNPs) and are known to interact
with both the innate and adaptive immune systems, which can
lead to hypersensitivity, immunogenicity, and autoimmunity. In
recent years, there has been an increasing interest in NPs with
increasing evidence supporting their anticancer effects (Shi et al.,
2017), and the effects of AuNPs on the activation of the immune
system (Dykman and Khlebtsov, 2017). Metal-based NPs,
including AuNPs, provide a good foundation for the
development of functional cancer immunomodulators.
Nanotechnology has the following advantages in cancer
immunotherapy: 1) drugs can be delivered to immune cells
and tissues that are easily targeted by nanoparticles; 2) the
interaction between nanoparticles and immune cells or organs
can be regulated by modifying drug nanoparticles; 3) nano drug
carriers can improve the pharmacological properties of drugs and
prevent the premature release and degradation of drugs; 4)
nanoparticles can be designed as drug carriers with specific
responses to achieve targeted drug delivery and reduce off-
target toxicity; and 5) targeted drug delivery of nanoparticles,
combined with controlled and local drug release, can achieve
economical dosage of immune checkpoint inhibitors or activate
immunotherapy only at the expected site of action, thus reducing
the non-specificity-associated safety risks with immunotherapy.
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Cancer treatment involves not only metal-based drugs, but also
inorganic nanoparticles that have been tailored as therapeutic or
imaging agents, including nanosemiconductors, carbon
nanotubes, and those derived from metals. The combination
of organometallic drugs and inorganic metals may promote
the clinical transformation of related metal drugs, including
gold compounds.

AuNPs as Inducers for Photothermal Therapy
PTT relies on materials with high photothermal conversion
efficiency and is a promising anti-tumor therapy technique. It
has been proven that PTT can induce immunogenic cell death
(ICD) in cancer cells, and tumor-associated antigens released
during PTT can stimulate phagocytosis of antigen-presenting
cells. AuNPs are widely used as PTT agents. Ma et al. reported a
PTT strategy based on near-infrared II that induces cancer cells to
produce more uniform and stronger ICD, triggering an immune
response to prevent tumors (Ma et al., 2019). Nam et al.
developed novel polydopamine-coated AuNPs as photothermal
reagents with high photothermal efficiency, which can induce
cancer cells to produce ICD in situ. Combined with traditional
chemotherapy drugs, PTT can further enhance the anti-tumor
immune effect in the whole body and inhibit the development of
primary tumors and metastasis (Rinaldi et al., 2021). Zhang et al.
developed a nanoparticle platform for PTT-induced tumor
immunotherapy. It involves the incubation of AuNPs with
cancer and DC cells to increase their immunogenicity (Zhang
et al., 2019).

Gold Nanoparticles as Antigens and Immune
Adjuvants to Regulate Dendritic Cells
Immune adjuvants are non-specific immune enhancers that can
be injected together with or before the antigen to enhance or
modulate the type of immune response. Cytosine-phosphate-
guanine oligonucleotide (CpG ODN) is an efficient immune
adjuvant that combines with TLR9 on APCs to enhance
specific and non-specific immune responses. AuNPs can be
used as antigens and immune adjuvants. In tumor therapy, the
co-delivery of antigen and adjuvant as a nano-vaccine has been
proven to have a good synergistic effect. The presence of antigens
and adjuvants in APCs can result in stronger and longer immune
activity. Lee et al. used AuNPs to transfer antigens and adjuvants

together as a nano-vaccine (CpG/RFP/AuNP) to localize local
lymph nodes. With the help of computed tomography (CT)
imaging features of AuNPs, the characteristics of metastasis to
local lymph nodes and long-term conditions were observed.
Cross-presentation of dendritic cells and further cooperation
of immune cells can stimulate a strong immune response and
effectively inhibit tumor growth. Nano-vaccines have also been
demonstrated to curtail lung metastasis by the Th1 helper-
facilitated T cell immune response (Lee et al., 2012). Another
study involving the synthesis of AuNPs (OVA-AuNCs-CpG)
loaded with antigen OVA and adjuvant CpG showed that
AuNPs promoted the uptake of OVA and CpG by APCs
(Figure 6).

Gold Nanoparticles as Regulators of
Macrophages
Tumor-associated macrophages (TAMs) have positive and
negative regulatory effects on cancer cells. M1 macrophages
can resist the invasion of pathogens and kill cancer cells, while
M2 macrophages can promote the growth, invasion, and
metastasis of cancer cells. Knocking down M2 macrophage-
associated protein expression or direct removal of M2
macrophages can effectively improve the
immunosuppressive microenvironment. Furthermore,
AuNPs loaded with EGFR siRNA to silence the expression
of EGFR in M2 macrophages and lung cancer cells inhibited
angiogenesis and produced lasting anti-tumor immune effects
(Conde et al., 2015) (Figure 6).

The use of AuNPs for anticancer treatment has attracted the
attention of many researchers. Cruz et al. demonstrated the
synthesis of 13 nm AuNPs conjugated to prostate cancer-
associated antigen peptides for tumor immunotherapy (Cruz
et al., 2011). These antigen-conjugated AuNPs were shown to
be internalized by DCs, resulting in the production of an obvious
immune response that was not produced in case of the native
antigen alone. Saha et al. found that in malignant progression,
unmodified 20 nm AuNPs could disrupt the crosstalk between
pancreatic cancer-associated fibroblasts and pancreatic cancer
cells to alter the TME in pancreatic ductal adenocarcinoma
(PDAC) (Saha et al., 2016). ER stress, identified as a probable
mechanism hindering cancer cells, disrupts the directional

FIGURE 5 | Schematic representation of gold nanoparticle (AuNP) production.
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communication between pancreatic cancer cells (PCCs) and
pancreatic stellate cells (PSCs) by altering the cell secretome.
Cytokines such as IL-8 and GM-CSF are important
immunomodulators that are downregulated by AuNPs,
suggesting a potentially improved outcome of immune therapy
(Saha et al., 2016). Triple-negative breast cancer research has
demonstrated the theragnostic capability of actively targeted, site-
specific multi-branched gold nanoantennas in vitro (Webb et al.,
2017). AuNPs can efficiently deliver synthetic thiolated CpG
ODNs into cultured cells and increase the expression of
proinflammatory cytokines, including TNF-α, IL-6, IL-12, and
MCP-1 (Chen et al., 2014). Webb et al. developed AuNPs by
combining diagnostic and therapeutic properties of an antibody
targeting PD-L1, which is widely used as a therapeutic tool for
cancer and other diseases (Webb et al., 2017). Furthermore, the
same NP were administered to ICR mice. In a recent paper, Lee
et al. described promising radionuclide-embedded GNP that
provoked DC maturation and anti-tumor immunity to levels
comparable to or even higher than those of DC pulsed with tumor
lysates (Lee et al., 2018), implicating the potential for therapeutic
application of these nanomaterials. Therefore, AuNPs can be used
to improve the effect of immunotherapy and reduce the toxic and
side effects of the treatment, thereby overcoming the
shortcomings of traditional cancer treatment. These strategies
of employing AuNPs provide novel ideas for promoting clinical
cancer immunotherapy and provide important directives for the
development of new personalized cancer treatment modalities.

CONCLUSION

The immune system plays a key role in the adverse effects of the
gold compounds. First, several adverse effects can be related to
immunosuppression, such as impairment of macrophages and T
and B cells. Second, immunestimulating reactions can also occur.
The most frequent immune-stimulating reactions of gold
compounds involve diverse types of skin reactions. Contact
dermatitis by gold compounds is probably caused by slow
ionization of gold upon contact with the skin and subsequent
absorption and haptenization as well as modification of otherwise
non-immunogenic cellular structures by antigenic compounds
including metal ions, leading to an immune response.

There is a growing recognition that the cytotoxic effect of
immune cells might cause transient immune depletion, which
might provide the opportunity to protect against cancer
immune evasion and induce a phase of renewed anti-tumor
immune response. The effects of gold-based cancer therapy on
the immunological aspects of cancer have been extensively
studied, with gold compounds emerging as potent anticancer
agents. Gold compounds have been shown to enhance the anti-
tumor immune response and affect the population of immune
cells. Moreover, nanoparticles of gold compounds can be used
to improve the efficacy of immunotherapy and reduce
associated toxicity and side effects. The combination of gold
compounds with the immune system has demonstrated
promising results in both in vivo and in vitro studies.

FIGURE 6 | Immunotherapy strategy designed on the basis of in vitro studies. The synthesized Nano vaccine can regulate dendritic cells, enhance their migration to
lymph nodes, and result in T cell activation. This ultimately reduces M2 tumor associated macrophages producing efficient anti-tumor immunity.
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Furthermore, based on preclinical data, these effects provide
an ideal opportunity for exploring the combination of
anticancer gold compounds and immunotherapeutic
interventions. These findings imply the emergence of a new
area for gold compounds that potentially serve as novel
anticancer immunomodulators and the foundation for the
next generation of cancer treatment modalities.
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