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Abstract 

Background:  Compound Kushen Injection (CKI) is a Chinese patent drug that exerts curative effects in the clinical 
treatment of hepatocellular carcinoma (HCC). This study aimed to explore the targets and potential pharmacological 
mechanisms of CKI in the treatment of HCC.

Methods:  In this study, network pharmacology was used in combination with molecular biology experiments to 
predict and verify the molecular mechanism of CKI in the treatment of HCC. The constituents of CKI were identified by 
UHPLC-MS/MS and literature search. The targets corresponding to these compounds and the targets related to HCC 
were collected based on public databases. To screen out the potential hub targets of CKI in the treatment of HCC, a 
compound-HCC target network was constructed. The underlying pharmacological mechanism was explored through 
the subsequent enrichment analysis. Interactive Gene Expression Profiling Analysis and Kaplan-Meier plotter were 
used to examine the expression and prognostic value of hub genes. Furthermore, the effects of CKI on HCC were veri-
fied through molecular docking simulations and cell experiments in vitro.

Results:  Network analysis revealed that BCHE, SRD5A2, EPHX2, ADH1C, ADH1A and CDK1 were the key targets of CKI 
in the treatment of HCC. Among them, only CDK1 was highly expressed in HCC tissues, while the other 5 targets were 
lowly expressed. Furthermore, the six hub genes were all closely related to the prognosis of HCC patients in survival 
analysis. Molecular docking revealed that there was an efficient binding potential between the constituents of CKI 
and BCHE. Experiments in vitro proved that CKI inhibited the proliferation of HepG2 cells and up-regulated SRD5A2 
and ADH1A, while down-regulated CDK1 and EPHX2.

Conclusions:  This study revealed and verified the targets of CKI on HCC based on network pharmacology and 
experiments and provided a scientific reference for further mechanism research.
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Background
Globally, the incidence of liver cancer is increasing annu-
ally, and accounts for a large proportion of cancer cases 
and deaths [1]. According to the statistics in 2020, liver 
cancer ranks seventh in malignant tumor incidence and 
third in mortality [2]. Only in China, both the incidence 
and mortality of liver cancer are higher than the global 
average, and the survival rate of liver cancer is very low, 
which is a heavy burden on society and medical care 
worldwide [3–6]. Primary liver cancer includes different 
pathological subtypes, such as hepatocellular carcinoma 
(HCC), intrahepatic cholangiocarcinoma (ICC), and 
mixed hepatocarcinoma. HCC accounts for 75–85% of 
primary liver cancers and is the most common type [2, 
7]. Due to its insidious onset, most HCC patients are at 
an advanced stage at the time of diagnosis. Unfortunately, 
local (chemoembolization) and surgical treatments are 
relatively disappointing in improving overall survival 
(OS) of advanced stage patients. At the same time, tradi-
tional chemotherapy methods also do not show promis-
ing efficacy in treating HCC due to significant side effects 
[8–10]. Therefore, it is essential to explore new prognos-
tic markers for HCC and develop more effective drugs 
with less toxic effects.

In recent decades, traditional Chinese medicine 
(TCM) has been shown to play an important role in the 
treatment of tumors by inhibiting tumor proliferation, 
reducing tumor recurrence and metastasis, prolonging 
survival, and reducing the side effects of conventional 
treatments, tumors, etc. [11–13]. In particular, Chinese 
medicine injections, which have unique advantages in the 
treatment of tumors, are widely used in clinical practice 
because of their characteristics of the convenient applica-
tion and rapid efficacy without irritating the gastrointes-
tinal tract, as is the case with oral TCM [14–16].

Compound Kushen Injection (CKI), a kind of anti-
neoplastic injection commonly used in clinical practice 
[17–19], consists of Kushen (Radix sophorae flavescentis) 
and Baituling (Rhizoma smilacis glabrae). Early studies 
have shown that CKI has a significant inhibitory effect 
on human HCC cells such as SMMC-7721, Hepa1–6, 
and LPC-H12 [19–21]. In addition, CKI significantly 
improved the clinical symptoms and quality of life of 
patients with advanced HCC. The combination of CKI 
and transcatheter arterial chemoembolization (TACE) 
has been reported to be effective in the treatment of 
advanced HCC and is therefore worthy of clinical appli-
cation [22, 23]. The detailed information of CKI can be 
found in Supplementary file 1.

TCM preparations exert their special therapeutic 
effects by acting on the biological network in humans. 
Therefore, it is difficult to elucidate the specific mecha-
nism of TCM in  vivo [24, 25]. Until recently, network 
pharmacology provides a new method to promote the 
understanding of drug mechanisms [26, 27]. Network 
pharmacology constructs multicomponent and multi-
target models to clarify better the complex interactions 
between genes, proteins, and metabolites related to dis-
eases and drugs from a network perspective [28, 29]. In 
addition, molecular docking provides a relatively fast 
and economical alternative to standard experimental 
techniques that plays a vital role in the new drug devel-
opment and discovery projects [30, 31]. AutoDock Vina 
software is often used to analyze the molecular interac-
tions between protein and ligand [32]. To further explore 
and predict the molecular mechanism of CKI in the 
treatment of HCC and to identify targets related to the 
prognosis of HCC, network pharmacology was used in 
the present study. In addition, we further verified some of 
the potential targets of CKI through experiments in vitro. 
The flowchart of the current study is shown in Fig. 1.

Materials and methods
Identification of compounds and collection of potential 
targets for CKI
To identify the constituents of CKI, we conducted a 
qualitative analysis of CKI using UHPLC-MS/MS. Sep-
arations were performed on the Nexera LC-40 system 
(Shimadzu, Japan) using a Hypersil BDS (150 mm × 4. 
6 mm, 5 μm). The mobile phase comprised 0.1% ammo-
nia in water (A) and carbinol (B) at a flow rate of 0.5 ml/
min and was eluted with gradient elution: 0–1 min 
(5–20% B), 1–30 min (20–80% B), 30–60 min (80–60% 
B). The column temperature was maintained at 25 °C and 
the injection volume was 5 μl. Analyses were performed 
with the QE-Orbitrap-MS (Thermo Fisher, USA) using 
an electrospray ionization (ESI) system. MS was oper-
ated in positive mode with the capillary temperature set 
at 350 °C. The spray voltage in negative mode was 3800 V, 
while the spray voltage in positive mode was 3200 V. The 
flow rates for the sheath gas and aux gas were 35arb and 
15arb respectively. Three collision energies were used 
for MS2: low, medium and high. The positive ion mode 
was 30 eV, 40 eV, 50 eV, while the negative ion mode was 
30 eV, 50 eV, 70 eV. The scan mode was set to full scan/
ddMS2 and the scan range was 100–1200 Da. The full 
scan resolution was set to 70,000 FWHM while the reso-
lution of MS2 was 17,500 FWHM. Finally, the retention 

Keywords:  Compound Kushen Injection, Hepatocellular carcinoma, Network pharmacology, Proliferation



Page 3 of 20Lu et al. BMC Complementary Medicine and Therapies           (2022) 22:54 	

time, MS fragmentation and UV spectra were used to 
identify the labeled reference compounds contained in 
the sample.

Next, we investigated the other compounds in CKI that 
had been reported in the literature to supplement our 
list of CKI-ingredients, and 23 compounds were selected 
for further study [20, 33, 34]. The canonical simplified 
molecular input line entry specification (SMILES) of 16 

compounds were retrieved from the PubChem database 
[35] (https://​pubch​em.​ncbi.​nlm.​nih.​gov/) and exported. 
To search for the targets corresponding to these com-
pounds, we imported the above data into the Search Tool 
for Interactions of Chemicals (STITCH) [36] (http://​stitch.​
embl.​de/), SuperPred [37] (http://​predi​ction.​chari​te.​de/), 
SwissTargetPrediction [38] (http://​www.​swiss​targe​tpred​
iction.​ch/), and Traditional Chinese Medicine Database 

Fig. 1  Workflow of exploring the potential pharmacological mechanism of CKI in the treatment of HCC

https://pubchem.ncbi.nlm.nih.gov/
http://stitch.embl.de/
http://stitch.embl.de/
http://prediction.charite.de/
http://www.swisstargetprediction.ch/
http://www.swisstargetprediction.ch/
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and Analysis Platform (TCMSP) [39] (http://​tcmspw.​com/​
tcmsp.​php).

Collection of HCC‑related targets
Therapeutic Target Database (TTD), Gene Expression 
Omnibus (GEO), and Cancer Genome Atlas (TCGA) 
were the main sources of HCC-related targets. In the 
TTD [40] (http://​bidd.​nus.​edu.​sg/​group/​ttd/​ttd.​asp), 
HCC related targets were identified by searching for 
“hepatocellular carcinoma”. For the dataset in GEO [41] 
(http://​www.​ncbi.​nlm.​nih.​gov/​GEO/), the differentially 
expressed genes (DEG) in each microarray were first 
screened using the limma package [42]. Then the Robus-
tRankAggreg package [43] was used to integrate genes 
that were generally identified as differentially expressed 
in different datasets. All datasets used for the analysis 
met the following two criteria: (1) The samples used in 
the dataset were tissues obtained from human HCC and 
corresponding adjacent or normal tissues. (2) The data 
set containing at least 40 samples. Data from the TCGA-
LIHC project [44] were obtained from UCSC Xena 
(https://​xenab​rowser.​net/​datap​ages/) and analyzed in R 
using the edgeR package [45].

Network establishment
In the current study, three undirected networks were 
constructed: (1) a compound-putative target network, 
which included compounds of CKI and their correspond-
ing targets; (2) a compound-HCC target network, which 
contained shared targets of CKI-ingredients and HCC; 
and (3) a drug-compound-target-pathway network. The 
above networks were visualized using Cytoscape 3.7.1 
[46] (http://​cytos​cape.​org/). Using the “Analyze Net-
work” tool in Cytoscape3.7.1 software, the topological 
characteristics of each node in the HCC-related CKI 
compound-putative target network, namely Degree, 
Betweenness, and Closeness, were calculated to evaluate 
the importance of each node in the network.

Enrichment analysis
To illustrate the role of putative targets of CKI in the 
treatment of HCC in biological processes and signaling 
pathways, a Gene Ontology (GO) enrichment analy-
sis and a Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway enrichment analysis were performed 
using the Database for Annotation, Visualization, and 
Integrated Discovery [47] (DAVID, https://​david.​ncifc​rf.​
gov/). These analyses were performed for the targets in 
the compound-HCC target network, and the results were 
visualized by the ggplot2 package (http://​docs.​ggplo​t2.​
org/​curre​nt).

Survival analysis and correlation analysis of hub genes
Kaplan-Meier plotter (KM plotter, http://​kmplot.​com/​
analy​sis/), a database of clinical and gene expression data 
used to study the molecular basis of disease and iden-
tify biomarkers related to survival [48, 49]. The database 
contains disease-free survival and overall survival data 
based on the GEO, EGA (European Genome-Phenome 
Archive), and TCGA databases to calculate the hazard 
ratio (HR) with a 95% confidence interval and the P value 
of the log-rank test to assess the association between 
gene expression and survival [50].

Visualization of the results of expression level analysis 
and correlation analysis was carried out through Gene 
Expression Profiling Interactive Analysis [50] (GEPIA, 
http://​GEPIA.​cance​rpku.​cn/​index.​html), a web-based 
tool that allows the analysis of different tumor data in 
TCGA and Genotype Tissue Expression (GTEx). It con-
tains 9736 tumor samples and 8587 normal tissue sam-
ples from 33 types of malignant tumors [51]. In addition, 
GEPIA provides customizable features such as differ-
ential expression analysis of tumors and normal. Using 
GEPIA, we have demonstrated the expression of key 
targets in HCC and normal tissues and the correlation 
between these targets.

Molecular docking
The molecular docking includes the following three steps:

(1)	 The preparation of the receptors. The three-dimen-
sional (3D) crystal structures of the key targets 
were extracted from the Research Collaboratory for 
Structural Bioinformatics (RCSB) Protein Database 
[52] (PDB, https://​www.​ rcsb.​org/), and the protein 
structures of these key targets were processed using 
AutoDock Tools (ADT) [53], including dehydration, 
hydrogenation, removal of small molecule ligands, 
and calculation of Gasteiger charge. The position of 
the active pocket was determined by the ligand in 
the crystal structure, and the structures were saved 
in *pdbqt format.

(2)	 The preparation of ligands. The *SDF files of the 2D 
structure of all bioactives were downloaded from 
PubChem database (https://​pubch​em.​ncbi.​nlm.​
nih.​gov/). Next, they were converted into the cor-
responding 3D structures with the help of Chem-
Office software (https://​www.​chemd​raw.​com.​cn/​
produ​ct.​html), and their energy were minimized 
and saved as *mol2 files. Finally, the small ligand 
molecules in *mol2 format were exported to *pdbqt 
format through ADT.

(3)	 Molecular docking simulation. Through AutoDock 
Vina [54], the molecular docking simulation of 

http://tcmspw.com/tcmsp.php
http://tcmspw.com/tcmsp.php
http://bidd.nus.edu.sg/group/ttd/ttd.asp
http://www.ncbi.nlm.nih.gov/GEO/
https://xenabrowser.net/datapages/
http://cytoscape.org/
https://david.ncifcrf.gov/
https://david.ncifcrf.gov/
http://docs.ggplot2.org/current
http://docs.ggplot2.org/current
http://kmplot.com/analysis/
http://kmplot.com/analysis/
http://gepia.cancerpku.cn/index.html
https://www.rcsb.org/),
https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
https://www.chemdraw.com.cn/product.html
https://www.chemdraw.com.cn/product.html
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the bioactives and the target protein were carried 
out in turn, and the Affinity were extracted. The 
results were visualized and analyzed by PyMOL 
(http://​www.​PyMOL.​org).

In vitro cell experimental verification
Reagents and cell line
CKI (Batch No. 20200329, total alkaloid concentration 
of 25 mg/ml) was provided by Shanxi Zhendong Phar-
maceutical Co., Ltd. (China). Dulbecco modified eagle 
medium (DMEM), fetal bovine serum (FBS), penicillin-
streptomycin, trypsin-EDTA, and phosphate buffered 
saline (PBS) were purchased from GIBCO (NY, USA). 
Cell Counting Kit-8 (CCK8) and BeyoClick™ EdU Cell 
Proliferation Kit with Alexa Fluor 488 were purchased 
from Beyotime (Beijing, China). RIPA lysis buffer, phe-
nylmethylsulfonyl fluoride (PMSF) and BCA Protein 
Assay Kit were obtained from Biorigin (Beijing, China). 
Primary antibodies steroid 5-α-reductase 2 (SRD5A2) 
were purchased from Bioss (Beijing, China). Alco-
hol dehydrogenase 1A (ADH1A) was purchased from 
Solarbio (Beijing, China). Soluble epoxide hydrolase 2 
(EPHX2), cyclin-dependent kinase 1 (CDK1), β-actin, 
and secondary antibody (anti-rabbit IgG and anti-
mouse IgG) were procured from Proteintech (Wuhan, 
China). Nitrocellulose (NC) membranes and Immobil-
ion Western Chemilum HRP Substrate were purchased 
from Merck Millipore (USA). Trizol reagent was 
obtained from Invitrogen (USA). SYBR Green Real-
time PCR Master Mix was purchased from TOYOBO 
(Japan).

The human hepatocellular carcinoma cell line HepG2 
was obtained from Procell (Wuhan, China) and cultured 
in DMEM supplemented with 10% FBS and 1% penicil-
lin-streptomycin. Cells were maintained in a cell incuba-
tor at 37 °C and 5% CO2.

Cell proliferation assays
HepG2 cells in the logarithmic growth phase were pro-
cessed, into a cell suspension, and seeded in 96-well 
plates at a density of 1 × 104 cells / well. After 24 h, cells 
were treated with different concentrations of CKI (0, 
0.125, 0.25, 0.5, 1, 2, 4, 8, and 16 mg/ml) diluted with 
DMEM for 24 h, 48 h, and 72 h, respectively. Then, 10 μl 
of CCK8 reagent was added to each well to detect cell 
proliferation. The viability of the CKI treated cells was 
calculated using the optical density (OD) at 450 nm.

The EdU staining method was used to verify the 
effect of CKI on the proliferation of HepG2 cells. 
Cells were seeded in a confocal dish and treated with 

Cell viability =
(

ODCKI −ODblank

)

∕
(

ODcontrol −ODblank

)

× 100%

different concentrations of CKI (0, 1, 2, 4 mg/ml) after 
24 h. According to the instructions of the EdU kit, the 
HepG2 cells treated with CKI for 48 h were fluorescently 
stained. Then the cells were observed with a fluorescence 
microscope (Olympus FV3000, Japan).

Real‑time polymerase chain reaction (RT‑PCR)
The Trizol reagent was used to extract total RNA from 
the cell samples under the same treatment conditions as 
in the WB experiment. The SYBR Green Realtime PCR 
Master Mix was used to determine mRNA expression 
in each sample according to the manufacturer’s proto-
cols. Then the 2-ΔΔCT method was applied to calculate the 
relative expression level of the target gene. The primers 
used in the PCR were synthesized by Shenggong Biotech 
(Table 1).

Western blot (WB)
HepG2 cells treated with CKI (0, 1, 2, 4 mg/ml) for 
48 h were collected and total protein was extracted 
using RIPA lysis buffer supplement with 1% PMSF. The 
BCA method was used to calculate the protein con-
centration. After that, 5 × loading buffer was added 
to the protein samples and heated at 99 °C for 15 min 
to denature the protein. Then, the protein samples 
(20 μg/lane) were separated by 10% SDS-PAGE gel 
electrophoresis and transferred to NC membranes. 
Subsequently, the membranes were blocked in 5% skim 
milk for 1 h at room temperature. Afterward, the spe-
cific primary antibodies were added and incubated 
overnight at 4 °C, followed by incubation with the sec-
ondary antibodies at room temperature for 1 h. Finally, 
Immobilion Western Chemilum HRP Substrate was 
used to visualize the protein bands, and the gray val-
ues of the bands were quantified by ImageJ software 
(https://​imagej.​nih.​gov/​ij/).

Table 1  Primer sequences for RT-PCR

Genes Primers

GAPDH Forward TGG​AGT​CCA​CTG​GCG​TCT​TCAC​

Reverse TTG​CTG​ATG​ATC​TTG​AGG​CTG​TTG​TC

ADH1A Forward AAA​ACC​CGG​AGA​GCA​ACT​AC

Reverse CCA​CAG​CCA​ATG​AGA​CAG​AC

CDK1 Forward AAA​CTA​CAG​GTC​AAG​TGG​TAGCC​

Reverse TCC​TGC​ATA​AGC​ACA​TCC​TGA​

EPHX2 Forward ACC​GAA​ACA​TGG​AAA​GGA​A

Reverse GGG​ACA​TCT​GAG​GAA​CGA​G

SRD5A2 Forward GCA​GTG​TCT​TAG​TTG​ATG​AG

Reverse TGT​GGT​TAT​TAA​AAC​CTG​GC

http://www.pymol.org
https://imagej.nih.gov/ij/
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Statistical analysis
Statistical analysis of experimental data was performed 
by GraphPad Prism8 (Inc. La Jolla, CA, United States). 
All data were expressed as mean ± standard deviation 
(SD) and were evaluated by Dunnett’s multiple compari-
sons test of one-way ANOVA. P-values of < 0.05 were 
considered to indicate a statistically significant differ-
ence. The calculation of the topological characteristics 
(Degree, Betweenness and Closeness) of each node in 
the network was performed using the “Analyze Network” 
tool in Cytoscape3.7.1.

Results
Construction of compound‑HCC target network
Through UHPLC-MS/MS, 10 compounds were identi-
fied in CKI (Table 2). Through a literature search, addi-
tional 13 compounds were added in CKI. Finally, the 
3D-chemical structures of 14 chemical components and 
217 corresponding targets were obtained from public 
databases such as PubChem, STITCH, SuperPred and 
TCMSP. Table  2 shows the basic information of the 14 
constituents in CKI. As shown in Fig. 2, the distributions 
of the mixed reference standards and the samples in the 
chromatogram were approximately the same. Based on 
the above data, the compound-putative target network 
(Fig. 3A) was established, including 231 nodes (14 com-
pound nodes and 217 target nodes) and 555 edges.

By consulting TTD, GEO, and TCGA, we identified 
HCC-related targets, of which 380 DEGs were obtained 
from GEO and 4276 DEGs were obtained from TCGA. 
After taking the intersection of the above two DEG sets, 
343 DEGs were obtained (Fig. 3B). Integrating the 16 tar-
gets related to the treatment of HCC from TTD and the 
DEGs as above-mentioned, a total of 358 disease targets 
were obtained. Detailed information on the 358 disease 
targets that can be found in Supplementary file 2.

In order to explore the targets of CKI in the treatment 
of HCC, the CKI compound-putative target network and 
the targets related to HCC were merged, and the targets 
that did not overlap were removed. Then, 14 putative 
targets of CKI in the treatment of HCC were intuitively 
identified. As shown in Fig.  3C, the HCC-related CKI 
compound-putative target network consisted of 25 nodes 
(11 compound nodes and 14 target nodes) and 41 edges.

GO and KEGG enrichment analysis
To clarify the pharmacological mechanism of CKI in 
the treatment of HCC from the system level, GO and 
KEGG enrichment analyses were performed for the 
14 key targets. In the results of GO analysis, 22 entries 
were selected based on P < 0.01, of which 12 were bio-
logical processes mainly related to drug metabolic 

Table 2  Basic information of the 14 compounds in CKI
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process, drug response and xenobiotic metabolic pro-
cess, etc., 9 were molecular functions mainly involving 
enzyme binding, chromatin binding and oxidoreduc-
tase activity, etc., and 1 was cell components, i.e. orga-
nelle membrane (Fig.  4A). KEGG enrichment analysis 
showed that the key genes were significantly enriched 
in 5 pathways, namely Drug metabolism-cytochrome 

P450 (hsa00982), Chemical carcinogenesis (hsa05204), 
Arachidonic acid metabolism (hsa00590), Retinol 
metabolism (hsa00830) and Metabolism of xenobiot-
ics by cytochrome P450 (hsa00980) (Fig. 4B). Figure 4C 
shows two important metabolic pathways, namely drug 
metabolism-cytochrome P450 and arachidonic acid 
metabolism pathway.

Fig. 2  The result of UHPLC-MS/MS. (A) CKI. (B) Mixed reference standards (MRS)
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Fig. 3  Construction of compound-HCC target network. A Compound-putative target network of CKI (red round rectangles represent compounds, 
and yellow octagons represent targets). B Identification of DEGs in TCGA and GEO. C Compound-HCC target network (red diamonds represent 
compounds, and blue hexagons represent targets of CKI for HCC treatment, the size of the node was proportional to its degree)
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To systematically and holistically explain the mech-
anism of CKI in the treatment of HCC, Cytoscape 
software was used to construct a drug-compound-target-
pathway network. As shown in Fig. 4D, there were a total 
of 31 nodes (1 CKI node, 11 compound nodes, 14 target 
nodes, and 5 pathway nodes) and 69 edges.

Survival analysis and correlation analysis of hub genes
According to the criterion of degree ≥2 (median degree), 
betweenness ≥0.0062 (average betweenness), closeness 
≥0.3774 (average closeness), and edge count ≥2 (median 
edge count), six targets, including BCHE, SRD5A2, 
EPHX2, ADH1C, ADH1A, and CDK1, were identified as 
potential hub targets of CKI in the treatment of HCC. Fig-
ure 5A shows the expression levels of the six hub genes in 
tumor and normal tissues, respectively. BCHE, SRD5A2, 
EPHX2, ADH1C and ADH1A were lowly expressed in 
HCC, while CDK1 was highly expressed in HCC.

Correlation analysis was performed for CDK1 and the 
above 5 low-expressed genes (BCHE, SRD5A2, EPHX2, 
ADH1C, and ADH1A). As shown in Fig. 5B, the expres-
sion of SRD5A2, EPHX2, ADH1C, and ADH1A in HCC 
showed a strong negative correlation with the expression 
of CDK1.

Survival analysis of these six hub targets was performed 
by KM plotter. The results showed that low-expressed 
SRD5A2 [HR = 0.59 (0.41–0.83), P = 0.0026], EPHX2 
[HR = 0.51 (0.36–0.73), P = 0.00013], ADH1C [HR = 0.46 
(0.3–0.7), P = 0.00018], and ADH1A [HR = 0.52 (0.36–
0.74), P = 0.00028] and high-expressed CDK1 were all 
related to a poor prognosis in HCC patients. Only BCHE 
was not independent of the OS of HCC (P > 0.05) (Fig. 6). 
However, the level of BCHE was found to be an impor-
tant survival factor for patients with prostate cancer [55].

Molecular docking verification
Molecular docking simulation was used to analyze the 
interaction between the eight active compounds of CKI 
(9α-hydroxymatrine, isomatrine, lamprolobine, matrine, 
oxymatrine, sophocarpine, sophoranol, and sophori-
dine) and BCHE, the target with the highest degree. The 
crystal structure of BCHE (PDB ID: 5K5E) was retrieved 
from the PDB, and the 3D structures of the eight com-
pounds were downloaded from the PubChem database. 
The docking results are listed in Table  3. As shown in 
Fig. 7, 9α-hydroxymatrine formed a hydrogen bond with 

Tyr332; isomatrine formed a hydrogen bond with Trp82; 
lamprolobine formed hydrogen bonds with Ser198 and 
Gly117; matrine formed a hydrogen bond with Thr120; 
oxymatrine formed a hydrogen bond with Tyr332; 
sophocarpine formed a hydrogen bond with Glu197, and 
sophoranol formed a hydrogen bond with Thr120.

In vitro cell experimental verification
CKI inhibits the proliferation of hepatocellular carcinoma 
cells
To determine the effects of CKI on HepG2 cell viability, 
a CCK-8 assay was performed. As shown in Fig. 8A, CKI 
reduced the viability of HepG2 cells in a dose-dependent 
manner. In addition, the IC50 values of CKI after 24 h, 
48 h, and 72 h were 1.616, 1.572 and 1.498 mg/ml, respec-
tively. Also, the results of EdU showed f that the prolif-
eration of HepG2 cells decreased with increasing dosage 
of CKI (Fig.  8B). Hoechst 33,342 staining showed that 
the number of HepG2 cells was significantly reduced 
under the intervention of 2 mg/ml and 4 mg/ml CKI 
for 48 h. Overall, these results suggest that CKI inhibits 
the growth and proliferation of HepG2 cells in a dose-
dependent manner.

Regulations of CKI on ADH1A, CDK1, EPHX2, and SRD5A2
The regulation of CKI on the potential targets 
(ADH1A, CDK1, EPHX2 and SRD5A2) in HepG2 cells 
were investigated by WB and RT-qPCR (Fig. 9A-B). The 
results showed that, CKI significantly increased the 
protein and mRNA expression of ADH1A and SRD5A2 
in HepG2 cells compared with the control group. In 
contrast, the protein and mRNA expression of CDK1 
and EPHX2 were significantly down-regulated by CKI. 
Notably, the prominent regulation of CKI on CDK1 was 
concentration-dependent.

Discussion
HCC is the most common malignant tumor in the clinic 
and one of the leading causes of cancer-related deaths 
worldwide. In China, CKI is widely used in the treat-
ment of cancer pain and is often combined with chemo-
therapy and radiotherapy in clinical practice [56]. Studies 
have shown that the combination of CKI with TACE has 
significant clinical efficacy in the treatment of HCC [22, 
57]. In this study, the network pharmacology method was 
used in combination with molecular biology experiments 

Fig. 4  Enrichment analysis of the compound-HCC target network. A The result of GO enrichment analysis. B The result of KEGG enrichment 
analysis. C Arachidonic acid metabolism pathway and the drug metabolism-cytochrome P450 pathway. D Drug-compound-target-pathway 
network (orange ellipses represent CKI, red diamonds represent compounds, blue hexagons represent shared targets of CKI and HCC, and green Vs 
represent pathways)

(See figure on next page.)
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Fig. 4  (See legend on previous page.)
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Fig. 5  Expression and correlation analysis of the six hub genes of CKI in the treatment of HCC. A Expression levels of the six hub genes in the tumor 
and normal groups. B Correlation analysis between CDK1 and the other five important targets
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Fig. 6  Survival analysis of the six hub genes of CKI in the treatment of HCC
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to explore the potential targets and pharmacological 
mechanisms of CKI in the treatment of HCC.

Topological characteristics are important parameters 
for evaluating the importance of nodes in the network, 
including Degree, Betweenness and Closeness. “Degree” 
is defined as the number of edges associated with node 
i. “Betweenness” means the number of shortest paths 
between pairs of nodes passing through node i. “Close-
ness” represents the reciprocal of the sum of the dis-
tances between node i and the other nodes. The higher 
the above three node values, the greater the importance 
of the node in the network [58–61]. Based on the topo-
logical characteristics and edge counts of each node, we 
screened out 6 potential key targets (BCHE, SRD5A2, 
EPHX2, ADH1C, ADH1A, and CDK1) for CKI in the 
treatment of HCC. Among them, CDK1 was the only one 
highly expressed in HCC, and there was a strong negative 
correlation between its expression and the expression of 
the other five targets (BCHE, SRD5A2, EPHX2, ADH1C, 
and ADH1A).

Furthermore, the survival analysis results showed 
that high expression of CDK1 was closely related to the 
poor prognosis of HCC patients. In contrast, the high 
expression of SRD5A2, EPHX2, ADH1C and ADH1A 
indicated that HCC patients had a longer overall sur-
vival time. In addition, this study proved that CKI had 
a significant inhibitory effect on the proliferation of 
HepG2 cells.

Cyclin-dependent kinase 1 (CDK1) is a serine/threo-
nine protein kinase and belongs to the cyclin-dependent 
kinase family (CDKs). The activated CDKs are necessary 
for cancer cell proliferation [62], and CDK1 is essential 
for the phase transition of G1/S and G2/M [63]. Zhao 
et  al. found that CDK1 interacts with apoptin in HCC 
and is one of the key players in the activation of apop-
tin-induced tumor-specific apoptosis [64]. Clinical 

studies have shown that anti-CDK1 in HCC was one of 
the most effective ways to improve clinical efficacy [65]. 
In this study, we found that CKI caused a dose-depend-
ent down-regulation of CDK1 in HepG2 cells. Mecha-
nism studies have shown that matrine, one of the main 
ingredients of CKI, exhibits time-dependent inhibition 
of CDK1 expression in prostate cancer cells, resulting in 
o cell cycle arrest in the G0/G1 phase, thereby inhibiting 
cancer cell proliferation [66].

The alcohol dehydrogenase (ADH) family includes 
seven enzymes (ADH1–7) [67]. ADH1, including 
ADH1A, ADH1B, and ADH1C, are mainly expressed in 
the liver and play an important role in the conversion of 
ethanol to acetaldehyde, a kind of carcinogenic metabo-
lite, especially in the excretory phase. Furthermore, these 
enzymes are essential for oral alcohol metabolism [68, 
69]. Studies have shown that ADH1C polymorphisms 
were associated with various cancer risks such as gastric 
cancer and oral squamous cell carcinoma [70, 71]. It has 
been confirmed that low expression of ADH1C is asso-
ciated with poor prognosis in patients with non-small 
cell lung cancer [67]. In HCC, both ADH1C and ADH1A 
have been shown to be downregulated [72, 73]. Inhibition 
of ADH1A expression would promote the occurrence 
and progression of HCC. However, high expression of 
ADH1A was related to a reasonable survival rate of HCC 
patients [74, 75]. Our experimental results showed that 
CKI increased the expression of ADH1A in HepG2 cells.

Butyrylcholinesterase (BCHE) is a glycoprotein synthe-
sized by the liver and secreted into the bloodstream. It is 
a nonspecific cholinesterase and widely distributed in the 
nervous system, small intestine, and adipose tissue [76]. 
Recently, it has been reported to be a solid biochemi-
cal marker indicating liver organ damage. Functional 
destruction of the liver is associated with a decrease in 
plasma BCHE activity [77]. Therefore, BCHE has been 
found to be involved in the pathogenesis of chronic liver 
disease in patients with advanced HCC [78–81]. Besides, 
a lower level of BCHE in the serum is closely associated 
with the advanced stage and poor prognosis of various 
cancers, such as gastric cancer, renal cancer, bladder 
cancer, prostate cancer, and cervical cancer [76, 82–85]. 
Here, we carried out a molecular docking verification of 
the highest degree target BCHE and its related CKI-com-
pounds. We found that all eight active compounds of CKI 
(9α-hydroxymatrine, isomatrine, lamprolobine, matrine, 
oxymatrine, sophocarpine, sophoranol, and sophoridine) 
had relatively high binding potential with the active site 
of BECE, indicating that there is likely an interaction 
between CKI and BCHE.

The EPHX2 gene encodes soluble epoxide hydrolase 
(sEH), a bifunctional enzyme of the epoxide hydrolase 
family, an enzyme that promotes increased apoptosis by 

Table 3  Information on the docking of BCHE-related 
compounds with BCHE

Target PDB ID Compound Affinity 
(kcal/
mol)

BCHE 5K5E sophoridine −8.8

hydroxymatrine −8.5

sophocarpine −8.4

matrine −8.3

oxymatrine −8.3

lamprolobine −8.3

isomatrine −8.2

sophoranol −8.2
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inducing oxidative stress and inflammation [86]. Thom-
assen et  al. found that sEH degrades biologically active 
epoxy fatty acids derived from arachidonic acid through 
the metabolism of P450 cytochromes (CYP) in the ara-
chidonic acid pathway [87]. In addition, silencing of 
EPHX2 has been proved to reduce tumor cell viability, 
induce apoptosis, and inhibit androgen receptor signal-
ing in prostate cancer [88]. For HCC, EPHX2 has been 
identified as a prognostic biomarker in previous studies 

[89]. In our research, CKI down-regulated the expression 
of EPHX2 in HCC.

SRD5A2 encodes steroid 5-α-reductase 2, an impor-
tant enzyme in androgen metabolism. This gene has been 
found to expressed in cells sensitive to androgens, such as 
prostate, breast glands, and liver cells. It has been consid-
ered a risk factor for breast cancer and has been closely 
related to prostate cancer prognosis [90–93]. Previous 
studies have shown that SRD5A2 was down-regulated in 

Fig. 7  Detailed CKI ingredients-BCHE active site docking simulation
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tumors and negatively correlated with biochemical recur-
rence [91, 94]. In addition, epigenetic abnormal hyper-
methylation in the SRD5A2 promoter region can be used 
as an important molecular target for the detection of 
HCC [95], and the analysis of methylated SRD5A2 may 
help to accurately diagnose HCC, especially the early 
diagnosis of HCC [96, 97]. Our WB and PCR experi-
mental results both showed that the expression level of 
SRD5A2 was significantly up-regulated in HepG2 cells 
after CKI treatment.

To further elucidate the multiple mechanisms of CKI 
in HCC from a systemic perspective, GO and KEGG 
enrichment analyses were performed. The results of 
GO analysis showed that CKI may be involved in drug 
response, metabolic drug process, and enzyme binding 

to affect HCC. In the metabolic pathway enrichment 
analysis, the potential targets of CKI were significantly 
enriched in drug metabolism-cytochrome P450, arachi-
donic acid metabolism and other metabolic pathways. 
Most of the drugs are metabolized in the liver by drug-
metabolizing enzymes, and the primary drug-metaboliz-
ing enzymes are severely dysregulated in HCC, leading to 
chemotherapy failur e[98]. Moreover, dysfunction of the 
drug metabolism-cytochrome P450 pathway (hsa00982) 
has been reported to induce drug resistance or adverse 
reactions during chemotherapy in cancer by interrupt-
ing drug metabolism and promoting drug excretion [99]. 
Arachidonic acid metabolism has been proved to signifi-
cantly impact the occurrence and development of vari-
ous malignant diseases [100]. It has been reported that 

Fig. 8  Effects of CKI on cell viability and proliferation of HepG2 cells. A Cell viability curve of HepG2 cells with CKI treated for 24 h, 48 h and 72 h. B 
The effect of CKI on the proliferation of HepG2 cells. Data are presented as mean ± SD of three independent experiments. (**** P < 0.0001)
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activation of arachidonic acid metabolism induces liver 
inflammation [101]. Studies have shown that berberine 
may induce apoptosis of HCC cells by inhibiting the met-
abolic pathway of arachidonic acid [102]. Therefore, we 
speculated that CKI may play an important therapeutic 
role in HCC by regulating drug metabolism-cytochrome 
P450 and arachidonic acid metabolic pathway.

Conclusions
In this study, we systematically investigated the poten-
tial targets and pharmacological mechanisms of CKI in 
the treatment of HCC through network pharmacology 
analysis combined with enrichment analysis, survival 
analysis and other experimental methods. The network 
analysis showed that BCHE, SRD5A2, EPHX2, ADH1C, 

Fig. 9  Effects of CKI on the expressions of ADH1A, CDK1, EPHX2 and SRD5A2 in HepG2 cells. A ADH1A, CDK1, EPHX2 and SRD5A2 protein in 
HepG2 cells with CKI treated. B ADH1A, CDK1, EPHX2 and SRD5A2 mRNA in HepG2 cells with CKI treated. Data are presented as mean ± SD of three 
independent experiments. (* P < 0.05; ** P < 0.01; *** P < 0.001; **** P < 0.0001)
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ADH1A and CDK1 were the key targets of CKI in treat-
ing HCC. The survival analysis results showed that 
SRD5A2, EPHX2, ADH1C, ADH1A and CDK1 were 
closely related to the prognosis of HCC patients. GO 
and KEGG enrichment analysis revealed that CKI could 
exert its therapeutic effect by regulating drug metabo-
lism-cytochrome P450 and arachidonic acid metabo-
lism. In addition, based on the cell experiments in vitro, 
we confirmed that CKI had a significant inhibitory 
effect on the proliferation of HepG2 cells. The results 
of WB and PCR experiments suggest that the anti-HCC 
effect of CKI may be related to the down-regulation of 
CDK1 and EPHX2 and the up-regulation of SRD5A2 
and ADH1A. In future experiments, we would investi-
gate the roles and functions of these key targets in more 
depth and details.

In conclusion, this study systematically analyzed the 
pharmacological mechanism of CKI in the treatment of 
HCC. Further, it confirmed the anti-cancer effects and 
potential targets of CKI in the clinical treatment of HCC.
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