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Abstract: Colorectal cancer is one of the leading causes of death, and the third most diagnosed
type of cancer, worldwide. It is most common amongst men and women over 50 years old.
Risk factors include smoking, alcohol, diet, physical inactivity, genetics, alterations in gut microbiota,
and associated pathologies (diabetes, obesity, chronic inflammatory bowel diseases). This review
will discuss, in detail, the chemopreventive properties of some dietary compounds (phenolic
compounds, carotenoids, iridoids, nitrogen compounds, organosulfur compounds, phytosterols,
essential oil compounds, polyunsaturated fatty acids and dietary fiber) against colorectal cancer.
We present recent data, focusing on in vitro, laboratory animals and clinical trials with the previously
mentioned compounds. The chemopreventive properties of the dietary compounds involve multiple
molecular and biochemical mechanisms of action, such as inhibition of cell growth, inhibition of
tumor initiation, inhibition of adhesion, migration and angiogenesis, apoptosis, interaction with
gut microbiota, regulation of cellular signal transduction pathways and xenobiotic metabolizing
enzymes, etc. Moreover, this review will also focus on the natural dietary compounds’ bioavailability,
their synergistic protective effect, as well as the association with conventional therapy. Dietary natural
compounds play a major role in colorectal chemoprevention and continuous research in this field
is needed.
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1. Introduction

The alarming incidence of colorectal cancer (CRC) has led to a pressing demand in developing
novel therapeutic strategies that could overcome the limitations of conventional therapies. Depending
on the cancer stage, its treatment usually involves surgery, radiation and chemotherapy. Because
CRC is generally diagnosed in the late stages, when patients frequently present with distant
metastases, chemotherapy represents the backbone of CRC treatment [1,2]. Despite the extensive use
of chemotherapeutical agents, such as fluorouracil, oxaliplatin or irinotecan, chemotherapy presents
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several disadvantages like severe toxicity associated with serious adverse reactions, development of
drug resistance, and a lack of specificity in targeting solely tumor cells [3,4].

Reports that sustain the beneficial effects of natural compounds administration for a broad
spectrum of diseases associated with the numerous sources available for compound isolation have
opened an emerging interest in using natural compounds as novel therapeutic candidates for CRC
treatment. Natural compound based CRC therapy can be used through the entire process of CRC
management. A favorable diet plan can prevent the disease based on a high consumption of
vegetables, fruits and fibers. It had been shown that natural compounds can target tumor cells
after disease occurrence and prevent tumor recurrence or metastasis [5]. Moreover, one of the most
important features of natural compounds remains their capacity to induce tumor cells sensitivity for
chemotherapeutic agents after the development of drug resistance [6,7]. It has been reported that the
dietary compounds, such as quercetin and curcumin, succeeded to overcome the multidrug resistance
in several malignant cell lines [8–10]. This chemosensitivity potential of natural compounds favor
their use as adjuvant therapy in conventional treatment protocols, but exclusively natural compound
treatment can be also based on a different mechanism of action against tumor cells [8,11]. Therefore,
natural compounds can exert anti-tumor effects due to their antioxidant capacity, ability to inhibit
cellular growth and trigger tumor cell apoptosis or by modulating the metastatic cascade.

2. General Aspects of CRC

CRC is one of the leading causes of death and the third most diagnosed cancer in the world
along with breast, prostate, lung, ovary, pancreas and bladder cancers [12,13]. The premalignant
lesions associated with CRC are multiple aberrant crypt foci (AFC) which precedes the evolution
of the adenomatous polyps [14,15]. Regarding the genomic instability, there are known three main
pathways involved in the initiation and progression of CRC: (i) The chromosomal instability (CIN)
pathway, (ii) global genome hypermethylation correlated with the shutdown of tumor suppressor
genes, known as CpG island methylator phenotype (CIMP), and (iii) DNA microsatellite instability
(MSI) phenotype [16–18].

Chronic inflammation, which is usually present in inflammatory bowel diseases (IBD), such as
Chron’s disease or ulcerative colitis, is also a trigger for CRC development, especially for patients
under 30 years. The molecular and cellular changes in chronic inflammation of the bowel may include
alteration in cellular immunity, over-expression of cyclooxygenase (COX-2), activation of toll-like
receptor 4 (TLR4), nucleotide-binding oligomerization domain-like receptors (NLRs), overexpression
of vascular endothelial growth factor (VEGF) and genetic factors [19–21]. Inflammation in patients
with CRC is associated with increased cellularity of Peyer’s patches, a lymphoid tissue associated with
the small intestine [22].

It is well known that genetics, race, gut microbiota and environmental factors play a key role
in the tremendous increase of CRC worldwide. Among genetic factors, mutations in the several
genes (the homolog of Kirsten rat sarcoma proto-oncogene, KRAS; the homolog of rapidly accelerated
fibrosarcoma proto-oncogene, BRAF) and chromosomal instability (manifested by frequent mutations)
are involved in CRC etiology. Moreover, the polymorphism of several proteins is responsible
for CRC incidence. In this category might be included nucleic acid binding protein 1 (NABP1,
a protein responsible for DNA repair), laminin-1, cyclin D2, and transcription factors which target
wingless-related integration site (Wnt)/β-catenin pathway [12,23–25].

In addition, there are patients that have a truly inherited predisposition for CRC development,
those with familial adenomatous polyposis, Peutz-Jeghers syndrome, serrated polyposis syndrome
and Lynch syndrome [26].

Gut microbiota is involved in tumor pathogenesis through the production of detrimental
metabolites (polyamines, hydrogen sulfide and secondary bile acids), bacterially derived genotoxins,
host defense modulation, inflammation, and oxidative stress [27]. Detrimental metabolites can cause
direct DNA damage through DNA alkylation or induce chronic inflammation via interleukin 6 (IL-6)
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and tumor necrosis factor alpha (TNF-α) production [28,29]. Intestinal dysbiosis is common for
CRC and it involves high levels of gut bacteria, such as Fusobacterium nucleatum, enterotoxigenic
Bacteroides fragilis, adherent-invasive Escherichia coli, Peptostreptococcus anaerobius, Enterococcus faecalis,
Bilophila wadsworthia, Solobacterium moorei and low levels of Bifidobacterium sp., Roseburia sp., Blautia sp.,
Lactobacillus sp. [29–32].

Intestinal dysbiosis, it is also characterized by defective production of short chain fatty acids,
such as butyrate and acetic/propionic acids. Butyrate, produced by Eubacterium rectale and Roseburia sp.,
represents the energy substrate for epithelial cells of the colon, increases mucus production, raise the
activity of antioxidant enzymes, and has anti-inflammatory properties. Acetic and propionic
acids have been shown to inhibit the activation of nuclear factor kappa-light-chain-enhancer of
activated B cells (NF-κB) and to stimulate the apoptosis of tumor cells [19]. Pathogenic bacteria are
responsible for a chronic intestinal inflammatory state via the recognition of microorganism-associated
molecular pattern by Toll-like receptor 4 (TLR4), that induce activation of T helper 17 cells and
production of pro-inflammatory interleukin 23 (IL-23) [28]. Moreover, these harmful bacteria are
responsible for the increased activity of bacterial enzymes, such as β-glucuronidase, β-glucosidase,
azoreductase, nitrate-reductase, alcohol dehydrogenase involved in converting heterocyclic aromatic
amines, polycyclic aromatic hydrocarbons and primary bile acids into active carcinogens. In addition,
harmful bacteria decrease the production of mucins by goblet cells and synthetize phenols, cresols and
nitroso-compounds [19].

Environmental factors which favor the increased incidence of CRC include: Alcohol, smoking [33],
consumption of red meat [34], associated pathologies, such as diabetes, overweight, and obesity [35],
exposure to different chemicals (aromatic hydrocarbons), radiation [29,36], physical inactivity [37,38]
and diet [38,39]. Red meat is a source of iron porphyrin pigment, which is responsible for the induction
of carcinogenesis through the formation of nitroso-compounds [34]. Furthermore, the meat intake was
related to CRC due to several factors: High fat-diet that might stimulate carcinogenesis through insulin
resistance or fecal bile acids, heterocyclic amines produced by cooking the meat at high temperatures,
N-nitroso compounds from processed meat, such as sausages, hot dogs, bacon [40,41].

Under these circumstances, it was reported that an increased intake of fruits and vegetables along
with the limitation of a western diet (rich in fast food products and sweets), folic acid and vitamin D
supplementation have a positive impact towards the reduction of CRC incidence [39,42].

Hormonal status also plays an important role in colon carcinogenesis mainly in women.
Post-menopausal women have a high incidence of CRC, probably due to loss of cell cycle regulatory
properties mediated by estrogen ERβ receptors or an increase in ERα receptors [43].

Screening remains the golden standard for preventing CRC and it is usually applied for people
above 50 years. Screening methods include stool-based tests, visualization (colonoscopy) and
serology/tissue markers. To reduce mortality and to improve the prognosis of CRC, earlier detection of
serum markers is critical. The common biomarkers used in serological screening methods may include
carcinoembryonic antigen (CEA), seprase, soluble cytokeratin-19 fragment (CYFRA 21-1), osteopontin
(OPN), ferritin, anti-p53 [44,45].

3. General Aspects Regarding the Dietary Compounds

Healthy eating strategies, with increased consumption of fruits, vegetables, cereal grains, edible
macrofungi and a balanced intake of meat and high fat products, have a beneficial role in the prevention
of chronic diseases, such as heart disease, diabetes, cancer, neurodegenerative diseases or stroke [22,46].
Dietary phytochemicals can be divided into several categories, such as phenolic compounds, carotenoids,
iridoids, nitrogen containing compounds, organosulfur compounds, phytosterols, dietary fiber, essential
oils, polyunsaturated fatty acids [22,47].
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3.1. Phenolic Compounds

Phenolic compounds are one of the widely distributed secondary metabolites in plants kingdom
that share a common characteristic, the presence of at least one aromatic ring hydroxyl substituted.
They usually bound to other molecules, such as glycosides and proteins and are well known for their
powerful antioxidant properties [48]. Phenolic compounds can be divided according to their chemical
structure into flavonoid and non-flavonoid constituents. Flavonoids are water-soluble pigments
with a C6-C3-C6 skeleton, which have been subdivided in flavones, flavonols, flavanones, flavanols,
isoflavones, and anthocyanidins [49]. Non-flavonoids compounds include tannins, phenolcarboxylic
acids (derivatives of hydroxybenzoic and hydroxycinnamic acids), lignans, stilbens and other
compounds. Phenolic compounds are widely distributed in fruits, vegetables, coffee, black tea,
green tea and wine [50].

3.2. Carotenoids

Carotenoids are terpenic fat-soluble pigments containing 40 carbon atoms that share a
polyisoprenoid structure, a long conjugated chain of double bonds and with a symmetry around
the central bond [51]. According to their chemical structures, carotenoids are classified as carotens
(α-carotene, β-carotene, lycopen—which are linear hydrocarbons that are cyclized at one end or
both ends of the molecule) and oxygenated carotenoids (xantophylls), such as lutein, zeaxanthin [52].
Other important carotenoids are crocetin and its ester crocin. Dietary carotenoids are associated
with low cardiovascular risk [53], eye health [54], prevention of infectious disease, anti-cancer and
anti-inflammatory effects [51].

3.3. Iridoids

Iridoids are a type of monoterpenoids that have a cyclopentanopyran backbone, and are typically
found in plants, such as glycosides. One of the most studied iridoids is oleuropein extracted from
olives, which was known for its protective activity against cardiovascular and metabolic diseases [55].

3.4. Nitrogen Compounds

Nitrogen compounds are characterized by the presence of nitrogen atoms and are classified as
alkaloids (a group of secondary plant metabolites, biosynthesized from amino acids) and non-alkaloid
derivatives, such as protoalkaloids, pseudoalkaloids, alkamides, lectines, cyanogenic glycosides etc. [56].
Nitrogen compounds are characterized by great structural diversity and diverse pharmacological effects,
such as analgesic, anti-inflammatory, antitussive, anticancer, antimalarial etc. [57].

3.5. Organosulfur Compounds

Organosulfur compounds contain at least one atom of sulfur in their molecule and are found
mainly in garlic and cruciferous vegetables [58,59]. These compounds are well-known for their
antifungal, antibacterian, anti-parasitic, antiviral, antithrombotic, immunomodulatory and anticancer
effects [59].

3.6. Phytosterols

Phytosterols are plant derived lipid compounds, which resemble cholesterol, but vary in carbon
side chains or presence/absence of a double bound. They are classified as sterols, (unsaturated
compounds) and stanols (saturated molecules). Phytosterols are usually found in plants or macro
fungi and share a wide range of therapeutic effects, such as hypolipidaemic, anti-inflammatory or
anticancer effects [60].
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3.7. Essential Oil Compounds

Essential oils are complex mixtures of chemical compounds with great structural diversity.
Monoterpenes, sesquiterpenes and aromatic compounds are the main classes of bioactive substances
found in essential oils. They have a wide spectrum of pharmacological effects, such as antibacterial,
antifungal, antiviral, anti-mutagenic, cancer preventive and anti-inflammatory properties. Aromatic
plants and spices (rosemary, fennel, coriander, thyme, cinnamon etc.) are excellent sources of essential
oils [61,62].

3.8. Polyunsaturated Fatty Acids (PUFA)

Fatty acids are lipophilic compounds, for which the carbon chain can vary from two to 40 carbon
atoms. They are essential components of membrane phospholipids. Fatty acids are usually classified
as short chain (up to six carbon atoms), medium chain (eight-twelve carbons) and long chain (above 12
carbons). In addition, fatty acids are classified according to the presence or the absence of the double
bonds in their molecules [63]. Long chain PUFA are categorized in omega-3 (n-3) and omega-6 (n-6)
depending on the position of the first double bond from the methyl group of the fatty acid [64]. Humans
are not able to synthesize the essential omega-3 fatty acids (α-linolenic acid) and omega-6 fatty acids
(linoleic acid), so they depend exclusively on dietary sources [65]. Other omega-6, omega-3 fatty acids,
such as γ-linolenic acid (GLA), di-homo-γ-linolenic acid (DHGLA), docosahexaenoic acid (DHA),
eicosapentaenoic acid (EPA), arachidonic acid (AA) are generated during PUFA production, under the
influence of different enzymes: ∆6 desaturase, elongase etc. [66]. The ratio between n-6/n-3 is very
important for a balanced synthesis of eicosanoids [66,67] and the ideal ratio is 1/5–10 [66]. Recent
findings support the role of PUFA in cardiovascular, neurodegenerative diseases or depression [64,68].

3.9. Dietary Fiber

Dietary fibers are found in fruits, vegetables, grains and macro fungi. They include non-starch
polysaccharides, resistant starch fructo-oligosaccharides, galacto-oligosaccharides, glucomannans,
lignin, pectin and β-glucans [63,69,70]. This large category of natural compounds has been classified
according to their solubility, their quality of being fermentable and their physiological effects. Soluble
fiber dissolves in water and form gels. They consist of inulin, pectin, gums and β-glucans. Insoluble
fibers are represented by lignin, cellulose and some hemicelluloses [63]. Dietary fiber has various
health benefits, such as lowering cardiovascular risk, glycemic and body weight control, laxation,
prebiotic effect [63,69,71].

Some of the most well-known dietary compounds, belonging to different categories are presented
in Table 1 (phenolic compounds) and Table 2 (non-phenolic compounds), including members, chemical
structures and dietary sources.
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Table 1. Main classes of phenolic compounds with representative members, chemical structure and dietary sources [58,72–74].

Dietary Compounds Chemical Structure Representative Compounds Sources

Flavonoids

Flavones
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Table 1. Cont.

Dietary Compounds Chemical Structure Representative Compounds Sources

Flavonoids

Protoanthocyanidins
or condensed tannins
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Table 2. Main classes of dietary compounds (others then phenolic compounds) with representative members, chemical structure and dietary
sources [52,55,62,66,72,73,75–79].

Dietary Compounds Chemical Structure Representative Compounds Sources

Carotenoids
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vulgare L.), lemon balm (Melissa 

officinalis L.), cinnamon (Cinnamomum 
sp.), aniseed (Pimpinella anisum L.), star 

anise (Illicium verum Hook.), fennel 
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sativa L.)
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4. In Vitro Studies

4.1. Polyphenols

The potential use of polyphenols for CRC prevention and treatment had been widely investigated
(Figure 1). Research results highlight the potential of the dietary bioactive compounds to interfere with
tumorigenesis at all steps tumorigenesis, including initiation, promotion and progression. In vitro
mechanisms of dietary polyphenols demonstrated their ability to modulate cellular processes, such as,
gene expression, apoptosis or differentiation [80]. Several recent studies have demonstrated that cancer
treatment through a combinatorial approach might show increased efficiency than the use of drugs
only [81].
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Figure 1. Schematic representation of the polyphenols’ major mechanisms of action on colorectal cancer
(CRC) cells. Polyphenols: (i) Determine cell cycle arrest by downregulating cyclin-dependent kinase 2,
4 (CDK 2, 4), (ii) induce apoptosis by upregulating B cell lymphoma 2 associated protein X and B cell
lymphoma 2 (Bax-Bcl-2), caspase-3 and caspase-8, (iii) inhibit cell adhesion and migration through the
downregulation of matrix metalloproteinase 9 (MMP-9) and cyclooxygenase 2 (COX2) and (iv) stop
tumor initiation by altering nuclear factor kappa-light-chain-enhancer of B cells (NF-kb)/β-catenin
signaling pathway.

4.1.1. Flavones

Quercetin is a flavonol present in vegetables and fruits like as onion or apples. Quercetin
reduces proliferation in CRC cell lines by downregulating RAS p21 protein activator 1 gene [82].
The combination of quercetin with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)
proved a TRAIL-induced apoptosis in a synergistic manner in colorectal adenocarcinoma cells (SW-620
and HT-29 cell lines), while this combination resulted in an additive effect in the case of Caco-2 human
epithelial colorectal adenocarcinoma cells [83]. Quercetin has been also tested in vitro in combination
with fluorouracil (5-FU) in CO115 human colon carcinoma cells (p53 positive) and HCT15 colorectal
adenocarcinoma cells (p53 negative). This combination of drugs showed higher apoptosis levels in
CO115 cell line, in a synergistic manner, but as an additive effect in HCT15 cells [84].

Kaempferol can be found in black tea, broccoli, propolis or grapefruit acts on different types of
cancer cells [85] inducing apoptosis through cytochrome c mitochondrial release, caspase-3 cleavage
activation and p53-dependent growth inhibition [86,87]. Cho et al. showed in 2012 that kaempferol
may induce G1 and G2/M cell cycle arrest by inhibiting the activity of cyclin-dependent kinase 2,
4 (CDK 2, 4) and cell division cycle protein 2 [88]. In HT-29 cells, kaempferol induces apoptosis and
inhibits insulin-like growth factor 1 receptor (IGF-1R) and receptor tyrosine kinase ErbB3 signaling
pathways [89]. Kaempherol was tested in combination with TRAIL on SW480 and DLD-1 CRC cell
lines and the results showed an increase in apoptotic induction in a kaempferol-dose dependent
manner, probably by up-regulating death receptor-5 [90].
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Apigenin is one of the well-known flavones which is present in several fruits and vegetables,
such as parsley, garlic, Chinese cabbage, celery, bell pepper, and guava [72]. It is a chemopreventive
agent with strong cytostatic and anti-angiogenic effects in vitro [72]. In CRC cells, the activity of
apigenin was correlated with a blockage in cell cycle progression, induction of apoptosis and inhibition
of the cell growth [91–93]. However, to increase the anti-neoplastic activity of apigenin additional
combination therapy with drugs, such as 5-FU, oxaliplatin or irinotecan, might be required.

4.1.2. Isoflavones

Genistein is an isoflavone, which can be found in high concentrations in soybeans, lentils,
beans, and chickpeas. A negative correlation was reported between the soybean diet and the
occurrence of the CRC [94,95]. This isoflavone aroused a growing interest as a pro-apoptotic agent
because of succeeded to be more effective in CRC cells compared to their normal counterparts [96].
Genistein acts by increasing the expression of B cell lymphoma 2-associated X protein (Bax) or
cyclin-dependent kinase inhibitor, p21 [97], by inhibiting Nuclear factor kappa-light-chain-enhancer of
activated B cells/NF-κB [98] and topoisomerase II [99]. In addition, genistein displayed anti-cancer
activities by regulating ErbB proteins expression [100] and by suppressing the carcinogen induction
of Wnt/β-catenin signaling pathway [101]. In addition, genistein was tested together with 5-FU on
HT-29 cells and the results showed a synergistic effect on cell growth blocking, probably due to the
over-expression of pro-apoptotic p53 and p21 and down-regulation of COX-2 [102].

4.1.3. Phenocarboxilic Acids

Caffeic acid showed a pro-apoptotic effect on HT-29 cells [103,104] starting from 80 µM
concentration, while chlorogenic acid [105] did not show any significant activity against different
human colorectal carcinomas [106]. Ferulic acid displayed inhibition of CRC progression acting on cells
adhesion and migration mechanisms [103]. Gallic acid is the only one among benzoic acid derivatives
that acts on CRC cells by upregulating Bax and downregulating Bcl-2 [107,108].

4.1.4. Stilbens

Resveratrol is a phytoalexin found in many plant species, including edible plants like grapes
or berries. Resveratrol is synthesized by plants in response to environmental stress and pathogenic
invasion as a natural inhibitor of cell proliferation [81]. The first study revealing the resveratrol’s
chemopreventive activity was published by Jang et al. in 1977, who described the effect of the topical
administration of resveratrol [109]. Since then, resveratrol was used in many studies for various
malignancies, including CRC. In vitro studies demonstrated that resveratrol might modulate and
inhibit tumorigenesis by reduction of the COX-2 and cytochrome P450 activity. Moreover, resveratrol
can exert synergistic activities in combination with other active compounds, such as quercetin or
chemotherapeutic agents, such as 5-FU, oxaliplatin or mitomycin C [110].

Consequently, the combination of resveratrol and quercetin stimulated apoptosis in HT-29 cell
line, by reducing the RNA and proteins levels for several transcription factors [111]. This combination
of the natural compounds suppressed human colon cancer stem cells proliferation and down-regulated
c-Myc [112]. The toxicity of 5-FU was increased in CRC cell lines by synergistic activity of resveratrol.
The mechanism of action of the combined treatment included an increase in the oxidative stress
associated with inhibition of Akt and STAT3 pathways [113]. In addition, resveratrol together with
5-FU significantly induced apoptosis and reduced migration in CRC cells [114].

Other recent studies show that resveratrol chemosensitizes HT-29 and HCT-116 cells to oxaliplatin
by upregulating miR-34c [115]. In addition, resveratrol and oxaliplatin synergistically inhibited cell
growth of Caco-2 cells via apoptosis and necrosis induction [116]. At the same time, resveratrol
can induce p21WAF1/CIP1 overexpression regardless of p53 status, and a combined treatment of
resveratrol and mitomycin C repressed the proliferation of mitomycin C-resistant CRC cells [117].
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4.1.5. Other Compounds

Curcumin, a diarylheptanoid found in turmeric, was identified as a chemopreventive dietary
compound in CRC [118–120]. Curcumin showed a synergistic effect with dasatanib, a potent inhibitor
of Src and Abl kinases, in CRC cell lines with resistant phenotype to FOLFOX (folinic acid, fluorouracil,
oxaliplatin) chemotherapy [120]. The anti-neoplastic effect of 5-FU was reported to be increased by
curcumin [121,122]. Curcumin can potentiate, as well the pro-apoptotic and anti-metastatic effects of
capecitabine [123].

4.2. Non-polyphenolic Compounds—In Vitro Mechanism of Action

Non-polyphenolic compounds display chemopreventive effects on CRC cells in vitro modulating
signaling pathways with impact on cell cycle arrest, apoptosis, invasion, inflammation and much more
(Figure 2).
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Figure 2. Schematic representation of the non-polyphenolic compounds’ major mechanisms of action
on CRC cells. Non-polyphenolic compounds: (i) Determine cell cycle arrest by downregulating
cyclin-dependent kinase 1 (CDK 1), (ii) induce apoptosis by upregulating B cell lymphoma 2 associated
protein X (Bax), B cell lymphoma 2 (Blc-2) and by increasing the production of reactive oxygen
species (ROS), (iii) exert anti-inflammatory effects by downregulating interleukin 1 (IL-1), interleukin
2 (IL-2), interleukin 6 (IL-6) and cyclooxygenase 2 (COX2), (iv) inhibit angiogenesis and invasion by
downregulating matrix metalloproteinase 7 (MMP-7) and phosphoinositide 3-kinase (PKI3)/Protein
kinase B (Akt) and (v) stop tumor initiation by altering the PKI3/Akt pathway.

4.2.1. Carotenoids

Even if the benefits of a lycopene diet in CRC prevention have not been clearly demonstrated [124],
lycopene remains a potential chemopreventive agent for CRC management due to its excellent
antioxidant capacity [125]. Lycopene inhibits the cellular growth of HT-29 cells in a dose-dependent
manner by effectively inhibiting the phosphorylation of Protein kinase B (Akt) and therefore silencing
Phosphatidylinositol-4,5-bisphosphate 3-kinase (PIK3)/Akt, a signaling pathway that is associated
with colorectal tumor development [126]. Moreover, lycopene suppresses tumor cell invasion mediated
by leptin as proteomic assays revealed that lycopene exposure significantly decreased expression
levels of MMP7 and thereby reduce the tumor cells invasion capacity [127]. Tanga et al. highlighted
a synergistic mechanism between lycopene and eicosapentaenoic acid that significantly increased
expression of proapoptotic molecules Bax and Fas. Eicosapentaenoid acid and lycopene reduce tumor
cell growth also by suppression of PIK3/Akt pathway and by further blocking the activation of
downstream molecule mTOR [128]. Another promising effect of lycopene use as a chemopreventive
agent was based on its anti-inflammatory potential against different inflammation-related proteins
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associated with CRC development [129]. In SW480 CRC cell culture, lycopene modulates the
inflammatory cascade by inhibiting the protein expression of NF-κB and JNK. In human CRC cells
SW480, after the stimulation with lipopolysaccharides, the level of inflammatory cytokines (TNF-α,
IL-1 and IL-6) as well the inflammation-inducing enzymes (COX-2 and iNOS) was reduced when
treated with lycopene. Consequently, this compound shows promising effects for modulating the
NF-κB signaling pathway in CRC associated inflammation [130].

β-carotene significantly reduce in vitro cell proliferation of CRC lines LS180, SW620 and HCT-15
and its cytotoxic potential can be easily tailored by adjusting different experimental parameters, such as
dose, exposure time and cell seeding density [131]. However, the cytotoxic potential of β-carotene was
strongly affected by the cell capacity to incorporate the carotenoid as different cell lines present various
patterns of growth inhibition in presence of the same concentration of compound [132]. Briviba et al.
associated β-carotene exposure of HT-29 cells with induction of apoptosis through a mechanism
independent expression of the MEK/ERK signaling pathway as the expression of extracellular signal
regulated kinases ERK1 and ERK2 was not affected [133]. The anti-cancer potential of β-carotene
was attributed to cell cycle arrest and apoptosis induction by modulating the expression of different
key regulator proteins. In the presence of β-carotene, COLO320HSR cells exhibit cell cycle arrest in
G2/M phase mediated by the down-regulation of cyclin A expression and apoptotic death correlated
with decreased levels of apoptotic inhibitors Bcl-2 and Bcl-xL [134]. β-carotene modulates also the
apoptotic pathway mediated by Bcl-2 through its pro-oxidant activity, as it is capable to stimulate ROS
production in CRC lines [135].

Crocetin is a promising chemopreventive agent for CRC mainly due to its antioxidant and
anti-inflammatory potential [136]. Crocetin extracts have proven to be effective in inhibiting the
cellular growth of HT-29, HCT-116 and SW480 CRC cell lines in a dose-dependent manner [137].
Even if several mechanisms of action have been described for crocetin use in different types of cancer,
the role of crocetin in CRC development inhibition has not been fully elucidated [138,139]. Crocetin
promotes apoptosis via p53 dependent or independent mechanisms, increasing the attraction of
crocetin use in defective p53 tumors [140,141]. Moreover, HTC-116 colon cancer cells treated with
crocetin presented a significant reduction in the expression of inflammation related genes like IL-6,
IL-8 and High mobility group box 1 protein (HMGB1), associated with an increased expression of
NAG-1 gene that encodes a protein with high anti-tumorigenic activity [142].

4.2.2. Nitrogen Compounds

Piperine, the most common dietary alkaloid was intensively used in clinics based on its strong
antioxidant and anti-inflammatory capacity, but various studies revealed the great potential of using
this natural compound as an active anti-neoplastic agent. Piperine specifically inhibits tumor cells
proliferation and arrest cell cycle in G1 phase as revealed after HT-29 cells exposure to piperine. The cell
cycle lock is commonly associated with a decreased expression of cyclins D1 and D3, up-regulation of
p21WAF1 and p27KIP1 expression and a diminished phosphorylation of Rb protein [143]. Piperine
mediated apoptosis can be activated as a result of ROS production increase [144] or by modulating
mTORC1 signaling cascade as Caco-2 and HT-29 cells exposure to piperine is associated with inhibition
of mTORC1, a key regulator of cellular autophagy [145].

Capsaicin is a promising natural agent in CRC therapy as various favorable effects on different
CRC cell lines have been reported regarding the capacity of capsaicin to suppress tumor cell
expansion [146–149]. However, in vitro capsaicin administrated doses need to be tightly adjusted since
low concentrations of capsaicin promote metastasis by interfering with key molecules involved in the
metastatic cascade. At low concentrations, capsaicin favors EMT transition by inhibiting E-cadherin
expression, sustains tumor cell migration by inducing over-expression of MMP2 and MMP9 and
activates Akt/mTOR signaling pathway, molecular events that together enhance the migration and
invasive potential of SW480 cells. In contrast, at proper concentrations capsaicin is effective in
reducing the metastatic burden by inhibiting overproduction of MMPs and the epithelial mesenchymal
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transition [150]. One of the main molecular mechanisms of action that underlies the role of capsaicin
in cell proliferation inhibition is cell cycle arrest and subsequent induction of apoptosis mainly by
modulation of p53 activity and other apoptosis linked molecules [151]. Colorectal tumor apoptotic
cells are characterized by AMP-activated protein kinase (AMPK) signaling cascade activation [152],
activation of the pro-apoptotic caspase-3 [149] and an altered expression pattern of β-catenin and
transcription factor 4 (TCF-4) that blocks their interaction [153]. Apoptosis can be orchestrated by
NO levels that trigger apoptotic pathways dependent or independent of p53 activity or by ROS
levels that generate an impairment of the mitochondrial membrane potential [149,154]. Additionally,
capsaicin also exhibits an efficient immunomodulatory effect as reveled by a dose-dependent
decrease of numerous inflammatory cytokines after capsaicin treatment of HT-29 and RKO tumor
cells [155]. Capsaicin presents a superior anti-tumor effect in combination with 3,3′-diindolylmethane
by modulating the transcriptional activity of p53 and NF-κB together with other apoptosis related
genes [156].

In conclusion, recent in vitro studies reveal that polyphenols act on colon cancer cells by
inducing apoptosis and by inhibiting cells growth, migration, adhesion and tumor initiation through
Wnt/β-catenin signaling pathway. Non-polyphenolic compounds induce apoptosis and inhibit cell
growth, inflammation, angiogenesis and tumor initiation through PIK3/Akt signaling pathway.
Considering the evidence provided by the in vitro studies regarding the mechanisms of action of
the dietary polyphenols and non-polyphenolic compounds in CRC cells, further investigations
should focus on underlying their efficacy and safety use in combination with chemotherapy
and/or radiotherapy.

5. In Vivo Studies in CRC Animal Models

5.1. The Effect of Phenolic Compounds

The summary of the effects of phenolic compounds is presented in Table 3.

Table 3. Summary of in vivo experiments regarding CRC and phenolic compounds.

Author, Year Animal Models Doses and Duration of
Administration Results

Genistein

Song S. et al.,
2018 [157] Mice with AOM/DSS CRC 225 mg/kg diet; 450 mg/kg diet

and 900 mg/kg diet—six month

Significant improvement of colon
architectural repair, anti-inflammatory
activity ↓ COX-2, TNF-α; ↓ expression
of PI3K/AKT pathway; ↑expression

of FOXO3, Bax proteins

Zhang Y. et al.,
2013 [101]

Sprague–Dawley rats with
AOM induced CRC

Pre-treatment diet
supplementation with 140
mg/kg—six weeks, before

induction of cancer

Inhibition of aberrant crypt foci,
prevention of nuclear β-catenin

accumulation, suppression of cyclin
D1, c-myc expression and Wnt

signaling genes (Wnt1, Wnt5a, Sfrp1,
Sfrp5)

Son T.G. et al.,
2013 [158]

BALB/mice subcutaneously
injected with CT26 mouse colon

cancer cells

Tumor bearing mice are treated
with genistein 200 mg/kg 1 day

before radiation (5, 10 Gy);
evaluation of tumors after 12 h,

3.5 days

genistein increased progenitor cell
survival and cell death after radiation,

recovery of intestinal damage after
radiation (↑ Ki-67), significant tumor
regression for combined treatment

Cyanidin/Pelargonidin/Malvidin

Kang S.Y. et al.,
2003 [159]

Apcmin mice-mutant mouse
lineage predisposed to multiple

intestinal neoplasia due to
mutations in adeno-matous
polyposis coli (APC) gene

800 mg/L anthocyanidins/200
mg/L (rich in cyanidin glucosides)

in the drinking water and
modified diet with 200 g/kg

freeze dried cherries

Fewer and smaller adenomas in the
cecum compared to control

Colon tumor volume was not
significantly reduced

Shi N. et al.,
2015 [160]

Male CRJ:CD-1 (ICR) mice with
CRC induced with AOM/DSS

2.5%; 5%; 10% freeze-dried
strawberries—cyanidine glucoside

(1.67%) and pelargonidin
glucoside (41.1%)—20 weeks

Inhibition of tumor development
from 100% (control) to 74–44%,
↓ of nitrotyrosine production,

↓ Nf-kb, PI3K/AKT phosphorylation,
↓ COX-2, iNOS expression
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Table 3. Cont.

Author, Year Animal Models Doses and Duration of
Administration Results

Cyanidin/Pelargonidin/Malvidin

Silva R.M. et al.,
2015 [161]

Wistar rats with AOM induced
CRC

Administration of 1% (222 mg/zi)
or 2% red grape juice (444 mg/zi),

two weeks before AOM or 4
weeks after the last administration

of AOM

↓ COX-2 mRNA with 1% grape juice
before AOM and with 2% juice after

the last AOM administration

Fernandez
J. et al., 2018

[162]

Male Fischer 344 rats with
AOM/DSS induced CRC

20 g/day/rat of functional
sausage with 0.11 anthocyanins

(mixture of 1:1 dehydrated
strawberries and blackberries

powder with 59%
cyanidin-3-glucosides and 41%

pelargonidin-3-glucosides)

Significant reduction of Peyer patches,
caecum weight, number of polyps;
Significant reduction of Bilophila

wadsworthia—a bacteria that
generated high level of H2S and has

pro-inflammatory effects

Chlorogenic Acid

Matsunaga
K. et al., 2002

[163]

Male F344 rats with CRC
induced with AOM

250 ppm chlorogenic acid was
administered one week before and
a one week after tumor induction

with AOM; study duration 36
weeks

Significant decrease of colon tumors
for pre- treatment with chlorogenic

acid

Banerjee
N. et al., 2016

[164]

Sprague Dawly rats with AOM
induced CRC

Plum (Prunus salicina L.) beverage
rich in chlorogenic and

neochlorogenic acids, 10 weeks

Significant decrease of dysplastic
polyps, ↓ expression of COX-2, Nf-kB,

AKT/mTOR signaling pathway, ↑
miR-143

Cinnamic Acid

Zhu B. et al.,
2016 [165]

Female BALB/c nude mice
inoculated with HT29 colon

carcinoma cells

1 and 1.5 mmol/kg
x3/week for two weeks

Significant inhibition of tumor growth,
↑ expression of Bax and caspase 3

p-Coumaric Acid

Sharma
S.H. et al., 2017

[166]

Male albino rats with DMH
induced CRC

50 mg/kg, 100 mg/kg, 200
mg/kg; 15 weeks

Significant dose-dependent reduction
of polyps incidence and formation of

pre-neoplasic lesions, reduction of
oxidative stress; significant decrease
in gut microbial enzymes (mucinases

and β-dehydrogenases)

Rosmarinic Acid (RA)

Venkatachalam
K. et al., 2013

[167]

Male wistar rats with DMH
induced CRC

5 mg/kg received during
administration of DMH (15 weeks)

or one week after the last DMH
dose (until 30 weeks) or through

the whole period
(30 weeks)

Supplementation with RA for the
whole period showed the highest

tumor reduction, ↓ stress oxidative
markers, ↓mucosal bacterial enzymes

activity, regulation of xenobiotic
metabolizing enzymes, up-regulation

of apoptotic factors

Gallic Acid

Giftson
J.S. et al., 2011

[168]

Male albino Wistar rats with
DMH induced CRC

50 mg/kg received one week
before DMH and continued 30

weeks (group 1), after cessation of
DMH until 30 weeks (group 2),

along the whole period (group 3)

Supplementation with gallic acid for
the whole period showed the highest

tumor reduction, regulation
xenobiotic metabolizing enzymes,

decreased tumor incidence

Secoisoscilaresinol

Shah N.R. and
Patel B.M., 2016

[169]

Diabetic male Sprague Dawley
rats with DMH induced CRC

500 mg/kg p.o secoisolariciresinol
rich extract of L.

ussitatissimum—18 weeks

↓ pro-inflammatory markers, ↓ PCNA,
↓ CEA, ↓mRNA level of CDK4,
reduction in hyperplastic cells

Gomides
A.F. et al., 2016

[170]

C57 BL6 mice with DMH
induced CRC

10% defatted flaxseed meal—15
weeks

Reduction of precancerous lesions in
the distal colon

Sesamol

Shimizu S. et al.,
2014 [171] C57/BL6-Apc Min/+ mice 500 pp/8 weeks

↓ pro-inflammatory factors,
suppression of intestinal polyps

formation

Legend: AOM—azoxymethane, DSS—dextran sulfate sodium; COX2—cycloygenase 2, TNF-α—tumor
necrosis factor, PI3K/AKT, Ki-67—proliferative marker, iNOS—nitric oxide synthases, Nf-kB—nuclear factor
kappa-light-chain-enhancer of activated B cells, DMH—1,2 dimethylhydrazine, Bcl-2—B-cell lymphoma 2,
Bax—Bcl-2associated X protein, PCNA—proliferating cell nuclear antigen, CDK4—cyclin dependent kinase,
CEA—carcinogenic embryonic antigen, mir-143—microRNA.
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5.1.1. Isoflavones

In vivo studies revealed that genistein treated high-fat mice with CRC induced by administration
of azoxymethane/dextran sulfat sodium decreased the expression of inflammatory factors [157].
Genistein has also shown tumor suppressive activity in mice colon cancer through apoptotic effects,
reduction of tumor weight and reduction of wingless-related integration site (Wnt) signaling [101,158].
Genistein was tested on BALB/c mice bearing and CT26 xenografts under radiotherapy and the results
showed less non-tumorigenic apoptotic cells and improved morphological changes in healthy intestinal
tissue [158]. More than 70% of patients with CRC undergoing radiotherapy displayed side effects
at the gastrointestinal level. Normal colonocytes might be frequently damaged mainly as a result of
an increased oxidative stress induced by radiation therapy, resulting in inflammatory or ulcerative
lesions [110]. Administration of natural compounds as radioprotective mediators might represent a
possible solution to avoid the occurrence of the mucosities, as side effects of the ionizing radiation
therapy [172]. Xenografts’ mice with colon cancer tumors are treated with 5–10 Gy, and genistein
was administrated one day prior to irradiation. The authors reported that genistein protected against
intestinal injury induced by radiation therapy in mice [158].

5.1.2. Anthocyanidins

Regarding administration of anthocyanidins, cyanidin from tart cherries significantly reduced
adenomas of the cecum [159]. Shi N. and coworkers (2015) investigated the effect of dietary
lyophilized strawberries, which are known to be rich in cyanidin and pelargonidin glycosides, on colon
carcinogenesis induced by administration of azoxymethane. The results are promising with inhibition
of tumor development associated with reduced phosphorylation of PI3K/Akt, declining levels
of NF-κB and decreased expression of pro-inflammatory markers [160]. Recent researches have
shown that administration of grape juice concentrate rich in phenolic compounds (peonidin glucoside,
malvidin-glucoside) reduced inflammation, through decreased expression of COX-2, if taken before or
after induction of colon cancer [161]. Other authors reported that administration of anthocyanin-rich
diet in an animal model of CRC showed significant reduction of colon tumors and a positive effect on
gut microbiota [162].

5.1.3. Phenocarboxilic Acids

Phenolcarboxylic acids, chlorogenic acid showed chemopreventive effects in a mouse model of
CRC [163]. Banerjee N. and coworkers demonstrated that administration of a plum beverage rich
in phenolic compounds (chlorogenic and neochlorogenic acid) decreased the number of aberrant
crypt foci, modulated the activity of several intracellular payhways and reduced inflammation [164].
Cinnamic acid upregulated the expression of protein Bax, a pro-apoptotic protein, in colorectal
xenografts grown in athymic mice, probably by inhibition of histone deacetylases [165]. Gallic acid,
rosmarinic acid and p-coumaric acid have a chemopreventive effect colon carcinogenesis induced by
1,2-dimethyl hydrazine induced. The phenolcarboxylic acids decreased tumor incidence, induced
the inhibition of precancerous lesions, reduced gut bacterial enzymes (mucinase, nitroreductase,
sulphatase, β- glucosidase) and displayed antioxidant properties [166–168]. It is well known that
phase I metabolizing enzymes are required for activation of different carcinogens into forms capable
of binding to proteins or DNA and leading to mutations. An increase in phase II metabolizing
activity has been related to the elimination of carcinogens, through the formation of hydrophilic
compounds, such as glucoronides, glutathione conjugates or glutathione sulphates [167]. Moreover,
the phenolcarboxylic acids significant increased phase II xenobiotic metabolizing enzymes (glutathione
S-transferase, gamma-glutamyl-transpeptidase) and decreased phase I xenobiotic metabolizing
enzymes, such as cytochrome P450 and cytochrome b5 [166–168].
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5.1.4. Lignans

Lignans have strong anticancer effects against CRC; administration of a rich secoisolariciresinol
extract from flaxseeds, reduced cancer biomarker levels and decreased the number of the proliferating
cells [169]. Moreover, deflated flaxseeds reduced the incidence of precancerous lesions in the proximal,
distal and middle colon. The exact mechanism of action is not known, since no changes are observed
in tumor protein p53 (p53), cyclin-dependent kinase inhibitor 1 (p21CIP1/WAF1) and multiple tumor
suppressor 1 (p16) expression and the authors did not notice an increase in fecal short chain fatty
acids [170]. Sesamol, a lignin from sesame seeds, significantly reduced the number of intestinal polyps
in mice with colorectal cancer, through suppression of COX-2 and prostaglandin E2 receptor expression
levels [171].

5.2. The Effect of Non-Phenolic Compounds

The summary of in vivo experiments regarding CRC and non-phenolic compounds is presented
in Table 4.

Table 4. Summary of in vivo experiments regarding CRC and non-phenolic compounds.

Author, Year Animal Models Doses and Duration of
Administration Results

Lycopene

Tang F.Y. et al.,
2011 [173]

BALB/cAnN-Foxn1
nude mice with CRC

induced by inoculation
of HT-29 cells

3/6 mg/kg—5 weeks Significant inhibition of tumor
growth

Dias M.C. et al.,
2010 [174]

Male Wistar rats with
DMH induced CRC

300 mg/kg lycopen + symbiotic (60
mg oligofructose + 50 mg inulin +

109 CFU Bifidobacteria lactis)—eight
weeks (before/during or after

initiation with DMH)

↓ PCNA, ↓ p-53 colonic cells, ↓
AFC, ↓colonic Paneth cells

Crocin

Kawabata
K. et al., 2012

[175]

CD1 (ICR) mice with
AOM/DSS induced CRC

50, 100, 200 ppm for 15 weeks after
initiation of colon cancer

Significant reduction of
inflammation and mucosal

ulcers, multiplicity of
adenocarcinoma

Oleuropein

Giner E. et al.,
2016 [176]

C57BL6 mice with
AOM/DSS colorectal

induced cancer
50 mg/kg or 100 mg/kg—63 weeks

Inhibition of tumor formation,
decreased cell proliferation,
anti-inflammatory activity

Capsaicin

Caetano
B.F.R. et al., 2018

[177]

Male WISTAR rats with
DMH induced colorectal

cancer
5 mg/kg or 50 mg/kg—four weeks ↓Ki-67, significant ↓ of tumor

volume and number of AFC

Sulforaphane/Organosulfur Compounds

Rajendran
P. et al., 2015

[178]

Male WT or Nrf2−/+

mice with DMH induced
CRC

Mice received alternating or daily
400 ppm sulforaphane included in

the diet for 25 weeks

Significant reduction in tumor
multiplicity only after
continuous treatment

β-Sitosterol

Baskar A.A. et al.,
2012 [179]

Male albino Wistar rats
with DMH induced CRC

5 mg/kg; 10 mg/kg; 20 mg/kg —16
weeks

Significant increase of
antioxidant defense system, ↑

GSH, ↓ hyperplasic lesions
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Table 4. Cont.

Author, Year Animal Models Doses and Duration of
Administration Results

Thymoquinone (TQ)

Asfour W. et al.,
2013 [180]

Male albino rats with
DMH induced CRC

Administration of 10 mg/kg for 10
weeks (in the initiation phase +

DMH) and 11 weeks (in the post
initiation phase, after induction of

cancer)

Chemopreventive effect,
significant inhibition of tumor

growth (for simultaneously
administration in the initiation
phase), ↓ PCNA, inhibition of

VEGF production

Kortum B. et al.,
2015 [181]

Male and female
Msh2 loxP/loxP

Villin-Cre
mice—transgenic mice
that simulate intestinal

carcinogenesis

Mice were divided in 5 groups:
Group 1—regular chow; group

2—500 mg mesalazine/kg chow,
group 3—2500 mg mesalazine/kg
chow; group 4—37.5 mg TQ /kg
chow; group 5—375 mg TQ/kg
chow; treatment for 43 weeks

↓ incidence of tumors dose
dependent for TQ; no significant

differences between TQ and
mesalazine

Cinnamaldehyde

Long M. et al.,
2015 [182]

Experimental Nrf2+/+

and Nrf2−/− C57BL/6
mice with AOM/DSS

induced CRC

Supplementation of diet with 0.5%
cinnamaldehyde—11 weeks

Supplementation significantly
attenuated colon carcinogenesis

only for Nrf2+/+ mice;
anti-inflammatory and

antioxidant effects

Carvacrol

Sivaranjani
A. et al., 2016

[183]

Male Albino WISTAR
rats with DMH induced

CRC

Administration of 20, 40, 80 mg/kg
for 16 weeks

Reduced tumor incidence,
inhibition of aberrant crypts
formation, ↑ in antioxidant

defense system, ↓ activity of
colonic bacterial enzymes

Omega-3/Omega-6 Fatty Acids

Wang W. et al.,
2017 [184]

C57 BL6 mice with CRC
induced by inoculation

of MC38 CRC cells

Pre-treatment (3 weeks) with DHA
diet (omega-6/omega-3 ratio =

1.26:1) and DHA high diet
(omega-6/omega-3 ratio = 0.56:1)
before tumor initiation (3 weeks)

DHA diet—22 g/kg LA, 0.31 g/kg
ALA, 17.2 g/kg DHA; DHA high

diet—12.5 g/kg—LA, 0.17
g/kg—ALA, 21.9 g/kg DHA

Inhibition of colon growth,
modulation of fatty acids profile
in colon tumors (↓ARA, ↑EPA,

DHA), ↓ EETS

Hao G.W. et al.,
2015 [185]

BALB/c nude mice with
CRC induced by

inoculation of HCT116
colon cancer cells

Ketogenic diet with or without
omega-3 fatty acids;

supplementation received until
tumor volume was 600–700 mm3

(45 days)

Delayed tumor growth
↓ tumor vascularity for

ketogenic diet supplemented
with omega-3 fatty acids

Piazzi G. et al.,
2014 [186]

C57BLJ/6J mice with
AOM/DSS induced CRC

Effect of 1% eicosapentaenoic free
fatty acid on both initiation and

progression of carcinogenesis, 105
days

Suppression of tumor
development, increase of

apoptosis, anti-inflammatory
effects, modulation of gut

microbiota

Barone M. et al.,
2014 [187]

C57BLJ/6J mice with
mutation for the Apc

gene (Apc Min/+)

Supplementation of diet with olive
oil and omega-3 fatty acids, 10

weeks

Decrease in polyps number,
pro-apoptotic effects

Dietary Fibers

Wang J. et al.,
2017 [188]

Athymic male nude mice
BALB/c-nu with
CRCobtained by

inoculation of HT-29
cancer cells

Administration of a polysaccharide
from Lentinus edodes (0.2 mg/kg; 1

mg/kg; 5 mg/kg) or 20 mg/kg
5-fluorouracil for 21 days after

cancer induction

↓ tumor growth, pro-apoptotic
effects
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Table 4. Cont.

Author, Year Animal Models Doses and Duration of
Administration Results

Masuda Y. et al.,
2013 [189]

Female BALB/c,
BALB/c-nude, C3H/HeJ

mice inoculated with
colon-26 cancer cells

Administration of D fraction
(β-glucan) from the maitake

mushroom (Grifola frondolosa) for 19
days after cancer induction

Significant decrease of tumor
growth through systemic

immune responses

Pattananandecha
T. et al., 2016

[190]

Male Sprague-Dawley
rats with AOM induced

CRC

Supplementation of diet with 10%
inulin for 17 weeks

Reduction of colonic AFC,
reduction in bacterial colon

enzymes, increase in
Lactobacillus sp, Bifidobacteria

Qamar T.R. et al.,
2016 [191]

Male Wistar rats with
DMH induced CRC

Administration of
galacto-oligosaccharides (76–151

mg), inulin (114 mg) separately or
co-administration for 16 weeks

For co-administration significant
↓ in AFC formation and fecal

enzyme activities

Hijova E. et al.,
2013 [192]

Male and female
Sprague-Dawly rats with

DMH induced CRC

Supplementation of diet with 80 g
inulin/kg food for 28 weeks

Significant ↓ coliform counts
and ↑ lactobacilli counts, ↓ fecal

enzyme activities,
anti-inflammatory effects

Verma A. and
Shukla G., 2013

[193]

Male Sprague Dawly rats
with DMH induced

colorectal cancer

Administration of inulin 10 mg/0.1
mL for a week before initiation of
CRC and 6 weeks after initiation

↓ of AFC and
nitroreductase/β-glucosidase

activity

Stofilova J. et al.,
2015 [194]

Male and female
Sprague Dawly rats with
DMH induced colorectal

cancer

Co-administration of
oligofructose-enriched inulin

preparation (95% fructan chains and
5% monosaccharide and

disaccharide) with 109 CFU/mL for
28 weeks

↓ inflammatory process in the
jejuna and colon mucosa

Wu W.T. et al.,
2014 [195]

Male C57/BL/6J with
AOM induced colorectal

cancer

Administration of high-fat low fibre
diet (1% cellulose) or high 5% fibre

diet with konjac glucomannan,
inulin, cellulose for 3 weeks before

cancer initiation

Konjac glucomannan and inulin
have anti-genotoxic effects,
increase cecal short chain
fatty-acids, up-regulate

antioxidant enzymes genes

Legend: AOM—azoxymethane, DSS—dextran sulfate sodium, DMH—1,2 dimethylhydrazine, PCNA—proliferating
cell nuclear antigen, AFC—aberrant crypt foci, Ki-67—proliferative marker in the jejum, GSH—glutathione, VEGF C
vascular endothelial growth factor, LA—Linoleic acid, ALA—α-linolenic acid, DHA—docosahexaenoic acid,
EPA—eicosapentaenoic acid, ARA—arachidonic acid, EETS—epoxyeicosatrienoic acids, CD1 (ICR)—outbred
mouse of Swiss origin.

5.2.1. Carotenoids

The effect of carotenoids (lycopene, crocin) on CRC was observed using animal models. Results are
encouraging, since both dietary products showed chemopreventive effects and reduced the incidence
of pre-neoplasic polyps, through various mechanisms, such as up-regulation of p21CIP1/WAF1 proteins,
suppression of proliferating cell nuclear antigen (PCNA) expression and nuclear levels of β-catenin in
tumor tissues. Moreover, an anti-inflammatory effect has been seen through suppression of COX-2
and prostaglandin E2 (PGE2) gene expression. Lycopene also inhibits matrix metallopeptidase protein
(MMP-9) in correlation with reduction of angiogenesis, tumor invasion and metastasis. Crocin
reduced the chronic inflammation by inhibition of the activated nuclear factor NF-κB and displayed
a protective role regarding the toxicity of xenobiotics by increasing the level of Nrf2, nuclear factor
(erythroid-derived 2)-like 2 [173–175].

5.2.2. Iridoids

Oleuropein, an iridoid found mainly in olive leaves and fruits, can prevent CRC by regulation of
Wnt/β-catenin, NF-κB, PI3K/Akt pathways, anti-inflammatory activity associated with significant
decreased the intestinal concentrations of several interleukins (IL-6, IL-17), TNF-α and inhibited COX-2
activity. Besides oleuropein up-regulated Bax protein expression and induced apoptosis in intestinal
tumor cells [176].
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5.2.3. Nitrogen Compounds

Pre-clinical studies have demonstrated that capsaicin may be a chemopreventive agent in CRC
through anti-proliferative, anti-genotoxic, induced expression of apoptotic genes, and up-regulation
of genes involved in cell differentiation [177]. Since previous reports indicated that capsaicin
might promote metastasis, acting as co-carcinogen in cancer skin [196] and promoting breast cells
metastasis [197]. Yang et al., investigated the correlation between capsaicin and metastasis in a tumor
xenografts mouse model for CRC [150]. To investigate the ability of capsaicin to induce metastasis
CT-26 murine CRC cell previous treated or not with 100 µM are intravenously injected in mice.
The investigation of the pulmonary metastatic nodules in 15 days after injection validated the previous
reports. Namely, the capsacin-treated cells increased the number of pulmonary metastatic nodules
in mouse models [150]. Under these circumstances, caution should be taken when various doses of
capsaicin are used for designing in vivo experiments or clinical trials, if recommended.

5.2.4. Phytosterols

Among phytosterols, β-sitosterol has proved antioxidant activity in 1,2 dimethylhydrazine
(DMH) colon carcinogenesis and restored endogenous antioxidant enzyme levels, such as superoxide
dismutase, catalase, glutathione reductase, glutathione peroxidase and vitamins, such as vitamin E
and C [179].

5.2.5. Organosulfur Compounds

Down-regulation of histone deacetylase (HDAC) enzymes play a key role in cell cycle arrest and
apoptosis, whilst up-regulation of Nrf2 expression is involved in the increased activity of phase
II metabolizing enzymes [198,199]. Sulforaphane, from broccoli, inhibits CRC carcinogenesis by
modulating Nrf2 activity and inhibition of HDAC enzymes [178].

5.2.6. Essential Oils

Former data about the administration of essential oil compounds, mainly thymoquinone to male
albino WISTAR rats with chemical induction of CRC reported a reduction in tumor incidence, volume
and multiplicity and decrease in vascular endothelial growth factor (VEFG) concentration [180].
In addition, the association between thymoquinone and mesalazine, an anti-inflammatory drug,
significantly reduced tumor incidence and multiplicity in transgenic mice [181]. Recent data reported
that cinnamaldehyde, the main compound of cinnamon essential oil, induces Nrf2 activation in CRC
tissues, without any toxicity [182]. Carvacrol is a monoterpenic phenol that occurs in essential oils of
the Labiatae family (Thymus sp., Origanum sp., Satureja sp.). Administration of carvacrol to adult male
albino rats with chemical induced CRC, revealed that carvacrol reduced the number of colon tumors,
dysplastic polyps, aberrant crypts foci, increased glutathione peroxidase and glutathione reductase
activities and restored levels of liver peroxidation products [183]. Moreover, combined treatment
between carvacrol and X-radiation significantly decreased tumor incidence [200].

5.2.7. Polyunsaturated Fatty Acids

Dietary feeding of polyunsaturated omega-3 fatty acids in C57 BL6 mice with CRC induced by
inoculation of MC38 murine colon adenocarcinoma cells significantly inhibited the tumor growth.
The possible molecular mechanisms included the augmentation in the levels of omega-3 metabolites
(epoxydocosapentaenoic acids), suppression of inflammation through the reduction of the level
of the pro-inflammatory agents (arachidonic acid eicosanoids), and decrement in the expression
of human retroviral correspondent identified in myelocytomatosis, MYC protooncogene [184].
Nevertheless, more recent data reported that a ketogenic diet (low carbohydrates and high fat diet)
with or without omega-3 fatty acids supplementation delayed tumor growth and suppressed tumor
neovascularization [185]. Supplementation of diet with eicosapentaenoic acid in C57BL/6J mice with
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CRC induced by administration of azoxymethane suppressed tumor growth, increased apoptosis,
and decreased systemic inflammation. In addition, supplementation with eicosapentaenoic acid increased
Notch-1 signaling pathway activity, which is involved in apoptosis, in particular in the initiation
phase [186]. In transgenic C57BL/6J mice, carrying a mutation for the adenomatous polyposis coli
(APC) gene, supplementation of diet with olive oil and salmon oil (rich in omega-3 fatty acids)
inhibited the cancer development. The effects of oil diet are evaluated according to the level of signal
transduction and activator of transcription 3 (p-STAT3), a transcription factor involved in up-regulation
of anti-apoptotic genes and the level of fatty acid synthase, a key enzyme in neoplastic lipogenesis
activities. The diet rich in omega-3 fatty acids inhibited the development of the malignancy by the
reduction in the levels of STAT-3 and fatty acid synthase [187].

5.2.8. Dietary Fiber

Regarding dietary fiber, a polysaccharide from Lentinus edodes mushroom suppressed tumor
growth in nude mice, upregulated caspase-3, -9 activity, increased Bax/Bcl2 ratio, increased the
generation of free radicals in tumor tissues and TNF-α production [188]. Masuda Y. and co-workers
demonstrated that a soluble β-glucan from Grifola frondosa inhibits tumor growth in murine cancer
models through induced systemic tumor-antigen specific T cell response, increased activity of T-cells
in tumor and decreased number of tumors caused immunosuppressive cells [189]. Supplementation
of diet with prebiotics, such as inulin, in Sprague Dawley rats with azoxymethane induced CRC
showed a significant increase in Lactobacillus sp. and Bifidobacteria sp. biomass along with a reduction
in E. coli activity. In addition, the authors reported a reduction in microbial enzyme (β-glucuronidase,
nitroreductase, azoreducatse) activity along with a reduction in aberrant crypt foci formation [190].
Besides, a combination of inulin with galacto-oligosaccharides significantly reduced β-glucosidase,
nitroreducatse, azoreductase activity and enhanced short-chain fatty acid production [191]. Recent
data reported that inulin decreased COX-2 and NF-κB expression in the colon with a significant
reduction of inflammation markers [192]. Reduced inflammatory response in the jejuna and colon
mucosa was also observed for co-administration of inulin and Lactobacillus plantarum in rats exposed
to dimethylhydrazine [194].

Experiments performed with Sprague Dawley rats with 1,2 dimethylhydrazine induced
CRC, showed that inulin significantly decreased the activity of colon enzymes (β-glucosidase,
β-glucuronidase) and the effect was more pronounced compared to lactulose, a non-absorbable
sugar [193]. Association between water-soluble polysacharide (glucomannan) and prebiotics (inulin),
before initiation of CRC with azoxymethane (AOM) in a mouse model up-regulated gene expression
of antioxidant enzymes, such as glutathione peroxidase 2 (GPX2), glutathione-S-transferase (GST) and
catalase (CAT) and increased short fatty acid chain fatty acids production [195].

In conclusion, administration of dietary compounds to laboratory animals with induced CRC
has indicated beneficial effects on different stages of carcinogenesis (Table 4). Several mechanisms are
involved: Inhibition of tumor growth, modulation of several pathways (Wnt/β catenin, PI3K/Akt,
Notch-1), anti-inflammatory activity, up-regulation of antioxidant enzymes and NRf2 expression,
down-regulation of microbial enzymes activity, activation of caspases or increased Bax/Bcl-2 ratio.

6. Chemoprevention of CRC by Dietary Compounds in Humans

6.1. Phenolic Compounds

6.1.1. Isoflavones

Keeping in mind the important role of healthy diet (the consumption of fruits, vegetables, cereals)
for CRC prevention [201], we would like to consider the role of phenolic and non-phenolic compounds
in chemoprevention of CRC in humans. An epidemiological case-control study performed on Japanese
patients (721 cases and 697 control subjects) between 2004–2008 revealed an inverse association between
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dietary isoflavone intake (as tofu or miso soup) and the risk of colorectal carcinoma in both men and
women [202]. According to another case control study performed in Korea, which investigated the
effects of isoflavone intake (for 901 cancer cases and 2669 controls) for CRC prevention, the highest
intake of soy products and isoflavones was associated with a significantly reduced CRC risk for both
men and women. The observed effects are more pronounced for rectal (in women) and distal (in men)
colon cancers. A significantly reduced CRC risk was also observed for post-menopausal women [203].
Reports from a Spanish case control study (The Bellvitge CRC study) showed that exposure to
isoflavones was inversely related to CRC risk. Isoflavones protect against colorectal carcinogenesis
through their estrogenic properties and cause up-regulation of estrogen ERβ receptors. Moreover,
isoflavones inhibit the development of CRC via up-regulation of protein p21 expression, decrease in
the expression of the proliferating cell antigen (PCNA), decrease in the extracellular signal regulated
kinase (ERK), Akt and nuclear factor NF-κB expression [204]. Plasma phytoestrogens were strongly
linked with decreased incidence of the CRC. Analysis of plasma phytoestrogens levels in Korean and
Vietnamese patients, revealed an inverse correlation between plasma genistein concentration and
CRC [205]. Furthermore, genistein has shown anti-oncogenic action by increasing the expression of
antioxidant enzymes [206], and by preventing CRC metastases [207].

6.1.2. Lignans

According to earlier reports association between insoluble fibers, flaxseed dry extract (with 20%
secoisolariciresinol) and milk thistle extract (with 30% silibinin, the major active constituent of sylimarin)
in patients with sporadic colonic adenomas, significantly increased ERβ proteins and ERβ/ERα ratio.
Moreover, increased ERβ/ERα ratio was associated with pro-aptotic effects, such as activation of
caspase-3 and caspase-8 activity [208]. Another report that evaluated oral supplementation with
a mixture of sylimarin and secoisolariciresinol diglucoside in patients with familial adenomatous
polyposis revealed a significant reduction in the number and the size of the polyps. The observed
effect was the consequence of lignans on ERβ selective agonist activity [209]. In a case control study
in Korean and Vietnamese population (2003–2007), the authors did not find a correlation regarding
enterolactone (metabolite of lignans) levels [205].

The summary of the association between CRC risk and phenolic/non-phenolic compounds is
presented in Table 5.
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Table 5. Summary of the association between CRC risk and phenolic/non-phenolic compounds.

Author, Year Date/Type of
Study Cases Control Cases Dose OR/HR/RR/IRR/SRR

(95%CI)/Observation Conclusions

Isoflavones (IF)

Akhter M. et al.
2009 [202]

2004–2005/
control-study

721; men and women
40–79 years old 697 24.77–62.41 mg IF/day

OR
0.49 (0.27–0.90) to 0.53 (0.28–0.98)

p < 0.05

Significant inverse association
between high intake of

isoflavone consumption and
CRC in women

Shin A. et al.
2015 [210]

Case control
study/2010–2013 901 men and women 2669

Daidzein 3.20–9.89 mg/day
Genistein 3.3–9.7 mg/day

Glycitein 0.85–2.44 mg/day

OR
Daidzein 1.25 (0.96–1.61) to 0.71 (0.54–0.95)

Genistein 1.18 (0.91–1.53) to 0.75 (0.57–1)
Glycitein 1.32 (1.03–1.70) to 0.39 (0.25–0.61)

A high intake of isoflavones is
significantly associated with

decreased risk of CRC in both
men and women

Yang G. et al.
2009 [211]

Prospective
cohort study
/1996–2005

68,412 women 40–70
years old NA 12.8–21 g soy food intake/day equivalent to

15.1–48.9 mg IF/day

RR
Soy food 0.88 (0.67–1.15) to 0.71 (0.53–0.95)

Soy isoflavones 0.91 (0.69–1.19)
to 0.80 (0.60–1.07)

High intake of soy food
products and isoflavones is

correlated with reduced
incidence in CRC, especially

for menopausal women

Ko K. et al. 2018
[205]

Case control study
in Korean

(1993–2004) and
Vietnamese
population
(2003–2007)

101 (Korean study)
222 cases (Vietnamese

study)

391 (Korean
study)

226 (Vietnamese
study)

Evaluation of plasma IF levels for patients with
CRC

OR for genistein 0.67 (0.34–1.31)
to 0.50 (0.25–0.98)—Korean patients

OR for genistein 0.97 (0.54–1.74)
to 0.43 (0.25–0.73)—Vietnamese patients

OR for daidzein (Vietnamese patients) 0.84
(0.47–1.49) to 0.48 (0.28–0.82)

Significant inverse correlation
between high isoflavones

plasma concentrations and
reduced colorectal incidence

Lignans

Principi M, et al.
2013 [208]

Randomized
double blind

placebo-controlled
study

30 patients 30 placebo

Supplementation of diet with 750 mg insoluble
oat fiber, 50 mg flaxseed dry extract with 20%
secoisolariciresinol diglycoside +175 mg milk

thistle extract (70% silymarin and 30%
silibinin)—60 days prior to colonoscopy

Significant increase in ERβ/ERα ratio and
activation of caspases

Modulation of ERβ receptor is
important for a

chemo-preventive effect

Calabrese
C. et al. 2013

[209]

Open study
/2012–2013

11 patients with
familial adenomatous
polyposis with ileal

pouch anal
anastomosis

NA
5 mg Eviendep®(30% silibinin + 40%

secoisolariciresinol diglucoside + indigestible
fibers 5% lignin) × 2/day for 3 month

Significant reduction of number and size of
polyps with 32% and 51% respectively Chemo-preventive effect

Zamora-Ros
R. et al. 2013

[204]

Case control study
/1996–1998 426 401 0.27–0.50 mg lignans/1000 kcal day RR for Lignans 0.72 (0.47–1.10) to 0.59 (0.34–0.99)

Significant inverse correlation
between high intake of lignans

and colorectal incidence

Anthocyanidins

Thomasset
S. et al. 2009

[212]

Pilot study
2006–2008

15 patients with
histological

confirmed; 10 patients
with colorectal liver

metastasis

NA 1.4/2.8/5.6 g of Mirtocyan (a standardized extract
rich in anthocyanidins) for 7 days before surgery Mild decrease of tumor tissue only for 1.4 g Possible chemo-preventive

effects in humans
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Table 5. Cont.

Author, Year Date/Type of
Study Cases Control Cases Dose OR/HR/RR/IRR/SRR

(95%CI)/Observation Conclusions

Anthocyanidins

Wang L. S. et al.
2014 [213]

Randomized
double blind

placebo control
study

14 patients with
familial adenomatous

polyposis
NA

Group I—7 patients placebo powder (60 g/day) +
2 rectal suppositories (each 720 mg freeze-dried

black raspberry extract)
Group 2—60 g/day black raspberry freeze dried

extract + 2 rectal suppositories—9 month
treatment

Reduction of polyps mainly for suppositories
Significantly de-methylated regions in adenomas

Regressing of rectal polyps in
patients with familial

adenomatous polyposis

Organosulfur Compounds

Tanaka S. et al.
2006 [214]

Preliminary
double blind
randomized
clinical trial

37 patients with
colorectal adenomas
which are removed if
the size was > 5 mm

NA

Group I—6 capsules of aged garlic extract (AGE)
equivalent to 2.4 mL AGE/day

Group II—control (low dose) 6 capsules of AGE
equivalent to 0.16 mL AGE/day. Patients are

evaluated after 6, 12 months

AGE suppressed colorectal adenomas after 6, 12
months

Chemo-preventive effect in
humans

McCullough
M. et al. 2012

[215]

CPSII Nutrition
cohort 1999–2007

42,824 men
56,876 women NA

Supplementation of diet with garlic cloves < 1
clove/month; 1–3 cloves/month; 1 clove/week;
2–4 cloves/week; 5–6 cloves/week, 1 clove daily

Protective effect - women HR for 1–3
cloves/week 1.08 (0.86–1.35); 0.95 (0.72–1.26) for 1
clove/week; 0.77(0.58–1.02) for 2–4 cloves/week;

0.74 (0.48–1.13) to 5–6 cloves/week and 0.87
(0.58–1.32) for 1 clove/day

Weak chemo-preventive effect
of garlic consumption for
women; but not for men

Meng S. et al.
2013 [216]

Cohort study
1984–2008

76,208 women
45,592 men NA

Administration of garlic cloves < 1 clove/month;
1–3 cloves/month; 1 clove/week; 2–4

cloves/week; 5–6 cloves/week, 1 clove daily

Women HR 1–3 cloves/month 1.11 (0.94–1.31)
compared to HR 1.21 (0.94–1.57) for 1 clove/day

(p = 0.14)
Men HR 1–3 cloves/month 0.99 (0.84–1.16)

compared to HR 1.03 (0.73–1.45) for 1 clove/day
(p = 0.99)

No association was found
between garlic intake and CRC

risk

Satia J. A. et al.
2009 [217]

Cohort study
2000–2002 428 76,084 Administration of garlic pills at least once a week

for > 1 year during previous 10 years
HR 1.35 (0.59–1.17) compared to 1.00 (Reference)

p = 0.04

Significant increase of CRC
incidence with garlic

administration

Carotenoids

Lu M. S. et al.
2015 [218]

On-going case
control study

2010–2013
845 845 Food frequency questionnaire regarding intake of

fruits and vegetables rich in carotenoids

α-carotene
OR 0.54 (0.42–0.70) to 0.41 (0.31–0.54)

β-carotene
OR 0.79 (0.61–1.03) to 0.62 (0.48–0.82)

lycopene
OR 0.66 (0.51–0.85) to 0.45 (0.35–0.60)

p < 0.001

Significant inverse correlation
between carotenoids intake

and CRC incidence

Leenders
M. et al. 2014

[219]

Cohort study
1992–2000

Colon cancer 898
Rectum cancer 501 898/501

Food frequency questionnaire regarding intake of
fruits and vegetables rich in carotenoids and

vitamins

For colon cancer
β-carotene

OR 0.89 (0.67–1.18) to 0.69 (0.52–0.94)
Vitamin C

OR 0.98 (0.74–1.29) to 0.76 (0.57–1.01)
Vitamin E

OR 0.88 (0.67–1.16) to 0.99 (0.74–1.33)

Significant inverse correlation
between CRC incidence and
mainly dietary β-carotene,

vitamin C intake
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Table 5. Cont.

Author, Year Date/Type of
Study Cases Control Cases Dose OR/HR/RR/IRR/SRR

(95%CI)/Observation Conclusions

Carotenoids

Kabat G. C. et al.
2012 [220]

Large,
prospective,

multicenter study

88 CRC in
post-menopausal

women
5389 Analysis of antioxidants from fasting blood

samples at baseline, 1/3/6 years follow-up

For CRC β-carotene
HR 0.65 (0.39–1.09) to 0.54 (0.31–0.96)

For colon cancer β-carotene
HR 0.57 (0.32–1.00) to 0.47 (0.25–0.88)

Significant inverse correlation
between β-carotene plasma
levels and CRC incidence

Polyunsaturated Fatty Acids

Cockbain A.
J. et al., 2014

[221]

Phase II double
blind randomized

placebo control
trial

2010–2011

203 patients with
CRC liver metastasis NA

1.Placebo—43 patients
2. Patients receiving 2 g/day of EPA for 30 days

prior to surgery, follow-up 18 months after
surgery

Significant higher content of EPA in tumor tissues
1.82% compared to 1.30%
(for placebo) p = 0.0008,

decreased PGE2 in tumor tissues, anti-angiogenic
activity (p = 0.075)

Pre-operative treatment has
shown provide post-operative

benefit

Song M. et al.
2014 [222]

Study cohort
1984–2008

76,386 women
47,143 men NA Administration of fish 15–40 g/day (women) and

16–46 g/day (men), marine fish (0.15–0.30 g/day)

Significant risk of distal colon cancer for both fish
intake HR 1.12 (0.85–1.48) to 1.36 (1–1.85) and

marine fish HR 1.19 (0.89–1.58) to 1.36 (1.03–1.80)
p ≤ 0.05

Associated risk between
marine fish intake and CRC

risk

Sasazuki S. at al.
2011 [223]

Prospective study
1995–2006 827,833 subjects NA Food frequency questioners regarding fish intake;

marine fish 0.49–2.18 g/day for men and women

Significant
Decrease associated with marine fish intake only

for men
RR 0.97 (0.51–1.83) to 0.35 (0.14–0.88)

p = 0.05

Chemo-preventive effect of
marine fish rich in omega-3

fatty acids

Mocellin M.
C. et al. 2013

[224]

Prospective
randomized

controlled trial
2011–2012

57 patients with CRC
undergoing,

chemotherapy, only
11 are randomized

NA

1. Control group (n = 5).
2. Supplemented group (n = 6) with 2g fish

oil/day—9 weeks
2 g fish oil = 360 mg/day EPA, 240 mg/day DHA

Significant decrease of C-reactive protein from
18.14 mg/L to 1.14 mg/L (p = 0.04)

Significant increase of EPA, DHA compared to
control group (p = 0.014,

p = 0.019), significant decrease of AA between
baseline and 9 weeks follow-up for the

supplemented group (p = 0.028)

Significant anti-inflammatory
effects for patients undergoing
chemotheraphy and increase
for plasma fatty acid profile

Mocellin M.
C. et al. 2016

[225]

Meta-analysis of
Nine trials

475 patients with
CRC NA

Supplementation of diet with omega-3 fatty acids
or administration of 0.2 g/kg fish oil parenterally

at post-operative period
Patients undergoing chemotherapy

supplementation with 0.6 g/day EPA+DHA -9
weeks

Significant decrease of IL-6 (p = 0.024) and
increase of albumin (p = 0.014)

Supplementation of EPA+ DHA during
chemotherapy significantly reduced CRP

concentration (p = 0.017) and CRP/albumin ratio
(p = 0.016)

Use of omega-3 fatty acids
have benefits, especially for

inflammatory markers in CRC
patients

Sorensen L.
S. et al. 2014

[226]

Randomized
double blind

placebo controlled
trial

148 patients awaiting
for CRC surgery NA

1. Control group
2. Supplemen-tation group with 2 g EPA + 2 g

DHA for 7 days before and 7 days after surgery

Pre-operative treatment with omega-3 fatty acids
determined a significant increase of EPA, DHA

levels in granulocytes and a significant decrease
of AA (p < 0.001) compared to control group

Potential immune-stimulatory
effects and prevention of
post-operative infections
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Table 5. Cont.

Polyunsaturated Fatty Acids

Ma C. J. et al.
2015 [227]

Prospective
randomized
double-blind

study 2009–2010

99 patients with
gastric and CRC NA

1. Control group
2. Supplementation group with a lipid emulsion

containing soybean oil
(80–100 g/L), medium chain triglycerides (100

g/L) and PUFA (linoleic acid—38–58 g/L,
α-linolenic acid—4–11 g/L) for 7 days after

surgery

There are no significant differences regarding
inflammatory markers between the control and

the supplementation group.
Significant positive effect on lipid markers

(p < 0.05)

Improvements only in lipid
metabolism

Dietary Fiber

Holscher H.
D. et al. 2015

[228]

Prospective
Randomized
double-blind

placebo 3-period
controlled study

30 heathy patients NA
1. Placebo group

2. Administration of 5 g or 7.5 g inulin for 21 days
with 7 days wash-out between periods

Significant increase of Bifidobacterium sp.
(p < 0.001), significant decrease of Ruminococcus sp.
and Desulfovibrio sp. (p < 0.01); dietary intake was

positively associated with fecal butyrate
(p = 0.005)

Beneficial changes in
gastro-intestinal microbiota are
correlated with decreased CRC

incidence

Limburg P et al,
2011 [229]

Randomized
phase II clinical
trial 2006–2008

85 patients with
aberrant crypt foci ≥

5 at baseline
NA

1. Control group
2. Atorvastatin 20 mg/day
3. Sulindac 150 mg x 2/day

4. Oligo-fructose enriched inulin 6 g powder x
2/day for 6 months

All treatment didn’t provide a significant
decrease in AFC number and size

No association was found
between inulin intake and CRC

Mehta RS et al,
2018 [230]

Prospective
cohort study

1980–2012

121,700 females
51,529 males NA Food frequency questionnaires regarding dietary

fiber intake

High intake of fiber was associated with a low
risk of Fusobacterium nucleatum positive CRCs

HR 0.54 (0.33–0.89) to 0.40 (0.24–0.67)

Intestinal microbiota plays an
important role in mediating the

association between
consumption of high amount
of dietary fiber/whole grains

and CRC incidence

Ben Q et al, 2014
[231]

Meta-analysis of
20 studies

(case-control,
cohort)

10,984 patients with
colorectal adenoma NA Administration of 10 g/day fibers

SRR for dietary fiber are 0.72 (0.63–0.83) in a high
vs low intake, inverse association between total

fiber intake and CRC risk SSR 0.66
(0.56–0.77)

Chemopreventive effect of
dietary fiber

Hansen L et al,
2012 [232]

Cohort study,
1997–2008 108,081 patients NA Administration of fiber 16–28 g/day for men and

15–24 g for women

Significant inverse correlation between CRC
incidence and dietary fiber intake for men

IRR 0.93 (0.68–1.26) to 0.55 (0.38–0.79)

Chemopreventive effect of
dietary fiber

Kunzman A et
al, 2015 [233]

Cohort study
1993–2009 2036 patients 15,976 Administration of fiber 9.9–12.8 g/1000 kcal/day

from fruits/vegetables

Significant inverse correlation between dietary
fiber intake and distal colon or rectal adenoma in

men
OR 0.88 (0.75–1.04) to 0.76 (0.63–0.91)

p = 0.003

Chemopreventive effect of
dietary fiber against CRC
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Author, Year Date/Type of
Study Cases Control Cases Dose OR/HR/RR/IRR/SRR

(95%CI)/Observation Conclusions

Dietary Fiber

Murphy N et al,
2012 [234]

On-going
multicentre

prospective cohort
study 1992–2000

477,312 patients NA Administration of dietary fiber 16.4–28.5 g/day

Significant inverse correlation between dietary
intake and colon-distal cancer

HR 0.90(0.75–1.07) to 0.70 (0.53–0.92)
p = 0.021

colon proximal cancer
HR 0.93 (0.78–1.1) to 0.86 (0.69–1.07)

p = 0.16
rectum cancer

HR 1 (0.87–1.17) to 0.79 (0.65–0.96)
p = 0.012

Chemopreventive effect of
dietary fiber against CRC

Mathers JC et al,
2012 [235]

Randomized
control trial

937 eligible patients
with Lynch syndrome NA

1. 463 patients received 30 g resistant starch/day
2. 455 patients—resistant starch placebo

3. 19 patients 600 mg aspirin/day—29 months

No significant effect of resistant-starch
administration on cancer development

IRR resistant starch vs resistant starch placebo
1.15 (0.66–2.00)

p = 0.61

No detectable effect on cancer
development

Legend: HR—hazard ratio; RR—relative risk; OR—odds ratio; IRR—incidence rate ratio; SRR—summary relative risk; NA, not applicable.
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6.1.3. Anthocyanidins

Administration of a bilberry dry extract (mirtocyan), with a 36% anthocyanin concentration
(represented by cyanidin-3-galactoside, delphinidin-3-galactoside, delphinidin-3-arabinoside,
cyanidin-3-glucoside) in patients with CRC conducted to decreased proliferation of cancer cells
and reduction of the proliferation marker Ki-67 level [212]. Recent research has shown that
administration (orally as a powder or as rectal suppositories) of a black raspberry freeze-dried
extract rich in anthocyanins (cyanidin-3-glucoside, cyanidin-3-sambubioside, cyaniding-3-rutinoside,
cyanidin-3-xylorutinoside) to patients with familial adenomatous polyposis (FAP), significantly
decreased the burden of polyps. Several mechanisms are involved: Decrease of the DNA
(cytosine-5)-methyltransferase 1 (DNMT1) which was correlated with reduced methylation of p16
protein and regulatory genes in the Wnt signaling pathway [213].

6.2. Non-phenolic Compounds

6.2.1. Organosulfur Compounds

In a double-blind placebo control study, using 51 patients, which are diagnosed with colorectal
adenomas using colonoscopy, administration of aged garlic extract, especially at high dose significantly
reduced the number and size of colon adenoma after 12 months [214]. Aged garlic extract is a
processed garlic product, for which allicin is transformed into more stable compounds, such as
S-allylmercaptocysteine [214]. However, other authors did not find a strong support regarding
garlic chemopreventive effects, even after seven years of follow up [215]. Although, preclinical
data support garlic use for CRC, a clinical study performed on both women and men for up to
24 years did not support garlic intake (even > 1 serving/week) or garlic supplementation for CRC
chemoprevention [216]. Contradictory results are also reported by other authors, which even found a
significant increase of colorectal incidence with 35% at a five-year follow up [217]. The contradictory
effects regarding garlic chemopreventive role, are probably due to heterogeneity of studies regarding
the assessment of garlic intake, type of garlic and pathology (CRC, adenoma etc). A meta-analysis of
observational studies regarding the consumption of cruciferous vegetables (cabbage, broccoli) revealed
an inverse correlation between dietary intake and CRC risk [236].

6.2.2. Carotenoids

A large European case control study showed an inverse correlation between dietary concentration
of β-carotene, vitamin C and CRC incidence, mainly in the distal colon [219]. Kabat C. G. and
co-workers have also found an inverse correlation between β-carotene plasma levels and CRC incidence
in post-menopausal women [220].

6.2.3. Polyunsaturated Fatty Acids

In a phase II double-blind randomized clinical trial for patients with CRC and liver metastasis,
pre-operative administration of EPA for a median of 30 days conducted to increased levels of EPA and
decreased level of PGE2 in tumor tissues compared to control tissue. Moreover, EPA also showed
anti-angiogenic activity, whilst preoperative treatment with omega-3 fatty acids had postoperative
benefit, in the first 18 months (regarding cancer recurrence). This effect may be the consequence of EPA
prolonged plasma biological half-life [221]. According to a prospective study is US men and women,
intake of marine omega-3 fatty acids and fish are inversely associated with rectal cancer incidence [222].
In a Japanese based prospective study, administration of omega-3 fatty acids reduced the incidence of
proximal colon cancer [223].

According to earlier studies, administration of encapsulated fish oil to patients with CRC,
undergoing chemotherapy, significantly reduced C reactive protein (CRP) and CRC/albumin ratio
compared to controls. Increased values of CRP and CRP/albumin ratio are associated with a chronic
inflammatory state and poor clinical prognosis for CRC patients. Administration of fish oil also
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increased EPA, DHA and decreased arachidonic acid plasma levels [224]. It is well known that
polyunsaturated fatty acids have anti-inflammatory effects; a meta-analysis of clinical trials with
CRC patients (that included administration of fish oil or supplementation of diet with omega-3 fatty
acids) showed a significant decrease of IL-6 plasma levels and an increase for albumin concentration.
For patients undergoing chemotherapy supplementation with EPA and DHA significantly reduced
CRP/albumin ratio [225]. Other authors reported that administration of an enriched omega-3
nutritional supplement significantly increased EPA, DHA and decreased arachidonic acid concentration
in granulocytes. These findings suggest that omega 3 fatty acids might exert an immuno-stimulatory
effect [226].

However, other studies failed to demonstrate a beneficial role of omega-3 fatty acids for CRC
patients. According to Ma C.J. and coworkers, administration of a lipid emulsion composed of soybean
oil, medium chain triglycerides and polyunsaturated fatty acids after surgery of CRC patients did
not improve the level of the inflammatory markers, instead had a positive effect on lipid profile [227].
In addition, subjects with a high intake of fish and marine food appeared to have an increased risk of
distal colon cancer. These differences might be the consequence of high pH values in the distal colon
(due to low production of short chain fatty acids), that could attenuate omega-3 fatty acids effects or
the presence of contaminants in fish (lead, mercury etc.) [222].

6.2.4. Dietary Fiber

Recent research has shown that supplementation with agave inulin in healthy patients has a
beneficial role upon gut microbiota. Administration of the agave inulin resulted in significant increase
of Bifidobacterium genus. A significant decrease was observed for Rumincoccus sp. and Desulfovibrio sp.,
which might have a benefit towards CRC incidence [228]. Still other authors did not find a correlation
between inulin intake and CRC risk. In a randomized phase II chemoprevention trial, with patients
with aberrant crypt foci (ACF) the administration of inulin did not show a significant reduction in ACF
number compared to control [229].

A high fibers intake is associated with low risk of CRC. In a prospective cohort study, intake
of cereal-derived fibers was associated with a low risk of Fusobacterium nucleatum positive CRC.
Recent findings have shown that a high amount of F. nucleatum in tumor tissues was linked to cancer
severity and high mortality [230]. A meta-analysis of studies regarding the benefit of dietary fiber
consumption, have also shown an inverse correlation between fiber intake and risk of colorectal
adenoma [231,232]. According to Kunzmann A. and co-workers a diet rich in fibers significantly
reduced CRC risk. Nonetheless, the association was stronger for males than females [233]. In another
multicenter prospective cohort study, a high intake of dietary fibers was significantly associated with
low risk of distal/proximal colon and rectum cancers [234]. Navarro S. and co-workers investigated
the effect of dietary fiber and omega-3, -6 fatty acids in a women’s health initiative prospective
cohort during their 11.7-year follow up. The results pointed out a reduced incidence of CRC for the
association between a low dose of soluble fiber, a high dose of insoluble fiber and a high dose of EPA
and DHA [237]. However, results from other studies regarding the benefit role of dietary fiber for CRC
prevention showed contradictory results. In a randomized control trial, administration of resistant
starch, which exerts similar effects as dietary fiber in patients with Lynch syndrome, a hereditary
non-polyposis colon cancer, over 29 months, had no detectable effect on cancer development [235].

In conclusion, most of the presented clinical trials have shown an inverse correlation between
dietary intake of carotenoids, phytoestrogens (lignans, isoflavones), polyunsaturated fatty acids, fibers
and CRC incidence (Table 5). However, results should be carefully interpreted keeping in mind the
individual variability, the number of dietary compounds consumed by patients and the complexity
of CRC.



Int. J. Mol. Sci. 2018, 19, 3787 35 of 54

7. Bioavailability of the Natural Dietary Compounds

Regularly, when discussing the health value of the dietary compounds, these are evaluated
according to their ability to be released from the ingested food, be absorbed in the gastrointestinal
tract, undergo the metabolic steps and reach the target tissue. In the case of CRC, the last steps are
overcome, since the interaction between dietary compounds and cancer cells is more direct. At the
intestinal lumen, the lipophilic compounds can pass into enterocytes by facilitated diffusion, while the
hydrophilic compounds (such as polyphenols) can enter the cells after the aglycone is liberated through
the enzymatic hydrolysis [238]. However, the bioavailability can be reduced by the presence of ABC
transporters (ATP-Binding Cassette) or other multidrug mechanisms, which increase the efflux of
xenobiotic [3]. In CRC cells this effect might be reversed by the administration of the flavonoids
from Citrus sp. plants [239]. With the aim of understanding the beneficial properties of the dietary
compounds, their bioavailability is required to be studied (Table 6).

The plasma concentration of the dietary compounds is another key topic to discuss. Although
experiments performed in cancer cells are important for developing new therapeutic agents, differences
occur when the same substance is administrated in animal models or used in clinical trials due to
its bioavailability, metabolisms or interaction with gut microbiota. A series of extensive reviews
presented by Manach et al., regarding the bioavailability of the polyphenols, introduced the average
values of the polyphenols in plasma at a short time after ingestion [240]. The concentration values of
the plasma polyphenols vary in range of low micromolar levels. For instance, after the ingestion of
~100 mg quercetin from apples the plasma level of quercetin reached 0.3 µM at 2.5 h after consumption,
while ingestion of ~125 mg hesperitine from orange juice reached 2.2 µM at 5.4 h after consumption.
Similar plasma concentration levels are identified for epigallocatechin-3-O-gallate (EGCG) from
green tee, namely 0.16–0.96 µM after ingestion of 200–800 mg EGCG or genistein from soymilk,
i.e., 1.14 µM subsequently to the consumption of 0.59 mg/kg [49,72,240,241]. Several strategies,
such as modulation of the administration, inhibition of the metabolic pathways, administration in
combination with other drugs or encapsulation methods attempts to improve the bioavailability
of the dietary compounds [120,238]. The bioavailability of the phenolic compounds was extensive
studied [120,238,242–244], while little is known about the bioavailability of dietary non-phenolic
products. The maximum concentration of ellagitannis in 1 h after the intake of 318 mg ellagitannins
from pomegranate juice was about 0.06 µM [245]. The non-alkaloid capsacin administrated to in
rats (30 mg/kg body weight) was detected in serum after 1 h in ranges of 1.9 ± 1.2 µM and the
concentration levels decreased within time [246]. An estimation of 50 g of olive oil/day uptake leads
to the detection of ~13 µM hydroxytyrosol (a metabolite of oleuropein obtained after the hydrolysis
of oleuropein-aglycone) in plasma, a concentration much lower than 50–100 µM required for the
antioxidant effect. The authors concluded that the olive oil compounds are well absorbed, but the
plasma level of their metabolites are too low to induce substantial biological effects [247]. Further
research in this field is needed to analyze and improve the bioavailability of non-phenolic compounds
in order to obtain significant effects on human health.

Table 6. Summary of the bioavailability of the dietary compounds.

Compound
of Interest Source Bioavailability In Vivo Studies Ref.

Curcumin Turmeric

- poor absorption, rapid
metabolism, rapid elimination

- enhanced by piperine with 2000%
- better results on animal

experiments

- 2g/kg of curcumin in rats→ Cmax = 1.35
± 0.23 µg/mL in 0.83 h

- 2 g/kg of curcumin in human subjects
→

Cmax = 0.006 ± 0.005 µg/mL

[120,248]

EGCG Green tea

- poor absorption
- alkaloids, vitamins, proteins and

fish oil improve absorption
- air contact oxidation, metal ions

like Ca2+ and Mg2+ and milk reduce
absorption

- one oral dose of EGCG
half-time = 3.4 ± 0.3 h [249]
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Table 6. Cont.

Compound
of Interest Source Bioavailability In Vivo Studies Ref.

Resveratrol Grapes
- poor absorption

- bioavailability increased by a
liquid micellar formulation

- 500 mg of Vineatrol→
Cmax of trans-resveratrol

= 10.6 fold higher
- no detection of trans-ε-viniferin in

plasma or urine

[250]

Quercetin

Onion
Apples
Beans

Broccoli

- better bioavailability of quercetin
glucoside

- 100 mg quercetin→ absorption of
quercetin glucoside = 3–17% [251]

Genistein Soy

- lower bioavailability in vivo
- total genistein—a better

bioavailability than genistein
aglycone

- 20 mg/kg of genistein in FVB mice→
genistein aglycone bioavailability = 23.4%
- soy protein feeding Balb/c mice females
→ bioavailability of total genistein = 90%
→ bioavailability of genistein aglycone =

< 15%

[252]

Anthocyanins Bilberries
- poor bioavailability

- 30% of amthocyanins are stable in
the upper intestine for 8 h.

- bioavailability of anthocyanins from
bilberries→ ↑ amount of anthocyanins
and degradants in the heathy compared

to ileostomists group

[253]

Proantho-cyanidin
Apples
Grapes

Green tea

- oligomeric flavonoids with limited
bioavailability

- ad libitum diet of grape seed extract in
lab rats→ the presence of PAC in the

colonic contents
- 11% of PAC—present in the feces

[254]

Capsaicin Chilli

- low bioavailability
- capsaicin was absorbed into
intestinal tissues, jejunum and

serosal fluid

- 1 mM of capsaicin in rats→ absorption
= 50% in the stomach, 80% in the jejunum

and 70% in the ileum.
[255]

Piperine Black pepper

- insoluble in water with a low
bioavailability

- used in clinical assays single or as
an enhancer for other dietary agents

- improved the bioavailability of
resveratrol, curcumin and lycopene

- resveratrol + piperine in mice→
piperine enhanced the bioavailability of

resveratrol with 229%
- curcumin + piperine in rats and human

subjects→ piperine enhanced
bioavailability of curcumin with 2000%

[256,257]

Aliicin Garlic - poor bioavailability - administration of garlic/ pure allicin→
no detection in urine or blood [258]

7.1. Bioavailability of Phenolic Compounds

Studies demonstrated the small bioavailability of curcumin was due to poor absorption, rapid
metabolism and rapid elimination. In order to increase curcumin bioavailability it was associated
with other compounds, for instance piperine, the main component of black pepper, which increased
its bioavailability by 2000% [248]. Another method, by which it has been demonstrated to obtain a
better bioavailability of curcumin, was the method of using nanocurcumin, a polymeric nanoparticle
encapsulated formulation of curcumin. Nanocurcumin has shown a better activity in cancer cell lines
by inhibition of NF-κB [259]. There are studies in vivo made in both humans and animals, to determine
the bioavailability of curcumin. Experiments on rats showed a maximum serum concentration (Cmax)
of 1.35 ± 0.23 µg/mL in 0.83 h compared to humans where Cmax in the same period was much lower
consisting in 0.006 ± 0.005 µg/mL [120].

Studies made with EGCG both in vivo and in vitro are conducted to show the systemic absorption
of the most abundant catechin found in the green tea. Derliz Mereles and Werner Hunstein proved
that for optimizing EGCG bioavailability there must be taken into consideration the pharmacokinetic
parameters that can diminish or enhance the bioavailability. Thereby among the factors that improve
the absorption of EGCG are alkaloids like piperine, vitamin C, proteins like albumin or even fish oil.
On the other hand, the absorption of EGCG can be reduced by air contact oxidation, metal ions like
Ca2+ and Mg2+, temperature or beverages like milk. In vivo studies conducted on human subjects,
after administration of one oral dose of EGCG with a fasting period overnight, Cmax was reached in
1–2 h and the elimination half-life of EGCG was at 3.4± 0.3 h [249]. Thereby the matter of bioavailability
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is a major concern for all the scientists who are trying to find a better way for natural compounds to be
assimilated and to keep their effects powerful.

Beside curcumin and EGCG, the natural compound resveratrol is also considered to have a poor
solubility and bioavailability [260]. Thus, studies on resveratrol showed that a better bioavailability
can be achieved by combining resveratrol with other foods, beverages or even with other polyphenols.
Calvo-Castro, L. A. et al. demonstrated that the impact of trans-resveratrol, on a group of six men and
women, was increased by a liquid micellar formulation of a grapevine-shoot extract, which contains
a high amount of resveratrol monomers and oligomers [250]. The experiment demonstrated that a
single dose of 500 mg of grapevine-shoot extract (30 mg trans-resveratrol, 75 mg trans-ε-viniferin)
influenced the trans-resveratrol concentrations with a Cmax by 10.6-fold higher with no detection of
trans-ε-viniferin nor in plasma or urine [250].

Quercetin a flavonoid recognized for the powerful effect in cancer cell lines was also studied for
its bioavailability. According to Khan, F. et al. a study conducted on rodents demonstrated that after
an administration of quercetin intravenously, after plasma assays are performed, no quercetin was
found [261]. These results might be explained by the fact that is difficult to assess the intracellular effect
of the compound at the organ site and nowadays is generally accepted the correlation between the
plasma concentration of the compound and its therapeutic action [262]. A high quantity of quercetin
is found in onion, which is considered to be more effective than quercetin supplement regarding its
bioavailability, presumably for the increased intestinal absorption of the food matrix [263]. It has been
demonstrated that the absorption of quercetin might depend on the type of sugar residue attached
to quercetin. For instance, quercetin glicosides found in onion are better absorbed unlike the major
quercetin glycoside in tea. The assessment of quercetin glucoside absorption was between 3%−17%
in healthy subjects, after a dose of 100 mg which is relatively low due to poor absorption, extensive
metabolism or rapid elimination [251].

Another flavonoid, worth to be taken into consideration is genistein found in soy and is well
known for its beneficial properties, including multiple molecular effects, such as the promotion of
apoptosis, anti-inflammatory properties, modulation of metabolic pathways and steroidal hormone
receptors [264]. For a better understanding of how genistein can work as a chemopreventive agent, it is
required to know its bioavailability. Pharmacokinetic studies demonstrated the low oral bioavailability
of genistein, whilst the plasma or tissue concentrations are reduced compared to in vitro values of
half maximal inhibitory concentration, IC50. Yang. Z. et al. demonstrated in their study that after
intravenous and oral administration of 20 mg/kg genistein in FVB mice, genistein was transformed
mostly to glucuronosides and sulfates and the genistein aglycone bioavailability was 23.4% [252].
Regarding the oral bioavailability of genistein there are studies that showed a better bioavailability of
total genistein in mice than genistein aglycone. After feeding female Balb/c mice with soy protein,
Yang Z. et al. demonstrated a difference between bioavailability of total genistein, which was almost
90%, and genistein aglycone, less than 15% [252]. In addition, it should be taken into account
supplementary factors which can contribute to poor absorption of genistein, such as age, gender
or dose frequency, but the most important factor is related to absorption, distribution, metabolism and
excretion (ADME) properties [252].

Anthocyanins are a group of molecules that belong to flavonoid family and they are found in a
large group of fruits, flowers, roots and leaves responsible for the blue, purple and red color [265].
In contradiction to other flavonoids, the bioavailability of anthocyanins (delphinidin, malvidin,
cyaniding and pelargonidin) is rather different. These molecules can be absorbed in the stomach or
intestines. In the gastroinstestinal wall, it may be found the pure form of cyanidin-3-glucoside
anthocyanin and pelargonidin-3-glucoside, which can be decomposed by microbiota right after
reaching to the large intestine [265]. In a pilot study, Muller D. et al. demonstrated that anthocyanins
could reach the small intestine within one hour and the level of the compound at the intestinal
area was about 30–50% of the ingested substance, while the plasma level was very low [253].
Anthocyanins can be methylated due to the metabolic transformation carried out by the enzymes,
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such as cathechol-O-methyltransferase (COMT), thereby the anticancer effect of anthocyanins may be
limited. However, there are inhibitors that are able to decrease the methylation of polyphenols [266].

Proanthocyanidins are phytochemicals represented by a group of flavonoids which are found in
a variety of plants and aliments, such as apples, cinnamon, grapes, cranberry, green tea etc. [267].
However, the main downside of proanthocyanidins is regarding its bioavailability. Multiple studies
are conducted to elucidate the bioavailability issue of this class of oligomeric flavonoids. While the
monomeric flavonoids are rather absorbed in the small intestine, the metabolism of oligomeric and
polymeric proanthocyanidins in the colon, is not so much understood. In that matter Choy Y. et al.
conducted a study to investigate the presence of proanthocyanidins in the colon after ingestion of grape
seed extract [254]. The evidence from this study suggests the presence of proanthocyanidins in the
colon as intact compounds which might be beneficial for maintaining a healthy digestive system [254].

7.2. Bioavailability of Non-Phenolic Compounds

Capsaicin is one of the most pungent ingredients consumed worldwide and is naturally
found in chili peppers. Capsaicin is known to possess many beneficial effects on the human
body, such as anti-inflammatory, antimicrobial, anticancer and it was described to work as a
topical analgesic. Beside capsaicin, capsaicinoids are also represented by dihydrocapsaicin (DHC),
nordihydrocapsaicin (n-DHC), homocapsaicin (h-C) and homodihydrocapsaicin (h-DHC). However,
capsaicin low bioavailability is a concern for restricting its application [268]. Rollysons, W.D. et al.
conducted a study in vivo to explore the intestinal absorption of capsaicin, using lab rats to isolate
intestinal sacs. The capsaicin was absorbed into intestinal tissues, jejunum and serosa fluid [255].
For instance, the absorption of the compound was differently regarding the intestinal region of interest.
Accordingly, 1 mM of capsaicin was absorbed in a proportion of 50% in the stomach, 80% in the
jejunum and 70% in the ileum [255]. Kawada et al. conducted a study on WISTAR rats are the effect of
capsaicin and DHC are absorbed in the stomach and small intestine in a percentage of 85% [246].

Piperine belongs to Piperaceae family and is one of the most important alkaloids found in black
pepper (Piper nigrum) and in long pepper (Piperum longum). Because of its anticancer effect, it is
mandatory to have knowledge about the potential of absorption and the bioavailability of piperine.
It is well known that piperine is insoluble in water and presents a low bioavailability, which may
limit its use in clinical experiments. Nevertheless, piperine can be used in clinical assays single or
in addition to other dietary agents. Several studies demonstrated the ability of piperine to act as a
bioavailability enhancer for many chemopreventive agents, such as resveratrol, leading to increased
levels of revesterol in plasma [269]. Johnson J. J et al. demonstrated that the administration of
resveratrol alone or in combination with piperine in vivo, enhanced the serum bioavailability of
resveratrol by almost 229% [256]. In addition, piperine was known to enhance the effect of curcumin
and lycopene because of its ability to inhibit intestinal and hepatic glucoronidation. For instance,
piperine enhanced the bioavailability of curcumin by 2000%, in both rats and human experiments [257].

Allicin is derived from isothiocyanate phytochemical and is a compound found in garlic. Among
its properties are included antifungal, anti-neoplastic and antibacterian effects [270]. However, these
properties are questionable because of the poor bioavailability of allicin. According to Lawson et al.
after oral administration of garlic and pure allicin, there was no detection of it neither in urine nor in
blood [258].

In conclusion, the oral bioavailability of dietary agents was variable depending on each compound
of interest, being able to be increased or decreased by other agents, vitamins, proteins according to
each experiment. Further studies should be carried out to have an objective vision regarding the ability
of the natural compounds to help in chemoprevention.

7.3. Encapsulation Strategies for Increased Bioavailability

Since the absorption of the dietary compounds, after their oral administration, might by restricted
by the insufficient gastric residence time, low permeability, low solubility, instability during food
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processing (pH, enzymes, presence of other nutrients) the health benefits of these compounds are
limited. During the last decades the nanoparticles are investigated due to their ability to transport
and deliver drugs. Several advantages might recommend the nanoparticles as potent delivery
agents: Increased bioavailability, reduced toxicity and improved solubility in aqueous medium [271].
Furthermore, the nanoparticle can accumulate in the solid tumors as a result of the reduced lymphatic
drainage [272]. In this view, many anticancer drug delivery systems are developed based on nanoscale
strategy, by using nanoparticles of different compositions [273]. “Yallapu et al. demonstrated that
curcumin loaded PLGA nanoparticles display an increased effect on metastatic cancer cells than
curcumin alone [274], while Radu et al. developed a poly alkanoate nanocarrier for silymarin delivery
with good drug release and biocompatibility properties [275]. Despite its extensive in vitro study,
the drugs encapsulation approach is still under development and only a few clinical trials are currently
running [276].

The most common carrier agents used in micro- and/or nano-encapsulation of dietary bioactive
compounds are (i) polysaccharides, such as: Starch [277], dextrins [278], maltodextrins [279],
cyclodextrins [280], (ii) celulloses, such as: Carboxymethyl cellulose, methylcellulose [281] and cellulose
ethers [282], (iii) pectins [283], (iv) chitosan [284] etc. To obtain these micro- and/or nano-encapsulations
several techniques are developed, of which spray drying, freeze drying, complex coacervation,
emulsification, anti-solvent precipitation, extrusion, electro-spinning, layer-by-layer deposition and
solid dispersion are the most frequently used.

8. Conclusions

Natural compounds can exert anti-tumor effects due to their antioxidant capacity and their ability
to inhibit cellular growth, capacity to trigger tumor cells apoptosis or to modulate the metastatic
cascade. The use of natural bioactive compounds could minimize chemotherapy and/or radiotherapy
side effects, such as neutropenia, diarrhea, cardiotoxicity, nephrotoxicity, hepatotoxicity, etc.

Both in vitro and in vivo studies demonstrated that the administration of dietary active
compounds induces growth inhibition, apoptosis and inhibition of adhesion and migration.
Furthermore, they exert anti-inflammatory effects and modulate Wnt/β catenin, PI3K/Akt and
Notch-1 key pathways for tumor initiation.

Surprisingly, some clinical trials presented in this review have shown an inverse correlation
between dietary intake of carotenoids, phytoestrogens (lignans, isoflavones), polyunsaturated fatty
acids, fibers and CRC incidence, but these results should be carefully interpreted considering
the individual variability, co-morbidities and cancer development status. Consequently, further
investigations should focus on underlying dietary compounds efficacy and the safety use in
combination with chemotherapy and/or radiotherapy, as well as their bioavailability (intestinal
absorption and metabolism).

With this respect, the oral bioavailability of the dietary agents was shown to be variable depending
on each compound and to be influenced by other agents. However, most of the studies conclude that
generally, the dietary bioactive compounds show low bioavailability. Therefore, the development of
new strategies to increase their bioavailability and adjust their administration doses would be of great
interest. A promising approach in this view is the development of nano-/micro-shuttles able to carry
active bio-compounds and to release these molecules in a controlled manner.
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