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Abstract

Cytoplasmic incompatibility (CI)-inducing endosymbiotic bacteria, such as Wolbachia and Cardinium, have been well studied
through field data and validations on the basis of numerical simulations. However, the analytically derived equilibrium
frequency of multiple infections has not yet been determined, although the equilibrium for cases of single infection has
been reported. In this study, we considered the difference equation for endosymbionts using three parameters: the
probability of the failure of vertical transmission (m), CI strength (z), and the level of host inbreeding (p). To analyze this
model, we particularly focused on QN , i.e., the frequency of host individuals completely infected with all N-bacterial strains
in the population. Q�N , QN at the equilibrium state, was analytically calculated in the cases where N~1,2 and N is any
arbitrary value. We found that Q�N can be described using two parameters: N and a, which is identical to m=pz. Q�N has a
larger value in a system with a smaller a. In addition, a determines the maximum number of strains that infect a single host.
Our results revealed the following: i) three parameters can be reduced to a single parameter, i.e., a and ii) the threshold of
the maximum number of infections is defined by a, which prevents additional invasions by endosymbionts.
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Introduction

Endosymbiotic bacteria such as Wolbachia and Cardinium are well

known to be reproductive manipulators infceting insect cells [1,2].

Cytoplasmic incompatibility (CI) is considered to be the most

common and efficient form of manipulation that can spread an

infection throughout the host population. CI causes males infected

with a bacterial strain reproductively incompatible with uninfected

females [3]. Because of CI, infected females exhibit a relatively

higher fitness than uninfected females; therefore, the number of

infected individuals gradually increases and they become domi-

nant in the host population. For example, approximately only

10% of Drosophila simulans individuals were infected with Wolbachia

in the middle of the 1980s in California; however, the infection

rate increased to 95% in 1993 [4,5]. In a rearing system of Encarsia

pergandiella infected with Cardinium, the infection gradually spread

to almost fixation within the population, irrespective of the initial

rate of infection [6].

The dynamics of CI-inducing bacteria can be primarily

determined by three parameters: vertical transmission efficiency,

fecundity of infected females, and CI levels [7], although the

dynamics may be affected by other parameters [8,9]. Vertical

transmission, from a mother to her offspring, is the main route of

transmission of the bacteria to other host individuals. The

transmission rate is defined as the proportion of offspring infected

from an infected mother, which is approximately 1 (w0:95 in most

cases) [10]. Successful transmission has crucial effects on the

spread and maintenance of the bacteria [11]. CI-inducing bacteria

sometimes affect the fitness of the infected host diretctly through

fecundity. The direction of their effect through fecundity depends

on the host-bacteria combination, and the effect may be negative

[12] or positive [13], or often neutral [14]. The CI level is defined

as the proportion of the number of offspring died because of CI

relative to the number of total offspring reproduced. In addition,

the effect of CI is dependent on the host-bacteria combination,

which highly varies from zero to one, i.e., from nearly neutral to

complete mortality [15–17].

Models have been developed to study the dynamics of CI-

inducing bacterial symbionts, particularly in Wolbachia, using the

three conventional parameters [4,18]. The long-term behavior

depends on the initial frequency of bacterial infection [19]. If the

initial frequency of bacterial infection is below the threshold, the

frequency heads towards extinction; however, if the frequency

stochastically exceeds the threshold (e.g., because of random

genetic drift), then it is expected to spread to another equilibrium

state where both infected and uninfected individuals exist. A

higher vertical transmission rate and/or stronger CI will lead to

higher infection frequency equilibrium. In most of the models on

the basis of difference equations, the equilibria have rarely been

analytically derived [20–22]. A few analytical results have been
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reported for single [7] and double infections [23]. Farkas & Hinow

[23] analytically examined the case of hosts infected with only a

single bacterial strain when two strains were present in the field.

However, the symbiotic bacterial dynamics of an arbitrary number

of strains remains poorly understood [7,18], which prompts the

questions: ‘‘how do the parameters determine the dynamics of

infections and how many strains can infect a host population’’?

Experimental studies have reported multiple infections of

Wolbachia in parasitic ants (nine strains) [24], byturid beetles (five

strains) [25], and ambrosia beetles (five) [26]. However, whether a

host population can be infected with a larger number of species is

not known. Thus, the generalization of bacterial numbers is a big

issue in endosymbiont studies.

In addition, the modeling of endosymbiotic dynamics in the

context of mating system has not been extensively studied. CI is a

phenomenon that occurs via mating, thus it is considered that the

mating system should affect the dynamics of the endosymbionts.

Mating systems can be categorized roughly as random mating and

inbreeding. Random mating or panmictic mating is mating

between any individuals in the population. In contrast, inbreeding

or sib mating, is mating between a brother and a sister. Therefore,

CI should be less effective under inbreeding because the mating

partner should have the same infection status. Strong inbreeding

has been observed in some insects, such as fig wasps and ambrosia

beetles, which are known to have Wolbachia infections [26,27].

Some theoretical studies have addressed the dynamics under

inbreeding [28–30]. However, most of these models were

examined numerically rather than analytically. In addition, the

scope of these models was limited in the case of single or double

infections.

This study aimed to develop an analytically solvable model of

the infection dynamics of CI-inducing bacteria in sib/panmictic

mating systems. We derived the analytical equilibrium of single

and double infections, and generalized arbitrary numbers of strain

infections using three parameters (vertical transmission rate, CI

levels and the level of inbreeding). Our results show that bacterial

infection thresholds can be simply expressed as a function of the

ratio between the failure of vertical transmission and the CI level.

In addition, we derived the maximum number of bacterial strains

that are capable of infecting a host population.

Methods

Model
We consider a host population infected with N endosymbiotic

strains. The integer i (~0,1, . . . ,2N{1) represents the state of

each host individual, infected or uninfected with bacteria, where i
is written in base 2 with N bits and each bit represents the state of

infection with bacteria, i.e., 0 and 1 indicate absence and presence,

respectively. For example, when i~5 ( = 101 in base 2), the host is

infected with the first and third bacterial strains but uninfected

with the second strain. For convenience, we introduce a binary

function f (i1,i2), which indicates whether the set of infected

bacterial strains i1 is included in that of i2. If the set of i1 is a subset

of that of i2, f (i1,i2)~1, otherwise f (i1,i2)~0. For example,

f (3,7)~1 because the set of strains i2 ( = 111 in base 2) contains

any strains of i1 ( = 011 in base 2). In addition, we define n(i) as the

number of strains carried by an individual of type i.

We develop an difference equation to express the dynamics of

the frequencies of hosts infected with multiple bacterial strains. Let

qi be the frequency of individuals infected with the bacterial set i.
For simplicity, we assume that all of the bacteria have identical

parameters in terms of the vertical transmission rate and CI

strength among strains.

Next, we consider the formulation of CI among strains. CI

results in a decreased hatching rate by a factor 1{z; therefore, the

fitness of individual mating incompatibly is reduced to 1{z. The

fitness of mating between a male with bacterial strains of i and a

female with bacterial strains of j is generally described as

f (i,j)z(1{z) 1{f (i,j)½ �.
A bacterial strain can be transferred by vertical transmission

from a mother to offspring at egg stage with a probability of 1{m,

whereas it fails to be transferred with a probability of m. In the

field, measurements of m are typically low (v0:05). An individual

host infected with the bacterial set j will produce eggs with i with a

probability of (1{m)n(i)mn(j){n(i) when f (i,j)~1. Note that our

model assumes a diplodiploid sex determination system in the host

insects, but the effects of CI can be quite different between

diplodiploidy and haplodiploidy [31].

The occurrence frequency of CI depends on the mating pattern.

Under random mating, CI occurs depending on the distribution of

qi. The average fitness of a female with the bacterial set j isP2N{1

k~0

qkff (k,j)z(1{z)(1{f (k,j))g. In contrast, under inbreed-

ing, CI depends on m. Mating partner tends to have the same

infection status as themselves because the pair are possibly

produced by the same mother. CI is less frequent under inbreeding

than random mating because it occurs only under following

conditions: (i) a mother lacks the bacterial strain(s) because of

vertical transmission failure and (ii) a father carries the strain(s)

because of their successful transmission from a common grand-

mother. It is difficult to formulate the exact effect of CI under

inbreeding because the frequency in a previous generation is

needed. For simplicity, we hereafter assume that m is sufficiently

small to regard the average fitness of a female with the bacterial set

j as 1. Let q’ be the frequency of infected individuals in the next

generation and p the probability of random mating. The

difference equation of qi is described as follows:

wq0i~
X2N {1

j~0

qjf (i,j)(1{m)n(i)mn(j){n(i)

(1{p)zp
X2N {1

k~0

qkff (k,j)z(1{z)(1{f (k,j))g

2
4

3
5,

ð1Þ

where w is a normalization factor that maintains the sum of the

updated host frequencies as unity. Eq.(1) can be rewritten as

follows:

wq0i~
X2N {1

j~0

qjf (i,j)(1{m)n(i)mn(j){n(i)

1{pzf{1z
X2N {1

k~0

qkf (k,j)g

2
4

3
5:

ð2Þ

Eq.(2) is symmetrical for p and z, which means that the effect of

p on the infection dynamics is equivalent to that of z. In addition,

Eq.(2) reveals that the dynamics can be described using only two

parameters, m and pz. If two systems have the same value of pz,

then the dynamics of these systems should be identical. If we use

~zz:pz as the effective CI strength, then ~zz should correspond to z in

the systems with the equivalent dynamics under complete random

mating (p~1). As a result, Eq.(1) can be rearranged to a more
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simple form using ~zz as follows:

wq0i~
X2N {1

j~0

qjf (i,j)(1{m)n(i)mn(j){n(i)

1{~zz
X2N {1

k~0

qk½1{f (k,j)�

2
4

3
5:

ð3Þ

Eq.(3) is identical to the equation developed by Frank [18], but z
is substituted by ~zz. Frank suggested that if all the bacterial strains

share the common parameters m and z, the polymorphic

equilibrium solutions should be symmetric for the frequencies,

i.e., the frequency of the hosts with the same number of strains

should be identical. For example, if q110w0, then

q110~q101~q011 should be satisfied. Frank performed a reduction

of Eq.(3) as follows:

wQ’
i~
XN

j~i

Qj

N{i

j{i

 !
(1{m)imj{i

1{~zz
XN

k~0

Qk

N

k

 !
{

j

k

 !" #" #
,

ð4Þ

where Qi is the frequency of a type that carries i different strains,

in which there are
N

i

� �
different combinations. We analyze

Eq.(4) hereafter.

Frank also proved that a polymorphic equilibrium, where both

infected and uninfected individuals exist, can be stably maintained

only if there are host individuals infected with all of the bacterial

strains in the population [14]. In other words, if the largest n(i) in

the population is less than N, polymorphism should be lost and

some bacterial strains will eventually fail to achieve infection until

stable maintenance is possible (Figure 1). Frank stated that the

presence or absence of individuals infected with all bacterial strains

in a population determines the fate of the population. Therefore,

we focus on the dynamics of the frequency of hosts infected with

all of the bacterial strains in an N-strain population, QN .

Next, we analytically derive the equilibrium for the system

[Eq.(4)]. We will first focus on simple cases with one or two

bacterial strains in the population before generalizing the results to

an arbitrary number of strains.

Results

Single infection
When N~1, the system [Eq.(4)] can be represented as follows:

wQ1
’ ~Q1 1{mð Þ, ð5Þ

where w~Q1zQ0(1{~zzQ1) and the total frequency Q0zQ1

equals unity.

Because Q
0

1{Q1~
~zzQ1

w
{Q2

1zQ1z
m

~zz

� �
, there are a maxi-

mum of three fixed points in the system: Q�0,Q�1
� �

~

1,0ð Þ, 1z
ffiffiffiffiffiffiffiffiffiffiffiffi
1{4a
p

2
,
1{

ffiffiffiffiffiffiffiffiffiffiffiffi
1{4a
p

2

 !
and

1{
ffiffiffiffiffiffiffiffiffiffiffiffi
1{4a
p

2
,
1z

ffiffiffiffiffiffiffiffiffiffiffiffi
1{4a
p

2

 !
where a:m=~zz. The phase portrait

of the system is shown in Figure 2a. The second and third fixed

points can exist only when 0ƒava(1)
c ~

1

4
, because a saddle-node

bifurcation occurs at a~a(1)
c . Thus, we can obtain the nontrivial

fixed points except (1,0) only for 0vaƒ
1
4
. (1,0) and

1{
ffiffiffiffiffiffiffiffiffiffiffiffi
1{4a
p

2
,
1z

ffiffiffiffiffiffiffiffiffiffiffiffi
1{4a
p

2

 !
are stable and

1z
ffiffiffiffiffiffiffiffiffiffiffiffi
1{4a
p

2
,
1{

ffiffiffiffiffiffiffiffiffiffiffiffi
1{4a
p

2

 !
is unstable (Figure 2a). The unstable

fixed point shows the basin boundary. If the initial value of Q1 is

below the unstable fixed point, then Q1 decreases asymptotically to

0, i.e. the population loses the bacterial infection. In contrast, if Q1

exceeds the boundary due to random drift or other accidental

events, Q1 can converge towards
1z

ffiffiffiffiffiffiffiffiffiffiffiffi
1{4a
p

2
. Note that because

1z
ffiffiffiffiffiffiffiffiffiffiffiffi
1{4a
p

2
w

1

2
, whenever the bacterial infection reaches equi-

librium, the frequency of infected individuals is certainly more

than half.

Double infection
In the case of N~2, the system [Eq.(4)] can be represented as

follows:

wQ2
’ ~Q2 1{mð Þ2

wQ1
’ ~Q2 1{mð ÞmzQ1 1{mð Þ 1{~zz Q1zQ2ð Þ½ �

ð6Þ

where w~Q2z2Q1 1{~zz Q1zQ2ð Þ½ �zQ0 1{~zz Q2z2Q1ð Þ½ � and

the total frequency Q0z2Q1zQ2 equals unity. This system has

five fixed points as follows: Q�0,Q�1,Q�2
� �

~ 1,0,0ð Þ,
1{m{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{8az2mzm2

p
2

,
1zmz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{8az2mzm2

p
4

,0

 !
,

1{mz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{8az2mzm2

p
2

,
1zm{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{8az2mzm2

p
4

,0

 !
,

Figure 1. Schematic showing bacterial infection flows, where
N~3. The host population comprises a set of triple infections, three
sets of double infections, three sets of single infections and a
noninfection set. The arrows represent vertical transmission failure. All
sets can exist in the population (enclosed by the solid line) only when
q111w0. By contrast, when q111~0, there are no stable states where the
frequencies of more than one set of double infection has a positve
value (enclosed by the dashed line). In that case, the host population
eventually approaches a stable state that include two bacterial strains
(encolosed by the dotted-dashed line). The proof was presented in [18].
doi:10.1371/journal.pone.0094900.g001
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1{2az
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{(4zm)a{4a2
p

2
,a,

1{2a{
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{(4zm)a{4a2

p
2

 !
and

1{2a{
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{(4zm)a{4a2

p
2

,a,
1{2az

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{(4zm)a{4a2

p
2

 !
.

To examine the stability of the fixed points, we performed linear

stability analysis for each fixed point. At (1,0,0), the eigenvalues of

Jacobian are 1{m and 1{mð Þ2. Because the absolute values of

these eigenvalues are less than 1, the state where there are no

infected insects are locally asymptotically stable. We numerically

calculated eigenvalues for the other fixed points for any sets of m

and ~zz, and concluded that only
1{2a{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{(4zm)a{4a2

p
2

,

 

a,
1{2az

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{(4zm)a{4a2

p
2

Þ was a stable fixed point and the

others were unstable. This stable fixed point exists

if 0vava(2)
c , where a(2)

c ~
{ 4zmð Þz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2z8mz32

p
8

. When a~

a(2)
c ,

1{2az
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{ 4zmð Þa{4a2

p
2

,a,
1{2a{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{ 4zmð Þa{4a2

p
2

 !
and

1{2a{
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{ 4zmð Þa{4a2

p
2

,a,
1{2az

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{ 4zmð Þa{4a2

p
2

 !

coalesce due to saddle-node bifurcation as well as when N~1.

Because a(2)
c va(1)

c for any value of mw0, the range in which

Figure 2. (A) Phase portrait where N~1, m~0:1 and ~zz~0:5. When the initial value of Q1 is less than the unstable equilibrium (open circle), Q1

decreases toward zero (extinction of endosymbionts). Otherwise, Q1 moves to a nonzero stable equilibrium point (closed circle on the right side). (B–
D) Vector fields where N~2 with m~0:05 and ~zz~0:38, 0.24, and 0.20, respectively. The horizontal and vertical axes represents Q2 and Q1,

respectively. Each arrow represents the difference in Q2 and Q1 between a generation, D~QQ~(Q2
’ {Q2,Q1

’ {Q1). The color of an arrow indicates the
magnitude of the vector. Solid and open circles indicate stable and unstable equilibrium points. The shaded areas depict the basin of attraction for
the extinction of endosymbionts. (E–G) Vector fields where N~5 with m~0:05 and ~zz~0:75, 0.50 and 0.25, respectively. Each arrow represents the

difference of Q5 and Q4 between a generation, D~QQ~(Q5
’ {Q5,Q4

’ {Q4).
doi:10.1371/journal.pone.0094900.g002

Figure 3. Comparison of Q�N in the numerical (colored points)
and analytical (black curves) solutions where N~1, 2, 5 and 10.
The parameters used in the simulations were selected from the ranges
of 0vmv0:05 and 0v~zzv1:0. The convergence condition wasffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i~0 Q
0
i{Qi

� �2
q

v10{10. The analytically derived equilibria are

shown by a solid line for N~1 (Q�1~
1z

ffiffiffiffiffiffiffiffiffiffiffiffi
1{4a
p

2
), a dash-dotted line

for N~2 [Eq.(7)], and dotted lines for N~5 and 10 [Eq.(10)].
doi:10.1371/journal.pone.0094900.g003
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completely infected host can exist at N~2 is narrower than that

when N~1.

As stated in the previous section, we assume that m is a relatively

small parameter. By substituting zero for m as a zero-order

approximation, Q�2 at the stable fixed point and the critical value

of a(2)
c are given as follows:

Q�2~
1{2az

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{4a{4a2
p

2
zO(m), ð7Þ

a(2)
c ~

{1z
ffiffiffi
2
p

2
zO(m): ð8Þ

The numerical simulation confirmed that this approximation is

adequate and that m had less effcet on Q�2 and a(2)
c than a (Figure 3).

N-strain infection
Finally, we calculated the fixed points of Eq.(4) for arbitrary N.

We assumed that Qn&0, for 0ƒnƒN{2 in an equilibrium state.

Numerical simulations supported this assumption (Figure S1). For

example, when N~10, ~zz~0:4 and m~0:025, 95.5% of the

population possessed N or N{1 bacterial strains. The dominance

of highly infected hosts was enhanced by the strain number N.

Thus, this assumption is more plausible when the system has a

greater N and a lower a. The reduced system is described as

follows:

wQ’N ~QN (1{m)N ð9Þ

where QNzNQN{1&1, w&QNzNQN{1 1{~zz(QNz(N{1)½
QN{1)�. Because this is a one-dimensional system, the fixed points

can be found easily, Q�N~0,
2{N+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N½{4zN~zzz4(1{m)N �

~zz

r
2

.

If m was regarded as a relatively small parameter,

(1{m)N&1{Nm. Then,

Q�N~0,
2{N+N

ffiffiffiffiffiffiffiffiffiffiffiffi
1{4a
p

2
ð10Þ

which shows that the frequency of completely infected hosts

depends only on a when m is sufficiently small. The difference in

QN between one generation, DQN , is represented as follows:

DQN:Q’N {QN&{
~zz

wN
(QN{Q0)(QN{Qz)(QN{Q{), ð11Þ

where Q�0~0, Q�+~
2{N+N

ffiffiffiffiffiffiffiffiffiffiffiffi
1{4a
p

2
. If N§2 and

av

N{1

N2
, the order of the three fixed points is

Q�{vQ�0vQ�z and Q�z is a stable equilibrium.

Figure 3 compares Q�z at various a with the results calculated

by numerical simulations for N~5 and 10. The approximated

solution of Q�z was generally consistent with the numerical

results. In particular, the agreement was better when a was

sufficiently small.

Eq.(11) indicates that an exchange of stability, so-called

transcritical bifurcation, should occur between Q�z and Q�0 at

a~
N{1

N2
. When aw

N{1

N2
, the order of fixed points is

Q�{vQ�zvQ�0 and the stable fixed point is Q�0. However,

we did not observe a transcritical bifurcation for any parameter set

of N, ~zz and m. Instead, a discrete jump into 0 was observed before

Q�N reached to 0, which implied that a saddle-node bifurcation

also occured at N§3 (Figure 3). The reduced system did not

replicate the disappearance of the stable fixed point; however, the

analytical solution of Q�N agreed with the numerical results until

the discrete jump occured. In addition, The numerical simulation

confirmed that when the bacterial strain number N was

sufficiently high, a discrete jump occured around QN~0.

Therefore, with a large N limit, the value of a at which the

transcritical bifurcation occurs is equal to a at the saddle-node

bifurcation. Thus, we obtained the critical a(N)
c for a sufficiently

large N as follows:

a(N)
c ~

N{1

N2
: ð12Þ

We compared the analytically derived ac with numerical

simulations. Figure 4 presents the numerically calculated Q�N at

various m and ~zz when N~1, 2 and 5. The lines in each figure

indicate the analytically derived critical value of a,
m

~zz
~a(1)

c ~
1

4
,

Figure 4. Distribution of the values of Q�N obtained by
numerical simulations where N~1,2 and 5. The dark highlights
indicate the values of Q�N . The lines in each figure represents the
analytically derived critical value of a.
doi:10.1371/journal.pone.0094900.g004
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a(2)
c ~

{1z
ffiffiffi
2
p

2
and a(5)

c ~
4

25
. The lines successfully delineate the

parameters where N bacterial infections can be maintained. The

consistency is reduced when m is greater because a(2)
c and a(N)

c

include O(m) errors. In particular, the ranges of ~zz and m that allow

infections with a complete set of bacteria are distinct. The value of

~zz ranges from 0 to 1. In contrast, when mwac, QN cannot have a

positive value, irrespective of the value of ~zz. Figure 5 confirms the

consistency between the numerical results and Eq.(12). The shaded

area derived by simulation indicates the values of a where N
bacteria can infect a population. On the basis of the analytical

results, we plotted the critical value of a where N~1 and 2,

a(1)
c ~

1

4
, a(2)

c ~
{1z

ffiffiffi
2
p

2
. For N§3, we plotted the critical a

derived from Eq.(12). For larger values of N, the analytical results

approached the threshold derived by numerical simulation.

The inverse function of Eq.(12) defines the maximum number of

bacterial strains that can infect a population, Nc, which is given as

follows:

Nc~
1z

ffiffiffiffiffiffiffiffiffiffiffiffi
1{4a
p

2a
&

1

a
{1: ð13Þ

Nc is approximately proportional to a{1. Therefore, it has a larger

value with a lower value of a.

Discussion

In this study, we demonstrated the analytic equilibrium

solutions of the frequencies of individuals infected with all the

bacterial strains in a population with single, double and arbitrary

N infections. Our results provide of a qualitative insight into the

symbiotant bacterial dynamics, in constrast to recently developed

models that quantitatively simulate specific experimental results

[4,32].

Our model used a parameter p, the level of inbreeding, from the

perspective of host behavior. We revealed that p has a completely

negative effect on CI. Endosymbionts manipulates host reproduc-

tion to maintain their own infections in host populations. In

contrast, host insects can reduce the prevalence of endosymbiont

infections by inbreeding. This result is consistent with previous

numerical simulations of inbreeding [28]. Engelstadter et al.

claimed that the infection rate decreases with increasingly inbred

hosts because uninfected females increasingly mate with uninfect-

ed males, which leads to fewer incompatible matings. Our analytic

calculation determined a linear relationship ~zz~pz, which clearly

indicates the negative effect of inbreeding on the CI strength.

However, this simple relationship does not appear to hold in some

cases of stochastic models. Genetic drift in stochastic island model

might have effects on inbreeding [29]. Our result is also consistent

with the previous analytical result reported by Dannowski et al.

[30]. This model focused on double infections by male-killing

bacterial strains and analytically showed that higher level of host

inbreeding leads to lower frequency of bacterial infections.

Although their result was limited in the case of double infections,

our result is applicable to arbitrary number of CI-inducing

bacterial strains.

The analytically derived equilibrium depends mainly on one

parameter, a. a is a novel index that we defined in this study,

which is the ratio of the probability of vertical transmission failure

(m) relative to the effective CI level (~zz). Previous studies have shown

that these parameters are involved with the infection dynamics.

Furthermore we demonstrated the simple relationship between

these parameters, i.e., the bacterial infection dynamics are

determined simply by a balance of both. The equilibrium

frequencies of the fully infected host are at a higher rate when a
is lower (Figure 3). In this case, CI-inducing bacteria can select two

alternative strategies to maintain and spread themselves: increas-

ing the vertical transmission efficiency [16] and/or increasing the

CI strength. There have been no reports of the differences among

these strategies. Figure 4 presents the asymmetric relationship

between m and ~zz. When m was higher than approximately 0.2,

bacterial infections could not be sustained regardless of the value

of ~zz. Thus, the vertical transmission rate has a threshold value for

infection. In contrast, bacterial infections occur with any value of ~zz
provided an appropriate value of m is selected on the basis on ~zz.

Thus, the vertical transmission rate determines the infection state

more strongly than CI.

Eqs(12) and (13) represent the relationship between the

maximum number of bacterial strains and the bacterial param-

eters. Considering a host population containing N0 bacterial

strains, if N0 increases to N1 through the horizontal transfer of a

bacterial strain, the critical valule of a decreases from a(N0)
c to a(N1)

c .

Provided ava(N1)
c is satisfied, the N1-infecting population will be

maintained. Otherwise, the infection cannot be maintained. For

example, a population where a~0:2 can maintain three strains at

most because a(4)
c (^0:18)vava(3)

c (^0:22). If the population

actually contains the maximum number of strains, the host

population is ‘‘saturated’’ with bacteria, i.e. other strains will fail to

invade the host population. The parameters are expected to have

the same value in our model. Therefore, the frequency of the

rarest strain necessarily declines to zero. A higher a value than that

of other strains may be needed for a new strain to invade the

saturated hosts.

Our theoretical results suggest that the equilibrium frequency of

completely infected hosts decreases as N increases (Figure 3). In

addition, the range of a where bacteria can be maintained

becomes narrower as N increases (Figure 5). The severe conditions

for multiple infections are caused by the increased possibility of

vertical transmission failure the offspring by any strains. X -strains

that infect a individual can successfully transmit all the strains to

the offspring with a lower probability than X{1 strains.

Consequently, these results support a noble idea of Wolbachia-

induced speciation. Suppose that a is enough large to maintain

single infection but not double infection (0.207–0.25), and

Figure 5. Threshold of a that allows bacterial infection. The
numerical simulation confirmed that a host population where a is in the
shaded region could maintain infections of N bacterial strains. The
black crosses are the analytically derived thresholds. The horizontal
dashed line is drawn at a~0:25.
doi:10.1371/journal.pone.0094900.g005
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endosymbiotic strains, A and B strains, infect some insects in two

different geographic regions respectively. The infections in both

regions will spread until a hybrid zone is produced. Then,

horizontal transfer makes double-infected individuals of A and B

strains. However, the double infection must be lost because a is too

low to maintain the both infections. Therefore, the hybrid zone

will be unstable and post-zygotic speciation will be occurred

between A-infected and B-infected individuals.

To confirm that our results were consistent with experimental

data, we compared the predicted equilibria with the values of CI-

inducing Wolbachia and Cardinium obtained using natural popula-

tions or an artificial line (Figure 6, Table S1). No data were

available for triple or higher multiple infection. Therefore, only

five single infections and one double infection were used for

reference. No data were available on the inbreeding frequency of

the insects studied; hence, p values of all were assumed to be zero,

i.e. completely random mating. The experimental values were

close to the predicted lines. Thus, our results can be used to

estimate the frequency of infected hosts at equilibrium using the

parameters (m and z) as well as for estimating the parameters that

are often difficult to be measured.

In this study, we aimed to provide a qualitative outline of the

dynamics of multiple infections by introducing an analytically

solvable model. By ignoring quantitative accuracy, our model

sheds light on the mathematical structure related to the multiple

infection dynamics. However, we introduced several assumptions

to develop a solvable model, which should be eliminated to allow

more quantitative comparisons using experimental data. First, we

assumed that a common transmission rate or CI level were shared

among bacterial strains. If the bacterial parameters are heteroge-

neous, a bacterial strain with a lower a is more likely to be

maintained than other strains. Indeed, some experiments indicate

that the CI range is too broad to be regarded as the same value

among different strains. For example, the CI levels of two

Wolbachia strains (wBruCon and wBruOri) that infect Callosobruchus

chinensis are variable [33]. The egg-hatching rate between double-

infected males and wBruCon-infected females declined to 0

whreas that between double-infected males and wBruOri-infected

females decreased to 0.62 due to CI. Another example is Drosophila

simulans infected with four Wolbachia strains in Madagascar. The

CI levels of the hosts vary between 0 and 1, depending on specific

crosses [34]. Second, the effect of CI was assumed to be

bidirectional for any combination of strains. However, it is known

that some strains can compensate for the effect of CI by

substituting for an uninfected strain [35]. To address more

complex CI patterns, case-by-case models should be developed.

Third, we ignored the bacterial density in a host by categorizing

the hosts as infected or uninfected. However, it has been reported

that the number of bacteria in a host insect depends on the specific

combination of bacterial strains in multiple infections [36]. Thus,

the bacterial density might affect the transmission rate and CI

strength. The number of bacteria in the hosts should be used as a

variable in individual-based models to examine the effects of

bacterial density. Forth, we assumed that the geometrical structure

of infected hosts was uniform. Thus, we did not consider the desity

of the hosts. The crowding of hosts might occur by chance locally,

which may cause increasing numbers of bacterial strains to be

stably maintained. This effect should also be examined in an

individual-based model. Finally, we roughly approximated the

frequencies of hosts infected with 0 to n{2 strains as being equals

to 0 to calculate the equilibria for N arbitrary strains. A more

rigorous approximation method would reduce the error between

the numerical and analytical results. The elimination of these

assumptions needs to be addressed in future studies.

Supporting Information

Figure S1 Dominancy of highly-infected individuals. (A)

An example of distribution of frequencies Qi in equilibrium state.

The frequencies were obtained by simulation with a~0:001
(m~0:005,~zz~0:5) and N~10. (B) The ratio of QNzQN{1 in

equilibrium state where a~0:01 (closed circles) and a~0:05 (open

circles).

(EPS)

Table S1 The values of parameters and the frequency of
completely infected hosts in the field. These values were

reported in the references listed above.

(EPS)
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