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ABSTRACT

The human reference assembly remains incomplete
due to the underrepresentation of repeat-rich se-
quences that are found within centromeric regions
and acrocentric short arms. Although these se-
quences are marginally represented in the assem-
bly, they are often fully represented in whole-genome
short-read datasets and contribute to inappropriate
alignments and high read-depth signals that local-
ize to a small number of assembled homologous re-
gions. As a consequence, these regions often pro-
vide artifactual peak calls that confound hypothesis
testing and large-scale genomic studies. To address
this problem, we have constructed mapping targets
that represent roughly 8% of the human genome gen-
erally omitted from the human reference assembly.
By integrating these data into standard mapping and
peak-calling pipelines we demonstrate a 10-fold re-
duction in signals in regions common to the black-
listed region and identify a comprehensive set of re-
gions that exhibit mapping sensitivity with the pres-
ence of the repeat-rich targets.

INTRODUCTION

Short-read mapping and enrichment studies from func-
tional whole-genome datasets are important for guiding our
understanding of genome regulation (1). To ensure high-
confidence peak calls many analyses focus exclusively on
non-repetitive regions of the genome or only on mapped
reads that have a single, best alignment score, thereby re-
moving read alignments that map equally well to multi-
ple repeat sequences (2–4). When enrichment profiles in-
clude repeat sequences with more than one optimal place-
ment in the genome it is often assumed (i.e. when using the
Burrows-Wheeler Alignment Tool, bwa mem, http://arxiv.
org/abs/1303.3997) that the multiple mapping reads are as-
signed randomly, thereby promoting a uniform distribution
of alignments to avoid mapping. This multi-mapping strat-

egy is challenged by sequences that are dramatically under-
represented in the genome assembly, such as tandem repeats
that occupy millions of bases within centromeric and acro-
centric regions (5). In these cases, reads are forced to map
to a small number of homologous regions in the genome,
resulting in large, artifactual read pile-ups (as illustrated in
Figure 1a). It is possible, given the limited representation
of these sequences in the assembled genome, that a single
region can provide a best alignment score challenging stan-
dard efforts to eliminate mapping to repeats. Such outliers
confound large-scale genomic analyses, involving training
sets in supervised learning methods or efforts to study Pear-
son correlations between datasets.

Standard analyses aimed to characterize high-
throughput sequencing data are aware of these artifact
alignments. Efforts to mitigate these mapping errors
often involve providing an additional ‘decoy’ database,
or a collection of sequences that are missing from the
human genome that are useful to ensure proper alignment
(6). Additionally, previous methods have been used to
track sites of extensive read pile-up capable of generating
artifact peak calls, known as ‘blacklisted’ regions (1)
(http://www.broadinstitute.org/∼anshul/projects/encode/
rawdata/blacklists/hg19-blacklist-README.pdf). These
blacklisted sites in the genome enable researchers to filter
these robust, non-biological signals of enrichment from
downstream studies and hypotheses testing. Often, deter-
mining the location of these artifact signals is an active,
and in some cases manual, process that must be repeated
with each reference genome update, and released datasets
vary considerably based on the method of prediction.
Furthermore, blacklist coordinates typically emphasize
sites that are observed across a collection of genomic data,
thereby omitting artifact alignments that are specific to one
or a small proportion of samples.

To address this challenge, we have generated mapping tar-
gets (referred to here as the ‘sponge’ sequence database) that
represent roughly 8% of the human genome that are miss-
ing or underrepresented in the human reference assembly.
Similar to the ‘decoy genome’ strategy, the sponge database
improves read mapping by allowing best scored alignments
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Figure 1. Large, multi-megabase sized regions of the human genome remain incomplete due to highly repetitive regions of the human genome, mapping
to centromere/heterochromatin assigned gaps, and including sequences that remain missing from subtelomeric regions in the acrocentric short arms. As
shown in (A), these regions are marked in the genome by gaps or space holders to indicate regions that are enriched for long arrays of tandemly repeated
DNA. Often the edges of these gaps provide some representation of the sequences across the entirety of the array (shown as red if included in the assembly
and shaded red if inferred to be present in the gap region). Sequence reads from the entire region are expected to be present in high-throughput, whole-
genome datasets. When mapping to a partial reference, these reads find their best alignments on the regions represented in the assembly. As a result, a large
number of reads (representing the multi-megabase arrays) align with high read depth, resulting in false positive sites in the genome. To account for these
mapping errors we have designed mapping targets, collectively called a ‘sponge database’ with the various distribution of DNA families shown in (B) for
the collection of 1.5 million remaining unassembled reads from the HuRef genome.

to a collection of sequences that are not typically present in
the reference chromosome assemblies. However, unlike pre-
vious methods, the sponge database is also useful in reduc-
ing artifacts when allowing for multi-mapping read align-
ments. By representing a stoichiometric version of repeat-
rich sequences missing from the human reference genome,
exact multi-mapping read alignments are randomly dis-
tributed across all possible sites. As a result, it is possi-
ble to greatly reduce large, artifactual read pile-ups in the
human reference genome. When including the sponge se-
quence database in short-read mapping and peak-calling se-
quence protocols we observe a sharp decrease in read align-
ments within blacklisted regions. We show that this reduc-
tion, while useful in targeting characterized artifact regions,
does not alter enrichment profiles that benefit from multi-
ple lines of biological support. By applying these analyses
to DNase short-read datasets we remove aberrant mapping,
thereby improving large-scale correlation values. As an ex-
tension of this work, we are able to identify additional sites
that demonstrate mapping sensitivity in the presence of the
sponge mapping targets and are common across datasets
and variable among individuals. Here we demonstrate the
utility of this approach on the human reference genome us-
ing available functional and genomic datasets, with the ex-
pectation that this method will be easily extendable to ad-

ditional datasets and genome assemblies that lack prior an-
notation of artifact regions.

MATERIALS AND METHODS

Creating the sponge database: characterizing unmapped read
libraries

The sponge database is defined by a collection of HuRef
whole-genome shotgun (WGS) reads that are not in-
cluded in human chromosome assemblies (i.e. HuRef:
GCA 000002125.2, GRCh37: GCA 000001405.1 and/or
GRCh38: GCA 000001305.2) (7). HuRef read fasta
files and quality information were downloaded directly
from the NCBI Trace Archive using the following query:
CENTER NAME = ‘JCVI’ and SPECIES CODE =
‘HOMO SAPIENS’ and center project = ‘GENOMIC-
SEQUENCING-DIPLOID-HUMAN-REFERENCE-
GENOME’. HuRef assembled contigs used in this study
are provided through GenBank ABBA00000000.1; BioPro-
ject: PRJNA19621, BioSample: SAMN02981236. HuRef
WGS reads were considered ‘unmapped’ and included
in the sponge database if they remain unassembled, i.e.
excluded from all assembled contigs, or if they are present
in an assembled contig that lacks assignment to a particular
chromosome reference assembly. To identify the reads that
passed the criteria to be included in the sponge database
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we used available ‘posmap’ data tables that reference each
WGS read assignment to published contig assemblies:
ftp://ftp.jcvi.org/pub/data/huref/h6.posmap.frgctg.gz. In
total, our initial HuRef WGS sponge database represents
246 Mb of unmapped sequences, or roughly 8.2% of the
genome (7), described below:

Satellite DNAs. Initial characterization of read
annotation for tandem repeats was performed us-
ing RepeatMasker (‘s’ crossmatch– sensitive, de-
fault ‘human’ parameters/Library release: 20140131;
http://wwwrepeatmaskerorg) (8). Uncharacterized se-
quences were studied for the presence of a de novo tandem
repeat (tandem repeat finder, using parameters Match = 2
Mismatch = 7 Delta = 7 PM = 80 PI = 10 Minscore = 50
MaxPeriod = 1000) (9) or homology using RepeatMasker
software with a specified library of previously characterized
human satellite DNAs in GenBank, with the following ac-
cessions: M25748.1,M25749.1, AF020783.1, AF020782.1,
X87951.1, AJ245409.1, X68546.1, X68545.1, M25748.1,
M25749.1. Satellite sequences representing alpha satellite
and HSat2,3 were collected from previous published
databases using the HuRef genome (10–12). Alpha satellite
reference models are only included in the GRCh37 version
of the sponge database, as these sequences are present in
the GRCh38 chromosome reference assemblies. In an effort
to present stoichiometric estimates in the sponge database,
individual satellite read libraries were normalized relative
to genome-wide sequence coverage (with read estimates
provided in Supplementary Table S1). Normalized alpha
satellite sequences were included as reference models
(method previously described in (11)), where the length
of the linear sequence is determined by normalized read
depth.

Ribosomal DNA sequences. Reads containing ribosomal
DNA sequence were identified using RepeatMasker (‘s’
crossmatch– sensitive) using a complete repeating unit
(GenBank Accession: U13369.1). In support of the pub-
lished ribosomal DNA repeat copy number estimates
(13,14), we predict roughly 450 copies of the ribosomal
DNA repeat based on read depth estimates. Within the
sponge database we used 3469 sampled rDNA reads (total
bp: 17218973) to provide 400x copies of the 42 999 repeat.

Remaining unmapped and previously uncharacterized se-
quences. Remaining, high quality unmapped HuRef WGS
reads (defined as containing at least 100 bases with as least
a phred score of 30) were included in the sponge database
if they did not align to the human reference chromosome
assemblies (GRCh37: GCA 000001405.1 and/or GRCh38:
GCA 000001305.2) with greater than 95% identity with at
least 60% read alignment (mapping performed using bwasw,
default parameters). Reads removed due to shared high se-
quence homology with chromosome reference assemblies
were assumed to represent misassembled sequences specific
to the HuRef assembly that are correctly represented in the
reference assemblies. Remaining WGS reads were reduced
to an estimated stoichiometric amount (or the randomly se-
lected 0.125 proportion of the 8x sequence coverage in the
HuRef WGS genome, representing roughly 1x coverage (7)).

Mitochondria sequences. In addition to HuRef WGS
reads, we included a separate sequence database containing
human mitochondrial DNAs (Human mtDB: http://www.
mtdb.igp.uu.se/ (15)). In an attempt to represent a rough
stoichiometric estimate of mitochondrial genomes we in-
cluded 1000 mitochondria genomes from a diverse collec-
tion of human populations (15) (Supplementary Figure S1)
representing an estimate of non-nuclear genomes expected
from an average human cell (16). A total of 500 published
mitochondrial genomes were organized in tandem to avoid
edge effects introduced when mapping reads to either the
start or the end of the circular genome.

Final stoichiometric sponge sequence libraries used in
this study are available in Supplementary Datasets 1 and
2 (sponge GRCh37 and sponge GRCh38, respectively). As
sequence abundance of repeat families is suspected to vary,
we also generated mapping target read databases of increas-
ing coverage (1x, 2x, 4x and 8x sequence coverage).

Alignments and peak-calling protocol with the general sponge
against short-read datasets

The sponge database functions in two ways to eliminate ar-
tifact read alignments: first, the sequence database provides
an opportunity to generate exact match alignments to se-
quences included in the sponge database, thereby removing
inexact matches from the reference assembly. Second, the
sponge database is useful in identifying and eliminating sig-
nals due to multiple exact, or ‘best scored’ matches that are
shared between the sponge and the reference database (with
randomly distributed read alignments using bwa mem, http:
//bio-bwa.sourceforge.net/bwa.shtml - 13). This strategy re-
lies on random distribution of read alignments over pos-
sible sites of multi-mapping sites and benefits from rough
stoichiometric representation of sequences in the human
genome.

We used the sponge database as a mapping target to
study read alignment profiles across diverse ENCODE
ChIP-seq datasets (1), as well as low-coverage genomic
datasets from two individuals from diverse populations
(HuRef (10), Western European and GM12939, Yoruba).
Links to datasets are provided in Supplementary Table
S2. Reads were mapped against a reference database
containing GRCh37 assembly (GCA 000001405.1; chro-
mosomes and mitochondrial genome) with or without the
sponge sequence database. Comparisons with the decoy
sequences used in the standard 1000 genome analysis
pipeline (6) used the reference database: hs37d5 (ftp:
//ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/
phase2 reference assembly sequence/hs37d5.fa.gz).

By including these mapping targets in standard align-
ment (Burrows-Wheeler Alignment Tool, BWA-MEM,
allowing for multi-mapping, with default alignment
parameters) and peak-calling protocols (Model-based
Analysis of ChIP-Seq (MACS, version macs14)) (17) we
were able to evaluate improvement in read assignment
within blacklisted regions, study gain and/or loss of
enrichment profiles and characterize both common and
cell-line specific sites not previously identified to present
artifact alignments. Primary analyses were performed
using the stoichiometric version of the sponge database

ftp://ftp.jcvi.org/pub/data/huref/h6.posmap.frgctg.gz
http://wwwrepeatmaskerorg
http://www.mtdb.igp.uu.se/
http://bio-bwa.sourceforge.net/bwa.shtml
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/phase2_reference_assembly_sequence/hs37d5.fa.gz
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(estimated to represent sequences in roughly 1x coverage).
Additionally, we included increasing proportions of the
database (1x, 2x, 4x and 8x coverage) to evaluate mapping
efficiencies that are sensitive to sequence abundance of
a given mapping target. Alignment files and significant
peaks were initially evaluated by intersecting with BED
files provided for three separate blacklists (Description
available http://www.broadinstitute.org/∼anshul/projects/
encode/rawdata/blacklists/hg19-blacklist-README.pdf;
Blacklist based on RepeatMasker annotation: ftp://
encodeftp.cse.ucsc.edu/users/akundaje/rawdata/blacklists/
hg19/Duke Hg19SignalRepeatArtifactRegions.bed.gz;
Merged Consensus blacklist: ftp://encodeftp.cse.
ucsc.edu/users/akundaje/rawdata/blacklists/hg19/
wgEncodeHg19ConsensusSignalArtifactRegions.bed.gz
and Ultra-high signal artifacts: ftp://encodeftp.cse.
ucsc.edu/users/akundaje/rawdata/blacklists/hg19/
wgEncodeHg19ConsensusSignalArtifactRegions.bed.gz).
Previously characterized CTCF peaks served as con-
trols in our study (TCF Binding Sites by ChIP-seq from
ENCODE/University of Washington; obtained from
UCSC Genome Table Browser GRCh37/hg19: Track
= ‘UW CTCF Binding’; Table = ‘GM78 CTCF Ht 1
(wgEncodeUwTfbsGm12878CtcfStdHotspotsRep1)’).
Transcript locations were defined by RefSeq (18) (RefSeq
assembly accession: GCF 000001405.13; obtained from
UCSC Genome Table Browser for GRCh37/hg19: Track =
‘RefSeq Genes’; Table = ‘refGene’), and control promoter
regions were defined as 1 kb upstream of a defined RefSeq
gene. Intersection between bedfiles was made with bedtools
intersect (v2.18.2) (19).

Correlation plots and generation of dendogram of DNAse I
datasets

Read mapping protocols were performed as previously de-
scribed (20) and in line with ENCODE 3 established align-
ment protocols (notably, differs from previous mapping
protocols used in this study in that multi-mapping reads are
ignored), with or without the addition of sponge mapping
targets (with stoichiometric estimates, 1x coverage). Com-
parisons between bigWig alignment files used a base-by-
base Pearson correlation with bigWigCorrelation software
(version 2), developed in house to enable correlation values
between full genome bigWig files (commonly involving up
to 3 billion data points each) and also convert to a bedgraph
format necessary for downstream analyses. This tool is pub-
lically available through the UCSC applications/software
code release (v316; with procedure to obtain the user
application tool set and how to build the tools is in
this README: http://genome-source.cse.ucsc.edu/gitweb/
?p=kent.git;a=blob;f=src/userApps/README). Pairwise
comparisons were performed using bigWigCorrelation and
scored based on similarity or ranking by summed Pearson
correlation values. The resulting outputs were converted to
a square matrix and clusters were visualized using imagesc
in MatLab (MATLAB, The MathWorks Inc. 2000, Natick,
MA, USA). Subtracting correlation values generated when
using the sponge mapping targets from those values without
the sponge mapping targets (or GRCh37 chromosome as-

semblies: GCA 000001405.1) provided a second matrix to
identify regions of increased correlation.

The dendrogram was generated with bigWig alignment
files from DNAse datasets from a variety of cell types and
individuals (with mapping protocol described above). Clus-
tering was performed in a hierarchical manner, using in-
house utility bigWigCluster, where linkage was determined
by merging individual DNase datasets in a pairwise manner
based on ranked similarity. Merging was performed with
an in-house utility, bigWigMerge, used to merge together
multiple bigWigs into a single output bedGraph necessary
when using the bigWigCorrelation software. These tools
are also available through the UCSC applications/software
code release (v316; with procedure to obtain the user ap-
plication tool set and how to build the tools is in this
README: http://genome-source.cse.ucsc.edu/gitweb/?p=
kent.git;a=blob;f=src/userApps/README). The resulting
binary tree (.json format) was visualized using the cluster
function from Javascript library d3 to generate a radial den-
drogram. The root node, representing the merged result of
bigWig files, was placed at the center of the graph. Smaller
node size corresponds to similar bigWig children, and larger
node corresponds to diverging bigWig children.

RESULTS

Description of sponge database

The human reference genome remains incomplete; yet,
roughly 8% of sequences that occupy unfinished regions
(typically associated with centromeric and constitutive
heterochromatin regions) are present in most short-read
datasets. These sequences are typically misaligned to a small
number of sites that are present in the reference assembly
that share sufficient sequence similarity, often resulting in
large artifactual read pile-ups (Figure 1a). To address this
problem we have generated a database containing those se-
quences missing from the human genome, representing 246
Mb or roughly 8.2% of the HuRef genome (7). The major-
ity (80%) of the unmapped sequences are characterized as
large tandem repeat families, including ribosomal repeats
and satellite DNAs, previously observed to be enriched in
centromeric regions and acrocentric short arms (Figure 1b).

In the sponge database, sequence families are included in
rough stoichiometric amounts (as estimated by read depth
coverage), to function in distributing multiple mapping
reads when using standard alignment software (bwa mem).
Large, artifact read pile-ups are often due to misalignment
of reads containing repeat sequences that are vastly under-
represented in the genome. By presenting a more accurate
estimate of repeat family abundance and sequence varia-
tion in the genome, read alignments are expected to as-
sign randomly across all possible sites, thereby distributing
read mappings equally and reducing mapping biases. In line
with this database utility, we have included 1000 diverse mi-
tochondrial genomes in the sponge database (15) (Supple-
mentary Figure S1), representing a rough estimate of non-
nuclear genomes expected from an average human cell (16).

The sponge database is similar to the ‘decoy genome’
database (hs37d5ss) (6), as it presents an alternative set of
missing human sequences that is useful in reducing mapping
errors. By including unassembled WGS reads, the sponge

http://www.broadinstitute.org/~anshul/projects/encode/rawdata/blacklists/hg19-blacklist-README.pdf
ftp://encodeftp.cse.ucsc.edu/users/akundaje/rawdata/blacklists/hg19/Duke_Hg19SignalRepeatArtifactRegions.bed.gz
ftp://encodeftp.cse.ucsc.edu/users/akundaje/rawdata/blacklists/hg19/wgEncodeHg19ConsensusSignalArtifactRegions.bed.gz
ftp://encodeftp.cse.ucsc.edu/users/akundaje/rawdata/blacklists/hg19/wgEncodeHg19ConsensusSignalArtifactRegions.bed.gz
http://genome-source.cse.ucsc.edu/gitweb/?p=kent.git;a=blob;f=src/userApps/README
http://genome-source.cse.ucsc.edu/gitweb/?p=kent.git;a=blob;f=src/userApps/README
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database (1x, stoichiometric estimate database, Supplemen-
tary Data 1 and 2) provides a larger representation of se-
quences (128 636 fasta entries, 201 Mb) compared to the
decoy genome (4715, 35 Mb). Although both databases
provide considerable alpha satellite annotation, the sponge
database provides more robust representation of other
abundant pericentromeric repeat families (Supplementary
Figure S2). For example, 34% of the sponge database pro-
vides sequence mapping for Human Satellites II and III,
whereas these sequences make up only 2.8% of the decoy
genome. The sponge database also presents roughly twice
the sequence diversity (930 million unique 24-mers com-
pared to 445 million unique 24-mers in the decoy database).
Like the decoy genome, the entire sponge database is rela-
tively small (196M), ensuring that it is amendable to stan-
dard alignment protocols.

Including sponge mapping targets reduce read alignments in
blacklisted regions

To test the utility of these mapping targets in reduc-
ing read enrichment profiles within characterized black-
listed regions, we initially evaluated read alignments us-
ing two low-coverage human genomic datasets (HuRef and
GM19239, Supplementary Table S2). By doing so, we de-
tected a 10-fold reduction in bases aligned to blacklisted re-
gions provided across four public blacklist datasets available
for GRCh37 (Figure 2a), with a reduction in read align-
ments across all previously characterized repeat annota-
tion attributed to blacklist regions (Supplementary Figure
S3). To further explore reduction in mapping to blacklist
regions we surveyed read alignments across a diverse col-
lection of short-read ENCODE experimental datasets (1)
(Supplementary Table S2). Evaluation of both read align-
ments and peak calling across all datasets reveals a reduc-
tion in mapping to blacklisted regions (Figure 2b, Supple-
mentary Figure S4). Similarly, we observed a reduction in
read mapping within annotated blacklisted regions in the
GRCh38 reference, which includes the alpha satellite ref-
erence models within the chromosome assemblies (Supple-
mentary Figure S5). Further, we demonstrate genome-wide
decreases in read mapping and peak calling within black-
listed regions were not sensitive to sequence coverage of the
sponge database, as increasing sequence coverage from 1x to
8x did not present notable improvement. For each dataset
we were able to assess reduction in peak prediction across
blacklisted regions or regions with little experimental sup-
port (as indicated on a region on 1p11.2 that has been ob-
served to be misassembled in the GRCh37 assembly (21),
Figure 2c as a false positive alignments), while maintain-
ing true positive alignments, or peaks with multiple exper-
imental lines of support for enrichment. Comparison be-
tween the DNase I mapping data with either the sponge
or decoy dataset revealed a general decrease in read map-
ping across blacklisted sites, however, the sponge database
provided a larger reduction in false mapping attributed to
blacklisted sites annotated as satellite/centromeric repeats
(Supplementary Figure S6).

Use of sponge mapping targets improves large-scale analyses
by reducing aberrant read alignments

To ensure sites of enrichment that benefit from multiple
lines of biological evidence are not lost in the presence of
the sponge mapping targets, we monitored changes in read
depth and peak calls across select ENCODE datasets (1)
(CTCF, promoter regions and RefSeq coding regions). By
doing so, we observed that including the mapping targets
had a very marginal effect on sites previously characterized
by more than one dataset (e.g. CTCF ChIP-seq and CTCF
transcription binding sites), with 99.3% of all peaks main-
tained (Figure 3a). Of those sites lost, the majority (89%,
179/201) are peaks that are associated with blacklisted re-
gions. Likewise, we observed this trend for RNA sequence
mapping with respect to RefSeq coordinates (98% peaks re-
maining) and promoter regions (97.8% using datasets from
DNaseI, GABP and H3K4me3) (Figure 3b and c).

Cell lines derived from similar tissues are expected to
share similar sites of transcriptional regulation. This has
been observed by correlations in genome-wide DNase I hy-
persensitive profiles that predict sites of open chromatin,
identifying regions accessible to transcription factors. Arti-
fact read alignments are expected to confound these large-
scale correlations of pair-wise enrichment profiles by intro-
ducing noise. To evaluate improvement in genome-wide cor-
relation datasets we selected 12 DNase I datasets (includ-
ing seven fibroblast cell lines, three lymphoblast and two
embryonic stem cells) to observe improvement in Pearson
correlations when introducing the sponge mapping targets.
Standard mapping protocols for ENCODE 3 filter multi-
mapping reads, allowing us to specifically investigate the in-
fluence of the single, best read mapping with the addition of
the sponge database. As a result, we observed an increase in
correlation between related cell lines while removing spuri-
ous inter-correlations between cell-line groupings (Supple-
mentary Figure S7). After the resulting small-scale run, we
utilized the mapping targets pipeline to modestly improve
correlations across a larger datasets representing different
tissue and cell types, while maintaining biological meaning-
ful correlations between cell lines as previously supported
in the literature (20) (Supplementary Figure S8). Therefore,
including the sponge mapping targets, even when filtering
multi-mapping read alignments, is expected to provide some
improvement to large-scale analyses of genome-wide read
alignment data in addition to adjusting inference based on
reducing local artifact peak calls.

Characterization of novel artifact sites and regions that
demonstrate peak-calling sensitivity to increased abundance
of mapping targets

Artifact enrichment sites, which are not currently included
as blacklist regions, were defined by the reduction of read
alignments and loss of peak enrichment when studied in
the presence of the sponge mapping targets. It is likely these
novel sites will be classified as commonly associated sites,
or read enrichments that were shared between two or more
cell lines, and cell-line specific sites (Supplementary Figure
S9). To address the opportunity for stoichiometric varia-
tion between individuals, we increased our study to mon-
itor read depth and peak calling while increasing the size of
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Figure 2. Reduction in artifact read alignments was observed in the presence of the sponge mapping targets when surveyed across blacklisted regions in
figure (A) for four previously characterized datasets providing lists of annotated sites in hg19. When evaluating read mapping results with and without
the sponge across low-coverage whole genomic datasets from two individual (HuRef, Western European and GM19239, Yoruba), we observe a 10-fold
decrease. In panel (B) we observe a similar 10-fold or greater reduction in peaks called within blacklisted regions (shown here for the Anshul hg19 blacklisted
data), including nine additional ENCODE functional datasets. Further, as one increases the abundance of the sponge database from 1x to 8x, we observe
little improvement. Results for CTCF mapping in regions hg19 chr1:121,179,675–121,374,269 are shown with or without the sponge database in panel
(C). MACS peak calls are indicated in red, and locations of CTCF binding are shown in the track highlighted in light browns. In the presence of sponge,
mapping targets read alignment depth is decreased in regions that span a previously characterized blacklisted regions (shown in green) and labeled as a
false positive. Alignments are reduced in regions that are not indicated as a blacklisted region, which appear to be novel (shown in orange), offering new
sites of false positive alignments. Regions, as indicated in blue, that benefit from multiple lines of biological support still provide peak calls in the presence
of the sponge mapping targets.

Figure 3. Sites of enrichment that benefit from multiple lines of biological evidence are not lost in the presence of the sponge mapping targets, as shown
monitor changes in read depth for (A) CTCF with increasing abundance of the sponge database (1x–8x coverage), (B) long RNA datasets that overlap
with characterized RefSeq gene locations and (C) within promoter regions, defined here as 1 kb upstream of a RefSeq gene and evaluated using DNase,
GABP and H3K4me3 datasets.
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the sponge database (2x, 4x and 8x) to track roughly 3% of
sites that demonstrate mapping sensitivity in the presence
of the sponge database (Supplementary Figure S10). In do-
ing so, we were able to provide a summarized listing of re-
gions in GRCh37/hg19 that appear to be sensitive across
included datasets, as a method of filtering regions which
are suspected to provide variable results in mapping stud-
ies using collection of cell lines from different individuals
(Supplementary Table S3). Evaluation of these sites reveals
dosage-dependent mapping targets show a sharp decrease
in sensitivity, or reduction in read alignments, once past 2x
stoichiometric estimates. Regions affected were associated
with the larger pericentromeric satellite families (HSat2,3).

DISCUSSION

Ensuring correct read alignments is critical to high-
throughput sequencing studies aimed at identifying sites
of genome regulation and functional sequence annota-
tion. Mapping of short reads generated from whole-genome
datasets has demonstrated that particular sites in the refer-
ence genome are prone to artifactual increased alignments
pile-ups, marked as blacklisted regions, which confound bi-
ological interpretation in these regions. These alignment er-
rors are due to improper mapping of underrepresented re-
peated sequences to a limited number of assembled sites that
share short stretches of sufficient sequence homology. Here
we demonstrate that adding these sequences as mapping
targets in an expected stoichiometric abundance, in effect
presenting a more complete version of the human genome,
is effective in correcting these mapping errors in standard
mapping and analysis pipelines. To identify a precise set of
regions of the human genome that are likely enriched due
to false positive mapping we have evaluated sites with re-
duced read depth and peak calls in the presence of these ad-
ditional mapping targets. We demonstrate the utility of this
approach in reducing known artifacts in previously identi-
fied blacklisted regions. Further, we show that by eliminat-
ing this form of experimental noise we improve large-scale
correlations between functional DNase datasets. We pro-
pose that the use of this strategy is useful in advancing de
novo characterization of blacklisted regions in genomes that
lack prior characterization.

Although repeat families included in our mapping
dataset are known to vary between individuals, we observe
that a single database representing roughly 1x coverage pro-
vides a sufficient stoichiometric representation to be useful
in reducing false positive mapping. However, we do iden-
tify a small number of sites (∼3% observed in this study)
that are indeed sensitive to the underlying target sequence
abundance. We suspect that these sites may represent less
abundant sequence variants that are represented in the as-
sembly as well as in a lower proportion in the 1x database.
These repeat variants may be present in tens of copies in one
individual and tens of thousands of copies in another. Use
of a single ‘sponge database’ from the HuRef genome may
not be sufficient to capture these smaller signals of sequence
evolution entirely. Rather, future studies may benefit from
increasing the sponge database to annotate these regions for
each cell line or alternatively use the database to generate
cell-line specific databases by mapping genomic data to the

sponge sequence library. By doing so one is more likely to
overcome this limitation and have a better donor-matched
definition of repeat abundance and variation in these re-
gions. We expect this method to be extendable to other non-
human genomes, by which species-specific sponge databases
could provide a general mechanism to reduce artifact align-
ments.
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