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Chorioamnionitis, a potentially serious inflammatory complication of pregnancy, is

associated with the development of an inflammatory milieu within the amniotic fluid

surrounding the developing fetus. When chorioamnionitis occurs, the fetal lung finds

itself in the unique position of being constantly exposed to the consequent inflammatory

meditators and/or microbial products found in the amniotic fluid. This exposure results

in significant changes to the fetal lung, such as increased leukocyte infiltration, altered

cytokine, and surfactant production, and diminished alveolarization. These alterations

can have potentially lasting impacts on lung development and function. However, studies

to date have only begun to elucidate the association between such inflammatory

exposures and lifelong consequences such as lung dysfunction. In this review, we

discuss the pathogenesis of and fetal immune response to chorioamnionitis, detail the

consequences of chorioamnionitis exposure on the developing fetal lung, highlighting the

various animal models that have contributed to our current understanding and discuss

the importance of fetal exposures in regard to the development of chronic respiratory

disease. Finally, we focus on the clinical, basic, and therapeutic challenges in fetal

inflammatory injury to the lung, and propose next steps and future directions to improve

our therapeutic understanding of this important perinatal stress.
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INTRODUCTION

The epithelial surface of the lung is constantly exposed to external noxious stimuli, including
pathogens, particulates, and toxins. To maintain function, the lung must be able to protect itself
against or adequately respond to such insults. Failure of these defense mechanisms contributes
to the development of disease, with potentially significant morbidity and/or mortality; in fact,
respiratory diseases account for a substantial portion of the health burden faced by the global
community (1–3). Though the incidence and prevalence of various diseases affecting the lung
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change with age, lung illnesses occur in every stage of life.
Exposure of the lung to infectious and inflammatory insults
during both childhood and adulthood is well-known to cause
chronic lung disease, but less well-recognized is the significant
impact of exposure during the prenatal period in utero, when
critical lung development processes are ongoing (4). Indeed, the
developing mammalian lung is constantly exposed to amniotic
fluid, and modifications in the amount or character of this fluid
can lead to severe abnormalities in lung development (5, 6). The
lung epithelium is so intimately exposed to amniotic fluid that
early experiments have been successful in using intra-amniotic
(IA) delivery to perform epithelial genome editing (7). A growing
body of evidence suggests that many fetal exposures influence
lung development, and that these exposures impact the trajectory
of lung function changes in adolescence and adulthood, the risk
of future respiratory disease, and how the lung responds to
future injury.

This review seeks to summarize the evidence supporting
the role of fetal lung inflammation on lifelong respiratory
dysfunction through the prism of chorioamnionitis, a highly
prevalent and extensively studied fetal injury. Herein we
will review the clinical characteristics, mechanistic data, and
experimental models underlying our current understanding
of chorioamnionitis. We provide in depth review of the
immunological consequences and discuss strengths and
weaknesses of available animal models. Finally, we identify key
future directions with the goal of furthering our understanding
of fetal inflammation and in utero injuries to the lung. Our
hope is that defining the key pathways and open questions
will help optimize future translational science to provide
better understanding of chorioamnionitis and other fetal
inflammatory stressors, ultimately leading to improved therapies
for affected patients.

FETAL ORIGINS OF LUNG DISEASE

It has been classically taught that lung function gradually
declines throughout life for all individuals (8). However, this
analysis assumed a common starting point for all adults and
ignored exposures prior to the age of 25. In particular, as the
perinatal period represents a still developing system undergoing
proscribed, sequential changes leading to complete maturation,
exposures occurring during this period afford more opportunity
for injury-induced alterations than exposures that occur in the
more static, homeostatic systems found in most organs later in
life. This idea, termed the “fetal origins of disease” hypothesis, is
supported by studies demonstrating that experiences early in life,
including the antenatal period, impact a variety of adult health
metrics (9–16) including lung function (17–21). Furthermore,
the same injury occurring in this early life period may have a
more dramatic impact than the same exposure occurring later
in life, simply because they occur during an early developmental
time point. This concept is supported broadly by the literature
of developmental knockouts in mice, where germline or early
knockouts of many genes leads to global, and often severe,
phenotypes in affected animals. In humans, the fetal origins

hypothesis may also explain the observation that individuals
with similar genotypes can have widely variable manifestations of
disease secondary to timing of injuries or environmental events.
Such differential presentations may subsequently result in the
clinical impression of sporadic disease, complex risk profiles
for disease progression, or incomplete penetrance of clinical
phenomena. One clear example of such time-related phenotypes
has been described for the metabolic disease phenylketonuria
(PKU). It is known that infants exposed to elevated phenylalanine
levels in utero due to maternal PKU are at high risk for injury,
especially severe neurologic impairment, regardless of their
genetic profile (22–25). Similarly, those infants who are born
with PKU have poor neurologic outcomes if their disease is not
recognized and treated early (26). However, in those infants with
PKU who are treated with dietary modification early in life, the
consequences of non-adherence to therapy later in life present
only with subtle cognitive impairments (27, 28). Thus, it appears
the timing of exposure to high phenylalanine levels, rather than
the presence of exposure, is of key importance in determining
phenotype. It is likely that many diseases with presentation in
the perinatal period are impacted by timing and dose effects in
a similar manner.

In accordance with these data, and as predicted by the
fetal origins of disease hypothesis, a number of retrospective
cohort studies demonstrate lifelong risk for the development
of cardiovascular, metabolic, respiratory, and other disease (29–
36) following significant early life stressors, namely famine.
Subsequent cohort studies focused specifically on lung disease
suggest substantial connections between early life exposures
and the development of adult lung illnesses, particularly
chronic obstructive pulmonary disease and asthma (18, 37–40).
Prenatal, perinatal, and childhood factors that are associated
with worse respiratory outcomes during childhood include
biomass fuel exposure (41, 42), tobacco exposure (42–45),
air pollution (42, 46), preterm birth (46–50), and respiratory
tract infections (46, 51), among others. Many of these same
factors are similarly associated with adult lung function (52–
54), suggesting that antenatal and perinatal factors during lung
development can have lifelong impact. These exposures are
thought to impact respiratory outcomes through direct effects
as well as, and potentially more significantly, the provocation
of an inflammatory response within the lung. We now turn to
chorioamnionitis, a well-studied model of fetal inflammatory
stress, to examine how in utero exposure to inflammation impacts
the developing lung.

PATHOLOGICAL DEFINITION OF
CHORIOAMNIONITIS

Chorioamnionitis is a technical, histopathologic term used to
indicate inflammation of the placenta, specifically the chorion,
amnion, or both (55). Up to 25–40% of preterm births are
associated with chorioamnionitis (56, 57), and in very preterm
infants (∼24 weeks gestation), the incidence of chorioamnionitis
can reach over 90% (58, 59). In severe cases, the inflammation
can include additional structures, namely the umbilical cord.
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In the event of umbilical cord involvement, this inflammation is
alternatively referred to as funisitis (59–61). Chorioamnionitis is
classified according to both the qualitative degree of neutrophil
infiltration within the placental membranes (grade 1–3) as well
as the progression of neutrophil infiltration through the placental
membranes (stage 1–3) utilizing the Redline criteria (61). Stage
1 and grade 1 chorioamnionitis are considered mild, whereas
severe chorioamnionitis is defined by grade or stage >1 or the
combination of chorioamnionitis and funisitis (61).

Importantly, histological chorioamnionitis is frequently
clinically silent, with minimal maternal inflammatory response
(62, 63). This is distinct from microbial invasion of the amniotic
cavity, when culturable microorganisms are identified from
amniotic fluid samples, and the placental and amniotic fluid
inflammation is generally more severe (64). This is also different
from the clinical diagnosis of chorioamnionitis, which is defined
by manifestations such as intrapartum fever, maternal or fetal
tachycardia, purulent or foul-smelling amniotic fluid or vaginal
discharge, uterine tenderness, and maternal leukocytosis (65–
68). In general, this review considers the literature with respect
to the histological diagnosis, which is present in the majority of
cases of clinical chorioamnionitis.

PATHOGENESIS OF CHORIOAMNIONITIS

The pathogenesis of chorioamnionitis has been a subject of
investigation for decades. Initial hypotheses suggested microbial
invasion of the amniotic cavity as the primary etiology
(69). However, multiple subsequent studies have revealed that
histological chorioamnionitis is often found in the absence
of demonstrable infection (70, 71). Framed as “sterile intra-
amniotic inflammation,” chorioamnionitis is induced by some
yet to be determined danger signal (72–74). Notably, bacterial
colonization of the amniotic fluid without significant resulting
inflammation has not been associated with negative effects
(75). Conversely, inflammation without detection of bacteria
has been associated with adverse clinical outcomes similar to
those seen with the combination of inflammation and bacteria
(75). These results strongly imply that chorioamnionitis is
best understood as a severe inflammatory response in the
amniotic space, rather than the reaction to a specific infectious
agent, and that this inflammation, regardless of etiology, is the
proximate cause of much of the morbidity and mortality seen in
clinical chorioamnionitis.

MICROBIOLOGY OF CHORIOAMNIONITIS

Initial studies of the placental microbiome in subjects with
severe chorioamnionitis showed particularly high abundance
of urogenital and oral bacteria (notably Ureaplasma parvum,
Fusobacterium nucleatum and Streptococcus agalactiae) and low
levels of Lactobacilli (76). Further studies confirmed presence
of urogenital and oral species, demonstrating strong correlation
between severe chorioamnionitis and the presence of bacterial
species, though specific species differ between studies (75, 77,
78). Using new techniques to study the microbiome, recent

reports suggest microbial species diversity may be relevant,
with diminished diversity in the placental membranes in severe
chorioamnionitis compared to either mild chorioamnionitis or
controls (76, 79). Severe chorioamnionitis was also associated
with a significantly increased 16S rDNA copy number (79),
suggesting a more robust infiltration of bacterial species overall.
Nevertheless, these observations have been challenged by recent
studies which found no distinction between negative background
controls and placenta samples, even those from preterm births
(80). A more recent study failed to detect any distinctive bacterial
signature in placentas from cases of chorioamnionitis (81).
While, Ureaplasma and Mycoplasma could be detected in the
16S rRNA gene sequence data from a small minority of preterm
samples, these organisms were also usually detectable in vaginal
swab samples from the same women, leaving it unclear whether
these sequences originated from the placenta specimen or vaginal
contamination during delivery.

CHORIOAMNIONITIS AND POSTNATAL
HUMAN LUNG FUNCTION

An extensive literature documents the relationship of
chorioamnionitis and lung function in the post-natal period.
Initial studies identified a reduced risk of respiratory distress
syndrome (RDS) but an increased risk of bronchopulmonary
dysplasia (BPD) in preterm infants with chorioamnionitis
(82). Tracheal lavage showed increases in inflammatory
mediators including IL-1 in patients that developed BPD (83).
Therefore, it was hypothesized that inflammation resulted
in accelerated lung maturation, which explained decreased
RDS, but had more long-term deleterious consequences on
lung development, leading to increased risk of BPD. Since
that time, multiple studies have tried to better delineate the
relationship between chorioamnionitis, RDS, and BPD with
mixed results. Multiple studies have confirmed the initial
reports (68, 84–89), while recent meta-analyses have questioned
the linearity of these relationships (90). A challenge in truly
identifying the relationship between these pathologies is the
lack of clarity in the ontogeny, diagnosis, classification, and
treatment for each these disorders (91). Other confounding
factors including gestational age and co-morbidities in the
preterm population can also make these relationships difficult to
quantify (91).

Supporting the impact of fetal inflammation on lung
development, however, is the observation that exposure
to the inflammatory state of severe chorioamnionitis is
associated with adverse pulmonary outcomes in early
childhood. In particular, a birth cohort followed through 2
years of age identified a strong joint effect of prematurity
and chorioamnionitis on the risk of wheezing and
asthma (92). This association may also partially drive the
observed correlation between prematurity and wheezing
and early life asthma seen in a subsequent meta-analysis
of 31 different birth cohorts, though chorioamnionitis
prevalence was not specifically reported (93). Additionally,
a separate cohort demonstrates that exposure to severe
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chorioamnionitis, but not mild chorioamnionitis, is
independently associated with wheeze and respiratory-related
physician visits in the first year of life (94), suggesting that
the degree of inflammatory injury may be directed related
to outcomes.

While there are no currently available studies that
explicitly describe a connection between chorioamnionitis
and late childhood, adolescent, or adult lung function,
there are studies that demonstrate an association between
coincident factors, namely BPD and prematurity, and later
lung function. Prematurity has been variably associated
with increased respiratory symptoms, airflow obstruction,
and airway hyperresponsiveness into early adulthood
(95–98). Similarly, BPD has been associated with airflow
obstruction, increased medication use, and respiratory
symptoms in childhood, adolescence, and early adults (99–
103). Unfortunately, studies have not determined whether
either of these two conditions contribute to accelerated
lung function decline or more severe, deleterious responses
to future noxious stimuli. However, it is likely that the
observed reduction in peak lung function contributes to the
emergence of chronic or classical adult symptoms earlier
in life.

LUNG IMMUNE MILIEU IN HUMAN
CHORIOAMNIONITIS

Despite the challenges in precisely correlating chorioamnionitis
to specific lung diseases, it is clear that an in utero inflammatory
environment impacts the development of the lung and
predisposes later lung dysfunction. Our understanding of
the mechanisms driving these epidemiological associations is
limited, though several molecules have been implicated in
lung injury in patients. Severe granulo-histiocytic infiltration
(104, 105) and an increase in apoptotic cells (106) are
found in chorioamnionitis- exposed infant’s lungs at autopsy.
During chorioamnionitis, the concentration of inflammatory
mediators including IL-1β, IL-6, IL-8, MMP9 and TNFα
in the amniotic fluid increases dramatically (82, 107–111).
Immune cell numbers, especially neutrophils, are also more
abundant in amniotic fluid (112–114). It is suggested that
these amniotic fluid neutrophils are of fetal origin (115),
though the subject remains controversial (112). Recently,
immunophenotyping of cells isolated from chorioamnionitis-
exposed amniotic fluid demonstrated an increased frequency of
monocytes/macrophages, B cells, NK cells, and T cells in addition
to confirming infiltration of neutrophils (64, 116), suggesting
a multifaceted immune infiltrate. The associated inflammatory
milieu negatively impacts surfactant composition and function
(117), and alters response to therapeutic surfactant in patients
with RDS (118). These multifaceted changes occur during the
canalicular and saccular stages of lung development (∼16–36
wks), and it is tempting to hypothesize that injury at this time
may impact alveolarization later in development, as supported by
animal data (see below).

FETAL SYSTEMIC IMMUNE
CONSEQUENCES OF CHORIOAMNIONITIS

In addition to the organ specificmanifestations unique to the fetal
lung, it is imperative to consider the systemic changes that can
occur in response to chorioamnionitis. Of particular importance
is the fetal immune system, as the fetal immune response can
have a significant impact upon development and contribute to
organ dysfunction. In fact, the most well-recognized effect of
chorioamnionitis exposure on the neonatal immune system is
the elevation of pro-inflammatory cytokines in fetal circulation.
IL-6, generally considered the primary signal of fetal immune
system activation, is frequently elevated in cord blood (119–121).
This connection is notable enough that IL-6 was initially used to
define an entity termed fetal inflammatory response syndrome
(FIRS), the fetal corollary to adult systemic inflammatory
response syndrome (SIRS). Other inflammatory mediators that
are frequently elevated include TNFα, IL-1, and IL-8 (122–124).
Importantly, while these mediators are significantly increased in
infants exposed to severe chorioamnionitis, they are less elevated
in mild chorioamnionitis (109, 125). This difference is likely in
part due to the classification system of chorioamnionitis, as the
histopathologic hallmark associated with FIRS is funisitis (121).

Beyond soluble mediators and histopathologic findings,
transcriptional analyses have revealed several chorioamnionitis-
induced alterations of the fetal immune system. Whole blood
transcriptional analyses revealed ∼500 differentially expressed
genes in chorioamnionitis compared to non-exposed neonates
(126). Although the cellular source of differentially expressed
genes was not determined, some of the top altered pathways
pointed to activation of innate immune pathways in exposed
neonates. In infants with chorioamnionitis, there was an
increased proportion of total circulating monocytes (127), as
well as neutrophils as far out as 6 days after birth (128).
The increased levels of neutrophils could be due to the
elevated plasma G-CSF in infants with FIRS (129). Cord
blood neutrophils and monocytes in the context of clinical
chorioamnionitis were found to have increased expression of
TLR4 and TREM-1 (130). It was found that fetal bone marrow
monocytes are distinct from adults (131). Besides numerous
transcriptional differences observed, fetal monocytes were found
to possess enhanced STAT phosphorylation in response in to
IFNγ, IL-4, and IL-6 stimulation even at lower concentrations
compared to adult monocytes (131). Although the consequences
of these differences were not examined, it could suggest
that fetal monocytes are highly sensitive to an inflammatory
milieu it may encounter. However, analyses of in vitro-
stimulated monocytes from chorioamnionitis-exposed neonates
suggest blunted responsiveness. Indeed, RNAseq analyses of
chorioamnionitis-exposed monocytes that were stimulated in
vitro with Staphylococcus epidermidis uncovered a distinct
transcriptional profile of hypo-responsiveness (127). In addition,
chorioamnionitis exposure in preterm infants has also been
shown to increase monocytic H3K4me3 methylation marks,
which are tightly associated with inactive gene promoters (132).
Monocytes from chorioamnionitis-exposed term infants with
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increased H3K4me3 modifications produced less IL-1β, IL-6,
and IL-8 when stimulated with LPS (132). These data are also
in agreement with animal models of chorioamnionitis, which
documented that intra-amniotic LPS induces maturation of fetal
monocyte function, but long-term or repeated exposures to either
LPS or U. parvum appear to drive ex vivo hypo-responsiveness
(133, 134). Together, these data suggest that chorioamnionitis
exposure contributes tomonocyte dysfunction, with a dissociated
phenotype, e.g., enhanced markers of activation directly ex vivo,
but paradoxically, low response to further stimulation, which
could drive the higher risk of sepsis related complications in
these infants (127). Dendritic cells (DCs) are another population
present in the fetus that are responsive to inflammatory signals
such as TLR ligands (135). To our knowledge, their response to
chorioamnionitis exposure has not been carefully analyzed, but
it is likely that, as for macrophages, the inflammatory mediators
present in the AF and the fetal circulation stimulate a fetal DC
response that could potentially influence adaptive immunity. In
addition, another cell population that intra-uterine inflammation
induces is granulocytic myeloid-derived suppressor cells (GR-
MDSC) (136), which may participate in chorioamnionitis-
induced dysfunction of innate immune responses.

Analysis of adaptive immune responses in chorioamnionitis-
exposed infants hasmainly focused on T cells, in particular CD4+

T cells. Chorioamnionitis exposure has been reported by several
groups to drive the emergence of circulating T-effector memory
cells (CD4+CD25loCD127hi), with a Th1/Th17-like phenotype
(126, 137–139), although one study did not find such a difference
(66). Chorioamnionitis also changed the metabolic profile of
CD4+ T cells, altering metabolites that are part of the tryptophan
catabolism and glutathione detoxification pathway, which could
be linked to the enhanced development of a Th1 response (137).
Enhanced CD4 production of IL-6 has also been reported (137,
140). The mechanisms driving the presence of activated T cells
in the context of chorioamnionitis remain unclear, though a
recent report showed increased number of activated maternal
alloantigen-responsive T cells in preterm infants (141). These
activated T cell appeared independent of chorioamnionitis, but
this study did not distinguish mild vs. severe chorioamnionitis,
which may explain the overall lack of association.

FoxP3+ regulatory T cells (Treg) are an abundant CD4+ T cell
subset in utero (142–144) and are important to inhibit fetal T cell
responses against self- and non-self-antigens, including maternal
alloantigens (143). Therefore, they have been one of the most
studied T cell populations in neonates. However, no consensus
has yet been reached on the effect of chorioamnionitis on the
frequency of Tregs, as chorioamnionitis has been associated with
either no change (140, 145) or decrease (139) in Treg frequency.
These discrepancies could be due to the use of different criteria
to define chorioamnionitis in different studies. Additionally,
difference in the age of preterm infants and the markers used to
identify Tregs in each study have complicated interpretation.

There may be additional qualitative differences in the
Treg population as a result of exposure to inflammation.
Indeed, chorioamnionitis in preterm infants was associated
with increased number of Tregs expressing the Th17 main
transcription factor RORγt (146) or capable of producing IL-17A

(139). Similarly, RORγt/FOXP3 mRNA ratio is increased in the
blood of premature infants exposed to severe chorioamnionitis,
but not to mild chorioamnionitis (138). Treg suppressive
capacity was also diminished in late preterm infants exposed
to severe chorioamnionitis (145). However, whether this
diminished overall suppressive function is mechanistically due
to the increased proportion of inflammatory Tregs remains to
be determined.

ANIMAL MODELS OF CHORIOAMNIONITIS

Studies focused on human neonates have not yet clearly identified
actionable mechanisms related to the diagnosis or management
of chorioamnionitis. This is due in part to the inherent logistical
and ethical limitations of clinical studies as well as notable
challenges related to access to fetal organs. In the next section, we
will describe the data generated through the currently available
animal models of chorioamnionitis (e.g., mouse, rat, rabbit, pig,
sheep, and non-human primate) and how they provide a more
specific understanding of the pathophysiology of fetal amniotic
inflammation (Table 1). Figures 1, 2 summarize our current
knowledge on the development of the lung and aspects of the
immune system across species, respectively. These studies have
shown a wide-ranging effect of chorioamnionitis on a number of
organ systems, including the heart, lungs, intestine, brain, eyes,
and kidney (119, 121, 148, 150–152). Here, we will focus on what
these models have taught us about fetal lung and immune system
development, maturation, and activation after fetal inflammation
which is summarized in Figure 3.

Rodents
With their short gestation period (∼20 days) and multiple
offspring per litter, allowing for large studies, and the possibility
of easily introduced genetic modifications, rodent models
provide significant benefits to mechanistic studies. However,
multiple caveats have limited their usefulness in the study of
chorioamnionitis. First, there is a level of uncertainty of whether
an inflammatory challenge reaches each pup equally in the setting
of large group gestation. Second, the developmental window of
the rodent immune system is distinct from humans. Indeed, as
shown in Figure 2, hematopoiesis and development of immune
cells starts in utero at ∼5 weeks in humans, and ∼day 8 in mice
(153, 154). Additionally, organization of secondary lymphoid
organs such as the spleen (follicles and T cell zones) occurs
in utero in humans while it only occurs late in gestation and
post-birth in rodents (155–158). Thus, immunological studies
in preterm rodents likely will not accurately reflect preterm
human neonates.

The timeline of lung development is more similar between
rodents and humans, but differences do exist. The majority of
lung development occurs in utero for both species with the
canalicular-saccular phase in mice (∼17days—birth) reflecting
changes occurring during the 15–38 weeks of gestation in
humans (159, 160). However, alveolarization begins during late
gestation in humans (36 weeks) and only postnatally in the
mouse (post-natal day 4) (4, 161). In addition, studies of fetal
lung inflammation are hindered by the small size of rodent
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TABLE 1 | Species comparison of animal models of chorioamnionitis to clinical observations in humans.

Model Human Rhesus macaque Sheep Pig Rabbit Rodent

Gestational period 280 day ∼165 days ∼150 days ∼115 days ∼32 day ∼20–22 days

Placenta type Discord,

Hemochorial

Discord,

Hemochorial

Cotyledonary,

Epitheliochorial

Diffuse,

Epitheliochorial

Discord,

Hemochorial

Discord,

Hemochorial

Agents used to

induce chorio

Various microbes

and/or mediators

(absence of microbes,

sterile inflammation)

implicated

LPS, IL-1, Ureaplasma,

TNFα

LPS, Ureaplasma,

TNFα, L-1

E. coli, LPS E. coli, LPS, IL-1 E. coli, LPS, IL-1

Pros of model 1. Similarity in organ,

immmune ontogeny

2. Avalability of

reagents

1. Similarity in organ,

immune ontogeny

1. Multiple pups per

litter

1. Short gestation

2. Multiple pups per

litter

1. Short gestation

2. Multiple pups per litter

3. Availability of reagents

4. Different genetic

models

Cons of model Limited access to

samples besides cord

blood

1. Expensive (housing,

maintenance, etc.)

2. Large studies to

acquire sample

sizes

1. Limited reagents

2. Expensive (housing,

maintenance, etc.)

3. Large studies to

acquire sample

sizes

1. Challenge reaching

the pups equally

(multiple amniotic

sacs)

2. Limited reagents

1. Challenge

reaching the pups

equally (multiple

amniotic sacs)

2. Limited reagent

3. Unknown

immunity pre-birth

1. Challenge reaching the

pups equally (multiple

amniotic sacs)

2. Small size pre-term

(technical issues)

Refs: Furukawa et al. (147); Kallapur et al. (148); Kim et al. (59); Grigsby et al. (149).

FIGURE 1 | Species comparison of lung development. The five stages of lung development (A) embryonic, (B) pseudoglandular, (C) canalicular, (D) saccular, (E)

alveologenesis during gestation and postnatally are compared between different animal models used to study chorioamnionitis.
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FIGURE 2 | Species comparison of immune ontogeny. Arrows denoting hematopoiesis or macrophages reference presence in AGM/yolk sac (human, rodent, pig) or

fetal periphery (non-human primate, sheep). NK, T, and B cell arrows mark appearance in the fetal periphery outside of primary lymphoid organs such as bone marrow

(NK, B cells) or thymus (T cells).

FIGURE 3 | Overview of fetal lung consequences in response to in utero inflammatory challenge. Summarized schematic of observations made of the fetal lung

response in animal models of chorio.

pups, which can make extensive lung processing/manipulation
technically challenging. Despite these differences, the rodent
model has provided important clues on how inflammation
impacts fetal and neonatal lung development.

IA injections of LPS and IL-1β in mice (162, 163) and rat (164)
as well as endocervical injection of E. coli (165) have been used to
induce chorioamnionitis in mice. Several characteristic features
of human chorioamnionitis are recapitulated in these models,
including neutrophilic infiltration in the placental membranes
(163–165) and elevated IL-1β and TNFα in the amniotic fluid

(162). There were also alterations to the fetal lung including
neutrophil invasion, increased cytokine expression, decreased
alveolarization (in those sacrificed post birth) with increased
number of alveolar type II cells, the main source of surfactant
proteins required for alveolar function (162, 165–168). These
structural changes mirror those seen in the retrospective human
studies reviewed above.

Given the role of IL-1β identified in early studies, novel
mouse models have been generated to better understand this
relationship mechanistically. Over-expression of human IL-1β in
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fetal lung epithelium (169) was sufficient to increase neutrophil
and macrophage infiltration to the lung and led to thickening of
the saccular septa and airway wall, decreased elastin deposition,
poor vascularization of developing alveoli, and hyperplasia of
bronchial smooth muscle cells and goblet cells (170). These
animals also showed decreased septation, resulting in fewer
alveoli by post-natal day 7 (170), consistent with data from LPS
and E. coli treatment models.

The effect of double hits, namely chorioamnionitis and
hyperoxia, has also been explored in rodents. Interestingly,
moderate hyperoxia improved lung function in rats exposed to
intra-amniotic LPS, whereas severe hyperoxia further reduced
it, highlighting the concept that the type of post-natal care,
notably of post-natal ventilation, will also influence the overall
outcome (163).

Rabbit
Similar to rodents, rabbits constitute a useful model for several
reasons including size, multiple kits per litter, and short gestation
(∼31 days). The 21–29 day age range of rabbits used in preterm
studies (171–174) spans the canalicular and saccular phases of
lung development, corresponding to ∼15–38 weeks in humans
(175). Theses similarities in prenatal lung development make the
rabbit an attractive model.

Little is known about the status of the rabbit’s fetal immune
system besides work detailing rabbit B cell biology (176–
179). The peripheral blood of post-natal day 1 kits contained
lymphocytes, neutrophils, monocytes, eosinophils, and basophils
(180). In addition, lymphocytes from the peripheral blood,
spleen, andmesenteric lymph node from these kits proliferated in
response to ConA stimulation and produced antibodies following
immunization (181), suggesting that the fetal immune system of
rabbits is more developed at birth than that of rodents.

Intrauterine E. coli in rabbits induced neutrophil infiltration
and even necrosis in the placenta (171, 174, 182, 183) along with
elevated amniotic fluid cytokines (184). Surprisingly, little cell
infiltration into the lung was present at 16–30 h post intrauterine
E. coli (182); another report showed a transient increase of
polymorphonuclear neutrophils into the bronchoalveolar lavage
fluid (BALF) of infected kits 0–5 days after exposure and
confirmed limited cellular infiltration in lung tissue (174).
Together, both studies suggest that there is an early, but
mild, immune response in the fetal lung, which is less intense
than human and mouse data would have predicted. Despite
this limited immune response, E. coli treatment did lead to
altered lung development similar to othermodels, predominantly
compromised alveolarization with decreased secondary septa
(173, 174). IA LPS or IL-1α led to neutrophil infiltration
in amniotic and bronchoalveolar fluid, increased surfactant
expression and enhanced lung compliance (170, 172), suggesting
that inflammatory exposure leads to lung maturation in this
model despite the mild immune response.

Pig
The pig is a larger animal, with a longer gestation period (∼115
days) and multiple piglets per gestation. Importantly, it is one
animal model where the development of the immune system

occurs before birth. As early as 30–60 days gestation, innate and
adaptive immune cells have been found in umbilical cord and
lymphoid organs (185–190). Additionally, the preterm piglets at
∼97–106 gestational days (191, 192) closely reflects the saccular
phase of humans (∼24–38 weeks) (160, 193). However, despite
these strengths, very few studies of chorioamnionitis have been
conducted in this model.

The IA administration of E. coli (194, 195) or LPS (185,
191, 192) leads to leukocyte infiltration and increased pro-
inflammatory cytokine expression in the placenta, the amniotic
fluid, and the fetal circulation. Following 3 days of LPS exposure,
increased CXCL8 and IL-1 expression as well as MPO+ cells were
found in the fetal lung (191), suggesting longer term exposure
to fetal inflammation may mirror the more acute events seen in
other, smaller models.

Sheep
A strong homology in lung architecture, protein structure,
growth factors, and immunity between sheep and humans makes
the sheep a very relevant model to study lung development and
function (196–199). Ovine lung structures are quite comparable
to their human counterparts, particularly for epithelial cell
distribution, mast cells, and smooth muscle populations (200–
202). The sheep lung also contains phagocytic cells that are
capable of responding to pathogens. Sheep tracheal explants have
shown mucus coverage, mucociliary clearance, and cell structure
that are all similar to humans (203–205).

In sheep, IA LPS or IL-1β lead to lung inflammation
characterized by cellular infiltration and maturation, and
increased cytokine (GM-CSF, IL-6) expression. Similar to rodent
models, inflammation improved lung maturation, but reduced
alveoli number (134, 206–208). In contrast to the fetal mouse
lung that contains more mature monocytes (209), the fetal sheep
lung contains very low numbers of alveolar macrophages in
absence of inflammation (210). However, akin to human fetal
lung, monocyte/macrophages are recruited to the lung after IA
LPS (211). In addition, IA LPS triggers GM-CSF expression in the
fetal lung, which induces PU.1, a transcription factor responsible
for monocyte to macrophage maturation (211). Mechanistically,
the robust responses induced by LPS are partially mediated
by IL-1β, as co-administration of IL-1RA diminished LPS-
induced neutrophil andmonocyte infiltration into the BALF, IL-6
expression, and SP-C expression in the lung parenchyma (212).

In contrast to LPS, exposure to live Ureaplasma elicits only
a mild response in the fetal lung (213). Ureaplasma causes
infiltration of neutrophils into the lung, but limited monocyte
recruitment, and no change in expression of inflammatory
cytokines or surfactant proteins (213). Chronic Ureaplasma
exposure (≥45 days) leads to a more robust cell infiltration into
the BALF, with increased lung expression of IL-1β and IL-8 and
lung maturation, but does not affect lung alveoli and vascular
development (214–217).

Non-human Primates (NHP)
NHP have several key characteristics that make them a
model of choice to study chorioamnionitis. The singleton long
gestation along with hemochorial placentation and the endocrine
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events surrounding parturition in rhesus are similar to human
pregnancy (147, 149). Importantly, the cervical and vaginal
microflora of the female rhesus are remarkably similar to human
[see (218) and references therein]. The anatomic similarity of
the rhesus monkey chest wall to the human one generates a
functional residual capacity which comprises a similar percentage
of total lung capacity (219, 220) comparable to humans. Due to
the similarities in the lung function and immunity (221, 222),
rhesus macaques have also been used as preclinical models of
house dust mite-induced atopic childhood asthma (223–225).
Furthermore, analysis of the airway transcriptome in this model
demonstrated a large transcriptomic overlap between macaques
and humans (226).

IA IL-1β exposure during rhesus gestation cause a robust,
neutrophil-dominated cellular infiltration in the lung associated
with increased cytokine expression and elevated lung maturation
markers like surfactant A, B, C and D, similar to the sheep
model (227). There was also a modest increase in the plasma
level of glucocorticoids that are known to induce fetal lung
maturation (227, 228). IA injection of Ureaplasma parvum and
Mycoplasma lead to colonization of the fetal lung and BALF
(229, 230). Initial studies reported acute inflammation following
Ureaplasma challenge in rhesus lungs (230). However, similar to
what has been described in sheep, subsequent studies suggest
that IA U. parvum causes only a very mild lung phenotype
(229). The reasons for these divergent outcomes in primate
models remain unknown, as the same U. parvum serovar and
the same dose was used in both studies. Key differences in
study design include different animal colonies, which could have
influenced the microbiome of animals prior to injury, as well as
the use of catheterized animals only in the first study. Of note,
IA Ureaplasma parvum followed by post-natal ventilation lead
to significant lung inflammation in fetal baboons (231). When
observed, inflammation in the rhesus fetal lung was associated
with extensive fibrosis, elevated level of α-SMA and TGFβ1, as
well as SMAD, IL-1β, and OSM (231).

CONCLUDING REMARKS AND FUTURE
PERSPECTIVES

Histological and clinical chorioamnionitis frequently occur
together, though either can be present without the other (68).
Despite similar nomenclature, their associated outcomes do not
necessarily correlate, and the interchangeable terminology leads
to confusion, likely contributing to the mild effect size noted in
studies linking chorioamnionitis with respiratory comorbidities.
Activation of the fetal inflammatory response in histological
chorioamnionitis can potentially influence the development and
maturation of the fetal immune system. This in utero exposure
may “prime” the developing immune system, even in the absence
of infection. Such a “priming” results in a more activated
and mature immunophenotype, potentially increasing the
susceptibility of infants to later childhood diseases, altering their
response to vaccination, or contributing to the development of
immunopathological disorders. Indeed, funisitis, and activation
of fetal inflammatory response were associated with > 2-fold

increased risk of developing BPD. It may, therefore, be more
instructive to separate clinical chorioamnionitis from histological
funisitis. These entities have distinct clinical outcomes and likely
activate different physiological pathways (109, 125). We argue
that decoupling the “mild” chorioamnionitis from the “severe”
chorioamnionitis, and consider separating the analysis of cases
including funisitis, may accelerate our understanding of how
the fetal inflammatory response directs the maturation of the
fetal/neonatal immune response. The relative contribution of
chorioamnionitis to RDS and BPD, independent of risk presented
by premature birth, needs to be quantified, as the incidence of
chorioamnionitis exposure increases with increasingly premature
infants (56, 232).

Second, as mentioned earlier, the role of the microbiome
remains controversial. Nevertheless, it is possible that the
resident microbiome in mothers affects the fetal immune
response and its consequences. As the microbiome is quite
variable among humans, future studies will need to address
whether this variability also modulates the contribution of
inflammatory in utero exposures on lifelong lung development.

Third, whether unique anatomical position, which brings the
fetal lung in direct contact with the inflammatory mediators in
the amniotic fluid, results in organ-specific responses is unclear.
Whether lung specific alterations in immune cells (135) reflect
the systemic changes or are due to local alterations in cytokine
milieu needs to be investigated. Furthermore, propagation of the
inflammation from the lung to other organs has been suggested
in animal models. Indeed, an elegant study where LPS was
administered IA, restricted to the lung (tracheal infusion), gut
(stomach infusion), or skin (snout occlusion) demonstrated that
resultant gut inflammation was induced by either direct contact
of the gut or the lung surface (233), evidenced by mild injury
in epithelial cell integrity, impaired epithelial differentiation,
and loss of ZO-1 along with mild cellular infiltration. This is
just an example of a larger question when it comes to FIRS
and multi-organ involvement (119, 151); are there potential
interactions between organ systems, and under what conditions?
These questions therefore represent a priority, and they need to
be addressed in relevant animal models.

Finally, the exact mechanism(s) which drive these adverse
respiratory outcomes are not yet known, but recent evidence
has implied epigenetic alterations in the setting of tobacco
exposure, famine, and infections (234–241). Such epigenetic
alterations, possibly due to inflammatory milieu or direct toxic
effects in the lung, are prime candidates to explain durable,
lifelong, and often subtle alterations in disease susceptibility.
Despite this provocative connection, direct evidence supporting
this hypothesis remains limited. Another potential mechanism
is the fact that Th2 immunity appears critical for lung
homeostasis in early post-natal period. IL-33 production
gradually increases (starting from embryonic day 19 in mice) as
a result of mechanical stresses induced by breathing, resulting
in mechanical tension on alveolar type-2 cells (242, 243). IL-33
promoted Th2 immunity by directing the recruitment of ILC2
as well as OX40L expression on DCs (243). Since inflammatory
cytokines, for example IL-1 and IL-6, limit Th2 responses
(244, 245) it is conceivable that the chorioamnionitis-associated
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pro-inflammatory phenotype may contribute to altered lung
development by interrupting the normal lung-shaping Th2-
responses, although this possibility remains to be formally tested.
Finally, emerging evidence from murine developmental biology
literature implies multiple critical waves of lung development,
and inflammation at critical times likely impacts these developing
lung structural cells alone. All of these possibilities need
to be directly evaluated in future studies to precisely target
future therapies.

In conclusion, the continued use of animal models is
needed to advance our understanding of the various fetal
complications due to chorioamnionitis exposure. Depending on
the scientific questions asked and context specificities, different
animal models will be more or less useful, and future studies
need to start integrating the findings. For example, leveraging
the similarities between humans and NHP in regard to the
close intersection of the lung and the immune system, in
combination with the ability to make genetic modifications
in rodents, will provide a framework to better understand
the impact of severe chorioamnionitis on the developing fetal
lung. Then, major findings from animal models will have
to be investigated in human neonates. These studies will
require extensive longitudinal studies, in which the severity of
chorioamnionitis exposure and its intersection with prematurity
are well-documented. Clinical pulmonary outcomes need to
be carefully monitored in these infants, through repeated
questionnaires, high-end imaging and functional assessments.

As lung development continues well into the second decade of
life, such studies would necessarily require extensive long term
follow up to fully characterize the influence of inflammatory
in utero exposures on lifelong lung development. Only such
integrated studies, spanning from animal models to the clinic,
can bring enough understanding on how the fetal inflammatory
response affects newborn lung maturation, to design new
therapeutic strategies aimed at limiting the risk of progressing
respiratory diseases in chorioamnionitis-exposed infants.
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