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A B S T R A C T   

Tuberculosis (TB) continuously poses a major public health concern around the globe, with a mounting death toll 
of approximately 1.4 million in 2019. Reduced bioavailability, elevated toxicity, increased side effects, and 
resistance of multiple first-line and second-line TB medications, including isoniazid, ethionamide necessitate 
studies of new drugs. The method of computational biology and bioinformatics approach allows virtual screening 
of a large number of drugs, reduces growing side effects of medications, and predicts potential drug resistance 
over time. In this study, we have analyzed fifty small molecules with antituberculosis properties using in silico 
approach including molecular docking, drug-likeness assessment, ADMET (absorption, distribution, metabolism, 
excretion, toxicity) profile evaluation, P450 site of metabolism prediction, and molecular dynamics simulation. 
Among those fifty compounds, 3-[3-(4-Fluorophenyl)-1,2,4-oxadiazol-5-yl]-N-(2-methylphenyl) piperidine-1- 
carboxamide (C22) and 5-(4-Ethyl-phenyl)-2-(1H-tetrazol-5-ylmethyl)-2H-tetrazole (C29) were found to pass 
the two-step molecular docking, P450 site of metabolism prediction and pharmacokinetics analysis successfully. 
Their binding stability for target proteins has been evaluated through root mean square deviation and root mean 
square fluctuation, Radius of gyration analysis from 10 ns Molecular Dynamics Simulation (MDS). Our identified 
drugs (C22 and C29) performed better than the control drugs (Isoniazid, Ethionamide) regarding binding affinity 
and molecular stability with the regulatory proteins (InhA, EthR) of Mycobacterium tuberculosis. The study 
proposed these compounds as effective therapeutic agents for Tuberculosis drug discovery, but further in vitro 
and in vivo testing are needed to substantiate their potential as novel drugs and modes of action.   

1. Introduction 

Tuberculosis is among the earliest known infectious diseases [1]. 
Since the introduction of Mycobacterium tuberculosis as the causative 
agent of tuberculosis by Robert Koch in 1882, it has grown and evolved 
as one of the fatal pathogens in the history of infectious disease in 
humans [2]. Mycobacterium tuberculosis is a distinct acid-fast, slowly 
developing, aerobic bacteria with a size of 0.8–4 µm that belongs to the 
Mycobacteriaceae family [3]. The most regularly studied strain H37Rv 
of M. tuberculosis has a genome composed of 4.4 Mb that encodes 4018 
genes with an average G + C content of 65.6% [4]. 

Tuberculosis (TB) is a communicable disease, transmitted by a per-
son suffering from active TB with the release of small nuclei respiratory 
droplets (ranges between 0.65 to greater than 7.0 μm) containing viable 

airborne bacteria [5,6]. Once the bacilli reach the lung alveoli, either the 
mycobacteria are phagocytized by mature alveolar macrophages, or the 
active mycobacteria start reproducing within the macrophage, which 
then causes their lysis [7]. This local inflammation attracts monocytes 
from neighboring blood vessels and leads to granuloma formation by 
encapsulating bacilli for controlled progression (LTBI) [8]. In case of 
failure, the infection starts to spread through both lymphatic channels 
and blood circulation which can cause serious damage to the lungs 
(pulmonary TB), along with other regions of the body, i.e., brain, spinal 
cord, lymph node, abdomen, bones/joints, intestinal and genitourinary 
system [7,9–11]. Active TB symptoms depend on the severity of the 
spread; generally, some of the clinical features are persistent coughing 
for more than 3 weeks, bloody sputum (hemoptysis), chest pain, fever, 
fatigu e/weakness, weight loss, anorexia, breathlessness, etc. The person 
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with latent tuberculosis infection (LTBI) presents no symptoms and 
cannot transmit Mtb to others, but may develop active TB [12]. 

One of the major barriers to therapeutic interference against Mtb is 
its unusual cell envelope structure that has a high lipid content with 
unique long-chain highly hydrophobic α-alkyl-β-hydroxy fatty acids, 
mycolic acids (MAs) [13,14]. MA functions to maintain the structural 
integrity and viability of the mycobacterium by acting as an extraordi-
narily efficient permeability barrier and contributes to the intrinsic 
resistance towards host bactericidal agents or different classes of anti-
biotics [15-18]. It also protects against oxidative stress, elicits differ-
entiation of macrophages into foamy macrophages [19,20]. Therefore, 
in our in-silico approach, we chose to target a pivotal enzyme, enoyl-acyl 
carrier protein reductase (InhA) involved in the synthesis of MA [21] 
and EthR, a negative transcriptional regulator which reduces the 
expression of EthA enzyme [22]. The inhA gene encodes NADH- 
dependent enoyl-acyl carrier protein (ACP)-reductase enzyme which is 
associated with long chain fatty acids (mycolic acids) synthesis and 
reduction phase of fatty acid production. Mutation of the inhA gene 
facilitates resistance to several first-line drugs such as isoniazid, making 
it an appropriate target for drug discovery [23]. EthR belongs to the 

tetR/CamR family of transcriptional repressor that negatively regulates 
the synthsis of EthA enzyme which is involved in the activation of 
thiocarbamide-bearing drugs ethionamide. Low activation of ethion-
amide by the EthA enzyme increases the risk of Mycobacterium tuber-
culosis becoming resistant to this type of drugs [22,24]. This mechanism 
implies its significance as therapeutic target for resistance to these 
drugs. 

WHO recommended a standard 6-month administrative treatment 
for active, pulmonary, and pharmaco-sensitive TB with different com-
binations of four first-line medications: isoniazid, rifampin, ethambutol, 
and pyrazinamide as bases for treatment [10,25]. Unfortunately, the 
complex long-term administrative duration leads to non-compliance of 
treatment leading to failure and relapse which causes the bacterium to 
become resistant over time to anti-TB medications [26]. The antibiotic- 
resistant strains of Mycobacterium tuberculosis are sabotaging conven-
tional tuberculosis therapy due to resistance to a wide range of anti-TB 
medications. Primary and secondary resistance contributes to the 
transfer of resistant strains to newer hosts and the development of drug 
resistance to two or more drugs respectively [27]. Resistance in this 
bacterium includes overexpressed drug targets due to mutation of 

Fig. 1. Complete methodology of this study in a concise flowchart.  
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repressor or promoter region of targets, alteration of drug targets by 
enzymatic process, cancelation of mechanism of prodrugs such as 
Ethionamide that induces inactivation of first-line drugs like Isoniazid, 
direct inactivation of drugs within the bacterial cell by enzymatic pro-
cess, drug efflux process through which drugs are transferred outside the 
bacterial cell [28]. The onset of MDR-TB or multidrug resistance TB 
exacerbated the treatment of TB because of its poor efficacy, toxicity 
also the extra cost of about 20 months of extended administration of 
second-line drugs [29]. Furthermore, in 2016 an estimated 6.2% inci-
dence of extensively drug-resistant TB (XDR-TB) among people with 
MDR-TB cases around the world has made the treatment more complex 
with limited efficacy of existing drugs [30,31]. 

Although TB is a treatable infection, the massive emergence of 
resistance to antibiotics makes it a global threat. It is undeniable that the 
world needs shorter and simpler yet affordable, effective, tolerable, and 
safe new drug regimens to improve the current treatment of TB to get 
around the escalation of drug resistance. Our in-silico approach seeks to 
offset the burden of existing drug resistance scenarios through the 
exploration of new drug performance. As a part of the experiment, a 
total of fifty drug-like compounds were collected to assess their effec-
tiveness in the treatment of TB and clinical management. Our experi-
ment proceeded through evaluating the binding affinity of fifty ligands 
utilizing two different docking tools DockThor server and Autodock vina 
software individually against the InhA (PDB ID: 3FNG) and EthR (PDB 
ID: 3G1M) receptor proteins. Identification of metabolic sites and 
pharmacokinetics and pharmacodynamics properties of tested com-
pounds contributed to confirm their drug-like properties. Molecular 
dynamics simulations were conducted to determine the molecular sta-
bility of the best drug-like compounds with respective receptor 
complexes. 

2. Materials and methods 

2.1. Molecular docking 

2.1.1. Initial molecular docking in DockThor program 
The crystal structures of two receptors i.e., Crystal structure of InhA 

bound to triclosan derivative (PDB ID: 3FNG) and EthR from Myco-
bacterium tuberculosis in complex with compound BDM31381 (PDB ID: 
3G1M), were taken from Protein Data Bank (https://www.rcsb.org/ 
search). Fifty compounds were collected with anti-TB properties from 
both ACD: Antibacterial Chemotherapeutics Database (http://amdr. 
amu.ac.in/acd/index.jsp) and PubChem (https://pubchem.ncbi.nlm. 
nih.gov/) servers. Isoniazid (INH) and Ethionamide (ETH) were used 
as control drugs against InhA and EthR proteins respectively. In the 
beginning, the PDB structures were modified using PyMOL tools 
(PyMOL) by clearing the water molecules from the structure [32] and 
then minimizing the structure employing Swiss-PdbViewer [33]. The 
preliminary docking of two receptor protein and fifty ligands were 
carried out by DockThor docking server (https://www.dockthor.lncc. 
br/v2/). The algorithm of the program is based on flexible-ligand and 
rigid-receptor grid-based system [34]. 

2.1.2. Autodock-vina binding affinity prediction 
Following the initial affinity prediction, desired ligands with lower 

affinity scores than control drugs were chosen to evaluate the bound 

Table 1 
Binding affinity score between receptors (InhA, EthR) and fifty ligands, along 
with control drugs.  

Drug 
Identifier 

Drug Name Binding Affinity 
(kcal/mol)   

InhA 
(3fng) 

EthR 
(3g1m) 

Control 1 Isoniazid (INH) − 5.50 – 
Control 2 Ethionamide (ETH) – − 6.20 
C1 1,2-Benzisothiazol-3(2H)-one − 7.55 − 7.52 
C2 Tetrathiafulvalene − 8.10 − 6.68 
C3 5-Chloroindoline − 7.79 − 8.49 
C4 N-Tert-butyl-2-phenylacetamide − 7.82 − 7.35 
C5 5-Oxo-2,3,5,9b-tetrahydro-thiazolo[2,3-a] 

isoindole-3-carboxylic acid 
− 6.48 − 6.54 

C6 Bis(4-hydroxyphenyl)disulfide − 7.57 − 7.18 
C7 5-(4-Methoxyphenyl)-2H-tetrazole − 7.83 − 8.51 
C8 7-Bromo-6-hydroxy-2,3-dihydro[1] 

benzothieno[2,3-d]pyrrolo[1,2-a]pyrimidin- 
10(1H)-one 

− 9.19 − 7.43 

C9 4-Benzoylphthalic acid − 8.62 − 6.80 
C10 1,1′-Ethanediyl-bis-cyclopentanol − 8.06 − 7.00 
C11 3-(3-Chlorophenyl)-1,1-diethylurea − 8.78 − 7.67 
C12 (3,4-Dimethoxy-benzyl)-thiazol-2-yl-amine − 8.52 − 7.13 
C13 3-(Diisopropyl-phosphinoyl)-benzoic acid − 6.38 − 6.33 
C14 N-[2-(4-Fluoro-benzoyl)-benzofuran-3-yl]- 

acetamide 
− 9.22 − 8.03 

C15 1-Adamantyl-(4-hydroxy-4-pyridin-3- 
ylpiperidin-1-yl)methanone 

− 8.64 − 8.13 

C16 N-(Furan-2-ylmethyl)-4-phenacylthieno[3,2- 
b]pyrrole-5-carboxamide 

− 9.09 − 8.25 

C17 Carbenicillin − 6.90 − 6.31 
C18 N-[1-(Furan-2-ylmethylamino)-3-methyl-1- 

oxobutan-2-yl]-2-[(4-methoxybenzoyl) 
amino]benzamide 

− 8.72 − 7.54 

C19 4,6-Bis(propan-2-ylamino)-1,3,5-triazine-2- 
carboxamide 

− 6.58 − 6.25 

C20 3-Phenyl-N-(2,2,6,6-tetramethylpiperidin-4- 
yl)propanamide 

− 7.28 − 7.09 

C21 3-Methyl-benzofuran-2-carboxylic acid 
pyridin-4-ylamide 

− 9.16 − 8.17 

C22 3-[3-(4-Fluorophenyl)-1,2,4-oxadiazol-5-yl]- 
N-(2-methylphenyl)piperidine-1- 
carboxamide 

− 9.62 − 8.51 

C23 2-(Piperazin-1-yl)-4,6-di(pyrrolidin-1-yl)- 
1,3,5-triazine 

− 8.14 − 6.87 

C24 2-[2-(4-Methoxy-phenyl)-thiophen-3-yl]- 
propionic acid 

− 8.84 − 6.88 

C25 1-Phenylmethanesulfonyl-piperidine-3- 
carboxylic acid (2,3-dihydro-benzo[1,4] 
dioxin-6-yl)-amide 

− 7.10 − 7.59 

C26 4-Cyclohexylaminomethyl-1H-quinolin-2- 
one 

− 8.15 − 7.50 

C27 (Naphthalen-1-ylcarbamoylmethylsulfanyl)- 
acetic acid 

− 8.22 − 6.87 

C28 2-Propylamino-nicotinamide − 7.30 − 6.73 
C29 5-(4-Ethyl-phenyl)-2-(1H-tetrazol-5- 

ylmethyl)-2H-tetrazole 
− 8.56 − 6.88 

C30 Methyl 2-[4-(methylamino)-6-morpholin-4- 
yl-1,3,5-triazin-2-ylthio]acetate 

− 7.85 − 7.02 

C31 Oxostephanine − 9.42 − 7.73 
C32 Ergosterol peroxide − 7.95 − 7.58 
C33 Sanguinarine − 9.46 − 8.97 
C34 Micromeline − 9.33 − 6.87 
C35 Oleanolic acid − 6.79 − 7.21 
C36 Ursolic acid − 7.48 − 7.83 
C37 Plumbagin − 7.90 − 7.56 
C38 Maritinone − 8.43 − 7.27 
C39 Rutin − 7.71 − 7.18 
C40 Aloe emodin − 8.29 − 7.08 
C41 Epigallocatechin − 9.06 − 6.63 
C42 Umckalin − 8.61 − 7.13 
C43 Butein − 8.40 − 6.69 
C44 Luteolin − 9.15 − 6.69 
C45 2-Hydroxy-4-methoxybenzaldehyde − 7.63 − 6.41 
C46 Isoliquiritigenin − 8.34 − 6.78 
C47 Piperine − 9.18 − 8.41  

Table 1 (continued ) 

Drug 
Identifier 

Drug Name Binding Affinity 
(kcal/mol)   

InhA 
(3fng) 

EthR 
(3g1m) 

C48 Tiliacorinine − 8.33 − 7.66 
C49 Isobavachalcone − 9.36 − 7.04 
C50 Turgorin − 6.49 − 6.86  
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Table 2 
Molecular docking results and Hydrogen bond interaction between receptors (InhA, EthR) and fifty ligands, along with control drugs by Autodock Vina.   

InhA (3FNG) EthR (3G1M) 

Drug 
identifier 

Binding energy 
(kcal/mol) 

Number of 
hydrogen bonds 

Interacting hydrogen bonds with 
receptor (H-bonds lowest distance (Å) 

Binding energy 
(kcal/mol) 

Number of 
hydrogen bonds 

Interacting hydrogen bonds with 
receptor (H-bonds lowest distance (Å) 

Control 1 − 5.50 Four ILE21 (1.98) 
SER94 
SER94 
SER94 

– – – 

Control 2 – – – − 6.30 Two ASN179 (2.22) 
TRP145 

C1 − 6.20 None None − 5.20 None None 
C2 − 6.90 Two TYR158(1.98) 

LYS165 
− 7.20 Two ASN179 (2.58) 

ASN176 
C3 − 6.40 One LEU63(2.55) − 6.70 One ASN176 (2.79) 
C4 − 7.30 One GLY96 (2.40) − 5.20 None None 
C5 − 8.10 Two GLY96 (2.21) 

GLY14 
− 5.90 Two TYR148 (2.12) 

ASN93 
C6 − 7.00 One ASP64(2.40) − 5.40 None None 
C7 − 7.50 None None − 7.70 None None 
C8 − 7.40 Two THR162 

MET155 (2.13) 
− 6.60 Two GLU180 (2.20) 

GLN125 
C9 − 9.20 One ILE194 (2.17) − 7.10 Five GLN125 

ARG128 
ARG181 (2.08) 
ARG181 
ARG181 

C10 − 6.60 One ILE194 (2.54) − 8.60 One ASN176 (2.04) 
C11 − 6.30 Four GLY96 (2.19) 

GLY96 
ILE95 
GLY14 

− 6.60 Two MET102 (2.92) 
MET102 

C12 − 6.60 One ILE194 (3.44) − 5.30 One ASN93 (2.20) 
C13 − 7.30 Four VAL 65 (2.27) 

ASP 64 
GLY14 
PHE41 

− 5.70 One PHE184 (2.75) 

C14 − 9.50 Two PHE41 (2.45) 
GLY14 

− 7.40 Two TYR148 (2.35) 
LEU90 

C15 − 8.40 One ASP64 (3.52) − 7.80 Three TYR148 (1.72) 
TRP103 
TRP103 

C16 − 6.80 Four ASN159(2.45) 
ASN159 
ASN159 
ASN106 

− 6.20 Four TYR148 (2.35) 
ALA91 
ASN93 
TYR148 

C17 − 8.70 Three LYS165(2.22) 
ILE194 
ILE95 

− 7.00 Four TYR148 
ARG159 
GLU156 
LEU90 (2.44) 

C18 − 9.30 Eight ILE21 
ALA22 (2.16) 
SER94 
GLY96 
GLY96 
GLY96 
GLY14 
SER94 

− 8.20 Three TYR148 (1.96) 
PRO94 
PRO94 

C19 − 6.20 Four ILE21(2.08) 
GLY96 
GLY14 
SER94 

− 6.00 Four TYR148 (2.11) 
ALA91 
PRO94 
PRO94 

C20 − 8.70 One PHE149 (2.60) − 8.20 One ASN93 (2.76) 
C21 − 8.70 One GLY14 (3.55) − 10.10 Three ASN179 (2.24) 

ASN176 
ILE107 

C22 − 10.40 One LYS164 (2.63) − 7.50 Three ALA91 
TRP103 
GLY106 (3.06) 

C23 − 7.20 Four GLY14 (3.41) 
SER94 
SER94 
GLY96 

− 6.50 One MET102 (3.12) 

C24 − 6.40 Two GLY96 (2.14) 
GLY96 

− 5.90 None None 

C25 − 9.80 Three − 6.50 Three 

(continued on next page) 
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Table 2 (continued )  

InhA (3FNG) EthR (3G1M) 

Drug 
identifier 

Binding energy 
(kcal/mol) 

Number of 
hydrogen bonds 

Interacting hydrogen bonds with 
receptor (H-bonds lowest distance (Å) 

Binding energy 
(kcal/mol) 

Number of 
hydrogen bonds 

Interacting hydrogen bonds with 
receptor (H-bonds lowest distance (Å) 

TYR158 (1.92) 
LYS165 
GLU219 

TYR148 (1.77) 
ALA91 
THR97 

C26 − 9.30 Three GLY14 
LEU63 (2.19) 
SER13 

− 6.70 Three MET102 (2.20) 
PRO94 
ALA91 

C27 − 8.40 Four ALA22 (2.16) 
SER94 
THR196 
SER20 

− 5.90 Two LEU42 (2.33) 
ALA43 

C28 − 6.00 None None − 5.40 Three TYR148 
ASN93 (2.12) 
ALA91 

C29 − 8.90 Three LYS165 
ASP148 (2.24) 
PRO193 

− 9.70 Two MET102 (2.67) 
TRP103 

C30 − 6.50 Three ALA22 (2.24) 
SER94 
ASP148 

− 5.70 One MET102 (3.78) 

C31 − 7.90 None None − 7.50 Four GLN125 (2.22) 
GLN125 
ARG128 
GLU180 

C32 − 9.30 None None − 7.10 None None 
C33 − 9.20 Two ASN159 

MET155 (3.23) 
− 8.00 One ARG122 (3.04) 

C34 − 8.60 None None − 6.10 Seven TYR148 (1.97) 
LEU90 
ASN93 
PRO94 
ALA151 
ALA91 
ALA91 

C35 − 8.70 One ALA154 (2.26) − 6.70 Two THR97 (2.16) 
PRO94 

C36 − 8.60 None None − 7.30 None None 
C37 − 8.30 Two VAL65 (2.03) 

LEU63 
− 7.90 None None 

C38 − 10.40 Two THR39 (2.78) 
ALA198 

− 6.10 Two ASN93 
GLU156 (2.24) 

C39 − 9.60 Four LYS165 
ASP64 
GLY14 (1.83) 
SER94 

− 6.90 Five TYR148 
ARG159 
GLU156 (2.08) 
MET102 
PRO94 

C40 − 8.80 Two GLY14 (2.48) 
ILE15 

− 6.90 Two TYR148 (2.11) 
TYR148 

C41 − 8.30 One ILE194 (2.83) − 7.20 Four GLN125 (2.08) 
ARG128 
ARG181 
GLU190 

C42 − 6.70 Three TYR158 (2.02) 
LYS165 
PRO193 

− 6.80 Two GLU190 (1.98) 
ARG122 

C43 − 8.70 Two ALA191 
PRO156 (2.49) 

− 7.80 Three ASN179 (2.14) 
ASN176 
GLY106 

C44 − 9.20 Two ILE194 (2.76) 
GLU219 

− 4.80 Two GLY106 
LEU90 (3.49) 

C45 − 5.50 Three ILE194 
ILE194 (2.05) ILE194 

− 6.10 Six TYR148 
ALA91 
LEU90 
PRO94 (1.80) 
MET102 
THR97 

C46 − 8.80 One PRO156 (2.22) − 6.80 Four GLN125 (2.12) 
ARG181 
ARG181 
ARG181 

C47 − 9.20 One LYS165 (2.30) − 6.10 Three ARG159 (2.51) 
LEU90 
LEU87 

C48 − 9.30 One GLY14 (3.69) − 8.20 Four 

(continued on next page) 
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conformation and binding energy. Autodock vina (AutoDock 4.2) was 
used to evaluate bound conformation and binding energy of those 
selected ligands. This tool uses the Lamarckian Genetic Algorithm to 
evaluate the binding energy of ligands with receptor proteins. After 
protein and ligand preparation, they were converted to vina-compliant 
PDBQT format using AutoDockTools-1.5.6rc3 [35]. The same tool was 
used to prepare grid boxes with preferred dimensions. The center of the 
grid box for InhA protein (PDB ID: 3FNG) was fixed where X = 22.466, Y 
= 50.786, Z = -11.275 with a dimension of 92 × 72 × 68 Å and for EthR 
protein (PDB ID: 3G1M) the coordinate was fixed X = 33.206, Y = 69.92, 
Z = 10.822, with a fixed dimension of 58 × 84 × 50 Å. CASTp server 
[36] was exploited to determine ligand binding sites of proteins and 
calculate grid box size. 

2.2. P450 site of metabolism (SOM) prediction 

The most promising four compounds were chosen for further calcu-
lation. The probable sites of metabolism of these compounds were pre-
dicted using RS-Web Predictor 1.0 (http://reccr.chem.rpi.edu/Softw 
are/RSWebPredictor/) [37]. This prediction tool uses 3A4, 1A2, 2A6, 
2B6, 2C8, 2C9, 2D6, 2E1, 3A4 CYP isoforms for cytochrome P450 site 
evaluation. 

2.3. Drug-likeness properties analysis and ADMET prediction 

Determination of drug-likeness property of drug-like compounds is 
one of the vital steps of drug discovery. Prediction of these properties 
was completed utilizing Lipinski’s rule of five [38], Ghose’s rule [39], 
Veber’s rule [40], Muegge’s rule [41], TPSA, and No of rotatable bonds. 
The calculation was carried out using SwissADME online tool (http 
://www.swissadme.ch/index.php) [42]. 

ADMET properties of each of four compounds were predicted using 
another online tool, admetSAR (http://lmmd.ecust.edu.cn/admetsar2/) 
[43,44]. In each of these prediction studies, canonical smiles of the 
compounds were used from the PubChem database (https://pubchem. 
ncbi.nlm.nih.gov/). 

2.4. Visualization and interaction analysis 

Visualization of the non-bonded relationship of 2D and 3D confor-
mation of protein–ligand docked complexes was done by BIOVIA Dis-
covery Studio 4.1 Visualizer [45]. This tool was utilized to get the total 
number of hydrogen bonds and interacting amino acids of proteins with 
respective ligands. 

2.5. Molecular dynamics simulation 

The study of molecular dynamics simulation (MDS) is a 
thermodynamics-based operation that helps to study the dynamic 
perturbation found in the protein–ligand complexes. In our experiment, 

to ensure the stability of protein-ligand complex, we subjected the best 
ligands screened from previous steps to the molecular dynamics simu-
lation (MDS) study with their respective proteins. We simulated the 
docking complexes using the NAMD_2.14bNAMD_2.14b2_Win64- 
multicore-CUDA version [46] implying CHARMM 36 force field [47] 
and TIP3P water model. A multi-step time algorithm was used, with an 
integration time step of 2 femto seconds. Visual molecular dynamics 
(VMD) [48] was used to generate psf files of protein–ligand complexes, 
water box and for neutralizing the system with sodium (Na+) and 
chloride (Cl-) ions. Ligand topology and parameter files were generated 
using the CHARMM-GUI web service [49]. The simulation was run for 
10 ns, where the system was minimized for 1000 steps. Langevin ther-
mostat was used to maintain a constant temperature of 310 k. Periodic 
boundary conditions were applied surrounding the system. The com-
plete workflow of our methodology was summarized in Fig. 1. 

3. Results 

3.1. Molecular docking analysis 

To filter out the best ligands from molecular docking analysis, two 
separate docking tools were used with a different algorithm. Initial 
docking results of the DockThor server were further scanned by 
Autodock-vina software. Detailed information of all the collected drug- 
like compounds was provided in Supplementary material. 

Total fifty ligands were primarily docked individually against the 
InhA and EthR receptors via the DockThor server. Against target pro-
teins, InhA and EthR, all the compounds showed better affinity than 
control 1 (Isoniazid) and control 2 (Ethionamide). The binding affinity 
score between InhA, EthR receptors, and fifty ligands, as well as control 
drugs, is depicted in Table 1. 

After initial docking from the DockThor server, all the ligands were 
considered for computing binding energy and bound conformation with 
the assistance of Autodock Vina software. Two ligands were preferred 
over all ligands considering their lowest binding score towards InhA 
protein. Likewise, two ligands with the lowest binding score towards 
EthR protein were chosen for further analysis. Comparative Docking 
results of the Autodock-vina tool are listed in Table 2. 

3.2. P450 site of metabolism (SOM) prediction 

Cytochromes P450 is key to metabolizing foreign materials like 
drugs. Identification of metabolic sites in drug-like molecules de-
termines their ability to be excreted from the body. The probable 
metabolic sites of CYP (1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, 3A4 
and combined) of the four ligands: -3-[3-(4-Fluorophenyl)-1,2,4-oxa-
diazol-5-yl]-N-(2-methylphenyl)piperidine-1-carboxamide (C22); Mar-
itinone (C38); 3-Methyl-benzofuran-2-carboxylic acid pyridin-4- 
ylamide (C21) and 5-(4-Ethyl-phenyl)-2-(1H-tetrazol-5-ylmethyl)-2H- 
tetrazole (C29) were organized using RS-Web Predictor tool. The 

Table 2 (continued )  

InhA (3FNG) EthR (3G1M) 

Drug 
identifier 

Binding energy 
(kcal/mol) 

Number of 
hydrogen bonds 

Interacting hydrogen bonds with 
receptor (H-bonds lowest distance (Å) 

Binding energy 
(kcal/mol) 

Number of 
hydrogen bonds 

Interacting hydrogen bonds with 
receptor (H-bonds lowest distance (Å) 

GLN125 
GLU180 (2.03) 
ARG181 
GLU180 

C49 − 8.60 One ALA22 (2.32) − 9.30 One GLY14 (3.69) 
C50 − 8.30 Five GLY14 

ILE21 
ALA22 (1.92) 
SER94 
SER94 

− 5.60 Six TYR148 (2.07) 
TYR148 
ARG159 
GLU156 
ALA91 
PRO94  
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Table 3 
The P450 Site of Metabolism (SOM) prediction results of the best four ligands.  

Drug identifier C22 C38 C21 C29 

Names of P450 
iso-enzymes 

3-[3-(4-Fluorophenyl)-1,2,4-oxadiazol-5-yl]-N-(2- 
methylphenyl)piperidine-1-carboxamide 

Maritinone 3-Methyl-benzofuran-2-carboxylic 
acid pyridin-4-ylamide 

5-(4-Ethyl-phenyl)-2-(1H-tetrazol-5- 
ylmethyl)-2H-tetrazole 

1A2 

2A6 

2B6 

2C8 

2C9 

2C19 

2D6 

2E1 

(continued on next page) 
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metabolic sites on the compounds were indicated by circles on the 
chemical structure of the four ligands. The predictions of P450 Site of 
metabolism are shown in Table 3. 

3.3. Drug-likeness and ADMET (absorption, distribution, metabolism, 
excretion, toxicity) analysis 

The concept of drug-likeness has appeared as an approach that can 
screen the high-affinity ligands with acceptable ADMET (absorption, 
distribution, metabolism, excretion, toxicity) properties. In our study, 
small drug-like compounds: 3-[3-(4-Fluorophenyl)-1,2,4-oxadiazol-5- 
yl]-N-(2-methylphenyl)piperidine-1-carboxamide (C22); Maritinone 
(C38); 3-Methyl-benzofuran-2-carboxylic acid pyridin-4-ylamide (C21) 
and 5-(4-Ethyl-phenyl)-2-(1H-tetrazol-5-ylmethyl)-2H-tetrazole (C29) 
were subjected to Drug-likeness and ADMET analysis and all of them 
followed the Lipinski’s rule of five criteria: molecular weight (accept-
able range: <500), number of hydrogen bond donors (acceptable range: 
≤5), number of hydrogen bond acceptors (acceptable range: ≤10), lip-
ophilicity (expressed as LogP, acceptable range: <5) and molar refrac-
tivity (40–130). C38 had the highest topological polar surface area 
(108.74 Å2) and C21 had the lowest polar surface area (55.13 Å2) 
although all of the five compounds satisfy the ideal value (20–130 Å2). 
The Ghose, Veber, Egan, Muegge rules are followed by all of the four 
compounds. The number of rotatable bonds, bioavailability scores, log S 
fell within the standard range for the four compounds (Table 4). 

The relative ADMET profiles of screened ligands are described in 
Table 5. The evaluated pharmacokinetic data showed that all of the 
selected molecules had a high intestinal absorption rate and oral 
bioavailability. Each of the chosen molecules were capable of pervading 
Caco2 cell lines. C22 acted as P-glycoprotein substrate, P- glycoprotein 
inhibitor, and substrate for CYP3A4 cytochrome. 

None of the ligands acted as CYP2D6 substrate or CYP2D6 inhibitor. 
Only C29 showed an inhibitory effect on CYP2C9 cytochrome. C22 acted 
as an inhibitor for CYP3A4, CYP2C19, CYP1A2 cytochrome but acted as 
a substrate for CYP2C9 cytochrome. C21 inhibited CYP3A4, CYP2C19, 
CYP1A2 cytochrome isoform but represented as a substrate for CYP3A4 

isoform. 
All selected ligands were non-carcinogenic. C22 and C29 were non- 

hepatotoxic. The best ligands and control drugs with respective re-
ceptors (C22 and InhA complex, Isoniazid and InhA complex, C29 and 
EthR complex, Ethionamide and EthR complex) were depicted in Figs. 2 
and 3. 

Table 3 (continued ) 

Drug identifier C22 C38 C21 C29 

3A4 

Combined 

Table 4 
The Drug-Likeness properties of the best four ligands.  

Drug identifier C22 C38 C21 C29 

Drug Likeness 
Properties 

3-[3-(4- 
Fluorophenyl)- 
1,2,4-oxadiazol- 
5-yl]-N-(2- 
methylphenyl) 
piperidine-1- 
carboxamide 

Maritinone 3-Methyl- 
benzofuran- 
2-carboxylic 
acid pyridin- 
4-ylamide 

5-(4-Ethyl- 
phenyl)-2- 
(1H- 
tetrazol-5- 
ylmethyl)- 
2H- 
tetrazole 

Molecular 
weight 

380.42 g/mol 374.34 g/ 
mol 

252.27 g/ 
mol 

256.27 g/ 
mol 

Concensus Log 
Po/w 

3.77 2.88 2.55 1.39 

Log S − 4.67 − 4.77 − 3.55 − 2.90 
Num. H-bond 

acceptors 
5 6 3 6 

Num. H-bond 
donors 

1 2 1 1 

Molar 
Refractivity 

107.77 101.14 73.19 66.51 

Lipinski Yes; 0 violation Yes; 
0 violation 

Yes; 
0 violation 

Yes; 
0 violation 

Ghose Yes Yes Yes Yes 
Veber Yes Yes Yes Yes 
Egan Yes Yes Yes Yes 
Muegge Yes Yes Yes Yes 
Bioavailability 

score 
0.55 0.55 0.55 0.56 

TPSA (Å2) 71.26 Å2 108.74 Å2 55.13 Å2 98.06 Å2 

No of rotatable 
bonds 

5 1 3 4  

S.K. Halder and F. Elma                                                                                                                                                                                                                      



Journal of Clinical Tuberculosis and Other Mycobacterial Diseases 24 (2021) 100246

9

Table 5 
ADMET Prediction of the best four ligands.  

Drug identifier C22 C38 C21 C29 

Properties 3-[3-(4-Fluorophenyl)-1,2,4-oxadiazol-5-yl]-N-(2- 
methylphenyl)piperidine-1-carboxamide 

Maritinone 3-Methyl-benzofuran-2-carboxylic 
acid pyridin-4-ylamide 

5-(4-Ethyl-phenyl)-2-(1H-tetrazol-5- 
ylmethyl)-2H-tetrazole 

Human Intestinal 
Absorption 

Positive (0.99) Positive (0.99) Positive (0.97) Positive (0.99) 

Blood Brain Barrier Positive (0.99) Negative (0.71) Positive (0.99) Positive (0.98) 
Caco-2 Positive (0.56) Positive (0.69) Positive (0.81) Positive (0.71) 
Human oral 

bioavailability 
Positive (0.59) Positive (0.63) Positive (0.84) Positive (0.60) 

Subcellular 
localization 

Mitochondria (0.70) Mitochondria 
(0.90) 

Mitochondria (0.44) Mitochondria (0.81) 

P-glycoprotein 
inhibitor 

Positive (0.65) Negative (0.83) Negative (0.82) Negative (0.94) 

P-glycoprotein 
substrate 

Positive (0.65) Negative (0.96) Negative (0.86) Negative (0.56) 

CYP3A4 substrate Positive (0.65) Negative (0.60) Positive (0.51) Negative (0.56) 
CYP2C9 substrate Positive (0.59) Negative (0.80) Negative (1.00) Negative (0.80) 
CYP2D6 substrate Negative (0.83) Negative (0.87) Negative (0.90) Negative (0.87) 
CYP3A4 inhibition Negative (0.52) Negative (0.70) Positive (0.79) Negative (0.96) 
CYP2C9 inhibition Positive (0.52) Positive (0.96) Positive (0.74) Negative (0.86) 
CYP2C19 inhibition Negative (0.52) Positive (0.78) Positive (0.86) Negative (0.64) 
CYP2D6 inhibition Negative (0.91) Negative (0.70) Negative (0.57) Negative (0.92) 
CYP1A2 inhibition Negative (0.72) Positive (0.92) Positive (0.97) Positive (0.71) 
Hepatotoxicity Negative (0.58) Positive (0.93) Positive (0.95) Negative (0.50) 
Carcinogenicity 

(binary) 
Negative (0.89) Negative (0.65) Negative (0.86) Negative (0.91)  

Fig. 2. Schematic representation of InhA and drug (C22, Isoniazid) complex; On the left, ligands were in yellow color, parts of protein in cyan color, hydrogen bonds 
and interacting amino acids were shown with arrows and circle; On the right, two-dimensional image of InhA and drug (C22, Isoniazid) interaction were shown, 
green dotted line denoted hydrogen bonds. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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3.4. Molecular Dynamics Simulation: 

In our study, Molecular Dynamics Study was performed to assess the 
conformational stability of protein–ligand complexes as well as InhA 
and EthR receptors. The overall conformational similarity between 
drugs (control, C22, and C29) with target proteins was compared 
assessing Root Mean Square deviation (RMSD). As represented in Fig. 4 
(A), RMSD of Free InhA protein c3ontinued stability between 1 ns and 5 
ns timescale at about 1.4 Å and 5 ns (nanosecond) to 9 ns at about 1.7 Å. 
(Isoniazid + InhA) complex displayed steadiness in RMSD between 1 ns 
and 5 ns timescale at around 1.5 Å and 8 ns to till the end of run at 
around 1.8 Å. (C22 + InhA) complex held stable backbone stability from 
3 ns to 7 ns, with RMSD around 2 Å. Free EthR protein, (Ethionamide +
EthR) protein–ligand complex and (C29 + EthR) complex showed a 
backbone RMSD under 2 Å, which suggested minor structural changes. 
Free EthR protein remained stable between 1 ns and 6 ns, exhibiting 
RMSD around 1.2 Å. (Ethionamide + EthR) complex also showed sta-
bility from 1 ns to 6 ns timeline, with an RMSD backbone of 1.2 Å, then 
exhibiting small increased RMSD. On the other hand, RMSD of (C29 +

EthR) complex persisted stable from 1 ns to 5 ns timeline at about 1.5 Å, 
then after slight fluctuation, remained stable from 8 ns to the end of run- 
on average 1.4 Å. 

Root Mean Square Fluctuation (RMSF) analysis per residue for 
backbone atoms was conducted to assess changes in the conformation of 
Cα backbone of the systems. From Fig. 5(C), Free InhA, (Isoniazid +
InhA), (C22 + InhA) complexes mostly had RMSF from 0.4 to 2 Å that 
indicated close conformational contact between protein and ligands. 
Nevertheless, the higher fluctuation of RMSF between 205 and 211 
residues confirmed the presence of loop within this region. Our MDS 
study showed that the RMSF of Free EthR, (EthR + Ethionamide), (EthR 
+ C29) complexes fluctuated mostly between 0.5 and 1.5 Å, indicating 
close contact between the active pocket of receptors and drugs. How-
ever, higher fluctuation from 73 to 75 and 170 to 172 amino acid resi-
dues indicated that the free protein and its complexes were within the 
loop regions. 

Radius of Gyration with time was calculated to assess the change of 
compactness after ligand binding with receptors. From Fig. 6(E), the Rg 
of Free InhA was reported between 17.9 and 18.2 Å; (InhA + Isoniazid) 

Fig. 3. Schematic representation of EthR and drug (C29, Ethionamide) complex; On the left, ligands were in yellow color, parts of protein in cyan color, hydrogen 
bonds and interacting amino acids were shown with arrows and circle; On the right, two-dimensional image of EthR and drug (C29, Ethionamide) interaction were 
shown, green dotted line denoted hydrogen bonds. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 
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complex showed Rg between 17.9 and 18.3 Å; (InhA + C22) complex 
continue Rg between 18.1 and 18.4 Å through the simulation. This 
evaluation proved ligand binding did not affect the compactness of the 
protein. On the other hand, from Fig. 6(F), it was evident Free EthR had 
stable Rg value around 19.3 Å from 2 to 8 ns; (EthR + Ethionamide) 
complex remained stable Rg about 19.4 Å between 5 ns to till the end of 
simulation and (EthR + C29) complex kept stability from 5 to 9 ns, with 
Rg around 19.3 Å. This confirmed ligand binding with the respective 
receptor did not cause structural instability to proteins. 

4. Discussion 

In our study, virtual screening of high-affinity ligands was accom-
plished by two stages of molecular docking analysis. As for the initial 
docking evaluation, fifty ligands were docked separately against the 

InhA and EthR receptor proteins through the DockThor server [34]. Both 
InhA and EthR proteins are associated in vital function in which InhA is 
involved in the synthesis of mycolic acids, essential part of mycobacte-
rial cell wall and EthR, a repressor of monooxygenase EthA, brings about 
resistance to Ethionamide [50,51]. For both InhA and EthR proteins, 
both drug-like compounds had a lower affinity score than their respec-
tive control drugs. Subsequently, Autodock Vina software was used for 
calculating binding energy and bound conformation in which two li-
gands for InhA protein and two ligands for EthR protein were selected 
based on their lower binding score [35]. 

Cytochrome P450 (CYPs) enzymes are metabolic enzymes, respon-
sible for the biotransformation of ~90% FDA certified drugs [52]. The 
oxidative metabolism of drugs in phase I is achieved by the CYP system 
[53,54]. Nine of the isozymes under the CYP system scanned for the 
prediction of the metabolically vulnerable points using RS-WebPredictor 

Fig. 4. 10 ns Molecular Dynamics Simulation (MDS) RMSD of Free protein and bounded protein; (A, B) Free protein (InhA and EthR) in blue color, Control drugs 
(Isoniazid and Ethionamide) and protein in orange color, Selected drug (C22 + C29) and protein in grey color. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.) 
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tool [37]. This tool helps to predict the regioselectivity of isozyme- 
specific CYP mediated xenobiotic metabolism on any set of user- 
submitted molecules [55]. C22, C38, C21, C29 drugs displayed several 
sites of metabolism for CYP1A2, 2A6, 2B6, 2C8, 2C19, 2E1, 3A4, 2C9, 
2D6 isoforms that suggested a satisfactory result. 

Drug-likeness is an approach that qualitatively evaluates the solu-
bility, chemical stability, bioavailability and distribution profile of a 
drug like molecule [56,57]. Lipinski’s Rule of 5, a rule of thumb was 
established to evaluate the ‘drugability’ of new chemical entities having 
certain pharmacological or biological activity [58]. Our selected four 
compounds: 3-[3-(4-Fluorophenyl)-1,2,4-oxadiazol-5-yl]-N-(2-methyl-
phenyl)piperidine-1-carboxamide (C22); Maritinone (C38); 3-Methyl- 
benzofuran-2-carboxylic acid pyridin-4-ylamide (C21) and 5-(4-Ethyl- 
phenyl)-2-(1H-tetrazol-5-ylmethyl)-2H-tetrazole (C29) followed the 
Lipinski’s rule of five criteria without violating any of its parameters. In 
addition to following the Lipiniski rule, they followed the Ghose, Veber, 

Egan, and Muegge rules as well. Given the standard values, our four 
compounds pass solubility (Log S), bioavailability score, TPSA (Å2), 
rotatable bond number. 

Human Intestinal Absorption (HIA) is a pharmacokinetic process that 
determines the effectivity of intestinal absorption or bioavailability of a 
drug upon oral administration, an anticipated route of drug adminis-
tration [59]. Our four ligands showed a high rate of intestinal absorption 
and oral bioavailability. Caco-2 cell line, a prominent substitute to 
human intestinal epithelium (mucosa) is one of the in-vitro models to 
determine in vivo human intestinal absorption of drug molecules due to 
their morphological and functional resemblances with human enter-
ocytes [60]. All of our potential drug candidates showed the ability to 
penetrate Caco-2 cell line. C22 acted as P-gp substrates as well as in-
hibitors. On the other hand, C38, C21, C29 were neither P-gp substrates 
nor P-gp inhibitors. 

Since the occurrence of hepatotoxicity caused by anti-TB is one of the 

Fig. 5. RMSF outline of Free protein and bounded protein; (C, D) Free protein (InhA and EthR) in blue color, Control drugs (Isoniazid and Ethionamide) and protein 
in orange color, Selected drug (C22 + C29), and protein in grey color. (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.) 
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frequent reasons behind the termination of anti-TB products, it is 
important to evaluate the possible hepatotoxicity of novel drugs [61]. As 
well as a carcinogenicity test is necessary to classify a tumorigenic po-
tentiality of drugs to assess the relevant risk in humans [62]. Only two 
ligands, C22 and C29 passed two of the criteria: hepatotoxicity, and 
carcinogenicity as they showed negative results. 

To validate the conformational stability of our proposed drug upon 
binding with receptors, Molecular Dynamics Simulation was performed. 
Root Mean Square deviation (RMSD) analysis showed that binding of 
both control drugs and proposed drug C29 did not induce structural 
instability to the proteins because the reported RMSD change after 
ligand binding remained under 2 Å for both receptors. A thorough study 
of Root Mean Square Fluctuation (RMSF) curve revealed our tested 

compounds kept close contact with their active sites which was evident 
from their small range fluctuation under 1.5 Å and 2 Å for EthR and InhA 
complexes respectively. Though, because of loop regions on receptor 
proteins, greater fluctuation of RMSF was seen [63]. Radius of Gyration 
analysis showed that our proposed drug C29 and C22 caused less fluc-
tuation when bound to their respective receptors relative to control 
drugs. This confirmed C29 and C22 did not cause instability to receptors. 
We compared our proposed drugs C29 and C22 with control drugs 
(Ethionamide and Isoniazid) through Molecular Dynamics Simulation 
(MDS), in which C29, C22 protein complexes represented stability 
throughout 10 ns simulation. 

Starting from the preliminary docking analysis to Molecular Dy-
namics Simulation, our candidate compounds were thoroughly 

Fig. 6. Analysis of Radius of Gyration (Rg); (E, F) Free protein (InhA and EthR) in blue color, Control drugs (Isoniazid and Ethionamide) and protein in orange color, 
Selected drug (C22 + C29) and protein in grey color. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 
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examined. At the stage of docking, our selected four candidates showed 
greater binding affinity in comparison to the control drugs. Additionally, 
the best four compounds examined for analyzing pharmacokinetics and 
pharmacodynamics properties and they showed promising results in 
drug-likeness and ADMET profiling. In all aspects, our chosen 3-[3-(4- 
Fluorophenyl)-1,2,4-oxadiazol-5-yl]-N-(2-methylphenyl) piperidine-1- 
carboxamide and 5-(4-Ethyl-phenyl)-2-(1H-tetrazol-5-ylmethyl)-2H- 
tetrazole showed satisfactory result than other two of the ligands. To 
conclude, 3-[3-(4-Fluorophenyl)-1,2,4-oxadiazol-5-yl]-N-(2-methyl-
phenyl) piperidine-1-carboxamide and 5-(4-Ethyl-phenyl)-2-(1H-tetra-
zol-5-ylmethyl)-2H-tetrazole could be chosen as the most effective and 
promising candidates for as anti-TB drug. 

Despite the fact that drug repurposing earned tremendous success, 
there are some caveats to the in-silico methodology. Like, one of the 
downsides of molecular docking is the provision of appropriate scoring 
functions and algorithms, which may otherwise jeopardize molecular 
screening [64]. Although our entire approach was based on computa-
tional tools, the findings were validated by dynamic molecular simula-
tion and pharmacokinetic profiling of drug-like compounds. 

Our study aims to identify the linkage between tuberculosis and 
already established antibacterial drugs applying several bioinformatics 
tools. This methodology can evade the experimental hurdles of 
screening thousands of ligands for tuberculosis. Integration of in silico 
and experimental approaches led to discovery of Lidocaine, Metho-
trexate, Mifepristone and Zidovudine as a potent therapeutic against 
Arrhythmia, Arrhythmia, Cushing’s syndrome and HIV (human immu-
nodeficiency virus) respectively [65,66]. To prove the authenticity of 
our findings, in vivo research involving animal model is required. The 
curated dataset can be a great deal of interest to those researchers 
working in this field to find novel anti-TB drugs. 

5. Conclusion 

The number of people dying annually of TB is growing rapidly due to 
multiple drug resistance scenarios around the world. This situation de-
mands newer anti-TB drugs to deal with the crisis. Drug repurposing is 
an easier and cheaper option to look for novel candidates as anti-TB 
drugs using different computational tools. The main objective of this 
study is to a find novel inhibitor against fast-mutating anti-TB drug 
targets. Our work incorporates pharmacophore analysis, ADMET 
profiling, two-step molecular docking, followed by 10 ns Molecular 
Dynamics Simulation. Drugs with greater binding affinity than the 
control drugs are considered for determining Drug-likeness and ADMET 
analysis to evaluate their bioavailability and toxicity. Two of our 
screened compounds: 3-[3-(4-Fluorophenyl)-1,2,4-oxadiazol-5-yl]-N- 
(2-methylphenyl) piperidine-1-carboxamide and 5-(4-Ethyl-phenyl)-2- 
(1H-tetrazol-5-ylmethyl)-2H-tetrazole showed promising results with 
higher binding affinity with respective receptors and standard phar-
macophoric properties. Molecular Dynamics Simulation study including 
RMSD, RMSF, Rg analysis confirmed their binding stability with 
respective proteins throughout the simulation timeline. Our present 
work could be productive in discovering potential therapeutics against 
multiple drug resistant tuberculosis, stating that substantial in vitro and 
in vivo experiments are needed to prove our hypothetical study. 
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