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Abstract

Pituitary adenylate cyclase activating polypeptide (PACAP) is a member of the PACAP/glucagon family of peptide
hormones, which controls many physiological functions in the immune, nervous, endocrine, and muscular systems. It
activates adenylate cyclase by binding to its receptor, PAC1R, a member of class B G-protein coupled receptors (GPCR).
Crystal structures of a number of Class B GPCR extracellular domains (ECD) bound to their respective peptide hormones
have revealed a consensus mechanism of hormone binding. However, the mechanism of how PACAP binds to its receptor
remains controversial as an NMR structure of the PAC1R ECD/PACAP complex reveals a different topology of the ECD and a
distinct mode of ligand recognition. Here we report a 1.9 Å crystal structure of the PAC1R ECD, which adopts the same fold
as commonly observed for other members of Class B GPCR. Binding studies and cell-based assays with alanine-scanned
peptides and mutated receptor support a model that PAC1R uses the same conserved fold of Class B GPCR ECD for PACAP
binding, thus unifying the consensus mechanism of hormone binding for this family of receptors.
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Introduction

G-Protein Coupled Receptors (GPCRs) are important regula-

tors of many physiological functions and as such have attracted a

lot of pharmacological interest for their roles in numerous diseases.

Pituitary adenylate cyclase 1 Receptor (PAC1R), which belongs to

class B of the GPCR family, was identified in 1994 as the receptor

for the peptide hormone Pituitary Adenylate Cyclase Activating

Polypeptide (PACAP) [1]. PACAP was discovered earlier as an

adenylate cyclase stimulating agent in ovine hypothalamus [2].

Due to the fact that PACAP is homologous to another peptide

hormone, Vasoactive Intestinal Peptide (VIP), there is redundancy

in their receptors, which are sub-classified based on the differences

in their relative affinities for the two hormones. The receptors that

exhibit similar affinity for both PACAP and VIP are classified as

VPACR [3,4] while those showing higher affinity selective for

PACAP over VIP [3,4,5] have been classified as PAC1R. VPACR

has further been subdivided based on its affinity for helodermin

[6], which is a bioactive peptide that was first isolated from the

poisonous salivary gland secretions of the gila monster (Heloderma

suspectum) [7]. Helodermin, a member of the exendin family of

peptides and sequentially related to the PACAP/glucagon family,

is present exclusively in the gila monster [8].

Since its discovery as an activator of adenylate cyclase in

cultured sheep pituitary cells [2], PACAP has been found in

numerous locations in the central nervous system as well as

peripheral organs [8,9]. PACAP and its receptor PAC1R have

been implicated to play important roles in several cellular

processes, including regulation of circadian rhythm, control of

food intake, glucose metabolism, learning and memory, neuronal

ontogenesis, apoptosis, and immune system regulation. Further-

more, PACAP and the PAC1 receptor have recently been

implicated in post-traumatic stress disorder [10]. As such, PAC1R

has been pursued as a drug target for numerous disorders,

including neuropathic analgesia [11], septic shock [12], islet

dysfunction in type 2 diabetes [13], and Parkinson’s disease [14].

PACAP has been conserved over 700 million years [8], which

indicates its critical functions in vertebrate physiology. Indeed,

60% of PAC1R knockout mice die within 4 weeks after birth [15].

The varied functions of PAC1R become even more intricate by

the opposing roles of PACAP in different tissue types [16,17] [18].

While PACAP has been shown to have neurotrophic properties

[16,17], it has also been suggested to be involved in apoptosis and

cell cycle arrest in different systems [18]. PACAP exists in two

forms: PACAP38 and its shorter version PACAP27. The relative

abundance of these two forms in tissues and their subtle differences
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in binding to the receptor [19,20] also contribute to the opposing

roles of the receptor. This makes PAC1R a very intriguing relay

junction and structural studies of how PACAP binds to PAC1R

will provide a basis for understanding signaling pathways by these

peptide hormones.

As a member of Class B GPCR, PAC1R uses a ‘‘two-domain’’

mechanism for hormone binding and activation [21]. Its ECD is

the major hormone binding site that determines specificity and

affinity through the binding to the C-terminal portion of peptide

hormones. Upon binding to the ECD, the N-terminal portion of

peptide hormone interacts with the transmembrane domain and

activates the receptor. In addition, a growing number of evidences

suggest that receptor activity modifying proteins (RAMPs) may be

involved in modulating signalling at the extracellular surface for

the subfamily of calcitonin receptors [22,23]. One of the major

characteristics of the Class B GPCR ECD is the three-conserved

disulfide bonds that form the core of the ECD structure. Crystal

structures of ECD and hormone/ECD complexes have been

recently determined for several Class B GPCRs, including

receptors for parathyroid hormone (PTH) [24], glucose-dependent

insulinotropic peptide (GIP) [25], glucagon-like peptide 1 (GLP1)

[26], corticotropin-releasing factor (CRF) [27,28,29], and calcito-

nin gene-related peptide receptor [23]. These structures reveal a

common scaffold for the Class B GPCR ECD and a helical

structure for the bound peptide hormone, suggesting a consensus

model of hormone binding in Class B GPCRs. However, the

mechanism of how PACAP binds and activates its receptor

remains speculative and controversial as an NMR structure of the

PAC1R ECD/PACAP complex reveals a different topology of the

ECD and the mode of ligand recognition [30]. To resolve this

discrepancy, we performed biochemical and structural studies with

the PAC1R ECD. The crystal structure of the PAC1R ECD

unifies a conserved and consensus fold among all known Class B

GPCR structures.

Materials and Methods

Protein production
The extra-cellular domain of the human PAC1R protein

(residues 25–140 of isoform 4, NCBI reference sequence:

NP_001186566.1, having an exon deletion in N-terminal ECD)

was overexpressed as a maltose binding protein (MBP) fusion

protein. The MBP tag was at the N-terminus, separated from

PAC1R by a six residue linker (NAAAEF) and a 6xHis tag was

attached at the C-terminus to ensure affinity purification of only

the full length protein. The MBP-PAC1R construct was cloned

into the pET-Duet1 vector having the disulphide bond chaperone

(DsbC) at the second multiple cloning site, in order to facilitate

proper disulphide bond formation during protein over-expression

in bacteria. Origami B (DE3) cells (Novagen), transformed with

the construct, were grown in 6 L selective LB media (50 mg/ml

carbenicillin) at 37uC until mid log phase, then cooled to 16uC and

induced with 200 mM IPTG for 18 hrs. The cells were harvested

by centrifugation at 3000 g, re-suspended in buffer A [50 mM Tris

(pH 7.5), 150 mM NaCl, 25 mM imidazole and 10% glycerol]

and lysed in a French press at 10,000 psi. The cell lysate was

centrifuged at 39,000 g for 20 minutes and the supernatant was

loaded onto a Ni chelating Sepharose column (35 ml resin in a

50 ml column). The column was then washed with 600 ml buffer

A and then the bound protein was eluted with 50% buffer A and

50% buffer B [50 mM Tris (pH 7.5), 150 mM NaCl, 500 mM

imidazole and 10% glycerol]. The eluted sample was then loaded

onto an amylose column (30 ml resin in a 50 ml column). The

column was then washed with 150 ml buffer C [50 mM Tris

(pH 7.5), 150 mM NaCl] and then subsequently the protein was

eluted using a gradient of buffer C and buffer D [50 mM Tris

(pH 7.5), 150 mM NaCl, 10 mM maltose] from 0 to 100% over

200 ml volume.

To ensure homogenous intramolecular disulphide bond forma-

tion, the eluted protein was subjected to disulphide bond shuffling,

in which, the eluted protein was mixed with purified DsbC in 1:1

molar ratio in addition to 1 mM reduced and 1 mM oxidized

glutathione at 20uC for 12–14 hrs. The shuffled protein was then

loaded onto the 50 ml Ni chelate column to remove untagged

DsbC. After washing the column with 150 ml buffer A, the bound

protein was eluted with 50% buffer B. The protein was then

concentrated and loaded onto an S200 column, equilibrated with

buffer E [10 mM Tris (pH 7.5), 50 mM NaCl, 1 mM maltose and

1 mM EDTA] for size exclusion chromatography. The obtained

protein was .95% pure and homogenously folded as confirmed

by SDS- and native PAGE.

PACAP38-MBP was expressed in modified pSUMO vector

(TOP Gene Technologies) in which the MBP gene had been

Table 1. Data collection, structure determination and
refinement details.

Space group P212121

Unit-cell parameters (Å): a = 45.98

b = 92.15

c = 105.41

Data collection

Wavelength (Å) 0.98972

Resolution range (Å) 50.0-1.9

Total no. of observed reflections 579,761

Total no. of unique reflections 42,645

Redundancy 13.6 (12.0)

Completeness (%) 100 (100)

Rsym
a 0.090 (0.570)

Overall I/s(I) 28.8 (4.7)

Structure determination

Method Molecular replacement

Model 3C4M

Refinement

Resolution range (Å) 50.0-1.9

Rwork
b 0.176

Rfree
c 0.216

RMSD bond lengths (Å) 0.020

RMSD bond angles (u) 1.7

Average B-factors (Å2):

Protein atoms (5724 atoms) 34.04

Water molecules (323 atoms) 35.35

Ramachandran plot:

Most favored regions (%) 93.2

Additional allowed regions (%) 6.8

Values in parentheses are for the last shell (1.98-1.9 Å).
aRsym =Shkl Si [|Ii (hkl)2,I(hkl).|]/Shkl Ii(hkl).
bRwork =S|Fobs2Fcalc|/S|Fobs| where Fcalc and Fobs are the calculated and

observed structure factor amplitudes, respectively.
cRfree is same as Rwork, but 5.0% of the total reflections, chosen at random, were
omitted during refinement.

doi:10.1371/journal.pone.0019682.t001
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introduced c-terminal to Bsa I site. The H6-SUMO-PACAP-MBP

polypeptide was expressed in BL21(DE3) cells. The cell pellet was

lysed in buffer A and the supernatant incubated with Ni-chelating

sepharose beads. The beads were then washed with buffer A and

the protein eluted in buffer B. To make the N-terminal of PACAP

available for interaction with the juxtamembrane region of full

length receptor the SUMO tag was cleaved by adding SUMO

protease at 1:1000 mass ratio. After overnight incubation with the

protease the buffer was exchanged back to buffer A using 0.5 ml

Amican Ultra 10 Kda centrifugal filters. The lysis mixture was

incubated again with Ni-chelating sepharose beads to remove the

SUMO tag. The final yield of PACAP38MBP wild-type and all

mutant proteins was ,4.5 mg/L of culture.

Crystallization, data collection and structure
determination

The purified PAC1R protein was concentrated to 30 mg/ml

and screened for crystallization using commercial screens

(Hampton Research) by a Phoenix robot (Art Robbins Instru-

ments). The final crystals for data collection were grown in

hanging drop plates at 20uC, 25.5% PEG4000, 15% glycerol and

170 mM ammonium sulphate. Crystals first appeared after three

days and grew for one week, after which they were transferred to a

fresh drop and allowed to equilibrate by vapour diffusion against

1 ml of reservoir solution overnight. The crystals were then flash

cooled, without any additional cryo-protectant, by plunging

directly in liquid nitrogen. X-ray diffraction data were collected

at the LS-CAT sector beamline 21ID-F (LS-CAT), Advanced

Photon Source synchrotron (USA). The data were processed by

HKL2000 [31] and the structure was solved by molecular

replacement using the previously reported MBP-PTH1R structure

(PDBId: 3C4M) as a model in the PHASER program [32] of

CCP4 [33,34]. Coot [35] and Refmac5 [36] were subsequently

used for iterative model building and refinement, respectively. The

geometry of the final model was verified using PROCHECK [37].

No residues in the final model are in disallowed region of

Ramachandran plot. The crystallographic details are given in

Table 1.

Peptide binding assay
The binding of PAC1R with a 35 residue PACAP peptide was

analysed using the histidine detection kit of AlphaScreenH
luminescent proximity assay from PerkinElmer. All binding assays

were performed without cleaving the MBP tag from the receptor

ECD. Using its C-terminal His tag, PAC1R was bound to Ni-

chelate coated acceptor beads (5 mg/ml) at the final concentrations

of 40 nM. Similarly, biotinylated PACAP was bound to strepta-

vidin coated donor beads (5 mg/ml) at the final concentrations of

40 nM. The protein and peptide were pre-incubated with the

respective beads for one hour (to ensure maximal binding to the

beads), then they were allowed to interact with each other at 20uC
for five hours. To perform competitive binding assays, 120 mM of

the untagged competing peptides were added at time 0 of the five

hour protein-peptide interaction period. All interactions were

performed in the background of 50 mM MOPS pH 7.4, 150 mM

NaCl and 7 mg/ml BSA. The binding signals were measured in a

384-well microplate using an Envision 2104 plate reader

Figure 1. Biophysical characterization of PAC1R. (a) Non-
reducing native PAGE of PAC1R. MBP-PAC1R gives a smear at the
initial steps but attains a homogenous conformation after refolding.
DsbC, which appears as an extra band after refolding, was removed by
Ni Column-2 purification. (b) Competitive Alphascreen with unlabelled
PACAP as competitor for binding of 40 nM biotin-PACAP (6–38)-NH2
and 40 nM MBP-PAC1R (25–140)-His6 in the presence of 5 mg/ml beads.
Dashed, dotted and solid curves represent un-labeled PACAP (8–38),
PACAP (12–27) and PACAP (15–31) as competitors, respectively. (c)

Binding affinities of different Ala scanning mutants of PACAP (15–31).
K20A9 mutation completely abrogates PACAP binding while L27A9 and
V19A9 also seem to play important roles in the binding. PACAP residues
18, 24, 25 are Ala and 28 is Gly and, therefore, were not mutated to
another residue.
doi:10.1371/journal.pone.0019682.g001
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(PerkinElmer). The obtained data for competitive peptide binding

were fit as a non-linear regression curve using the variable slope

dose-response inhibition analysis using the Prism5.0 (GraphPad).

To ensure the specificity of the competing peptides, a control

peptide of biotin-Gly6-His6 was used in the same assay setup. The

competing peptide, at concentrations even higher than those used

in the actual assay, does not affect the binding signal of the control

peptide.

Docking of PACAP8–27 to PAC1R-ECD
The coordinates of PACAP (residues 8–27, hereafter PACAP8–

27) were obtained from the NMR structure of the micelle bound

form of the peptide (PDB code:2d2p). A course grid covering the

entire PAC1R-ECD was used to do a blind search for the binding

site of the rigid peptide. The grid box was kept large enough to

allow Autodock 4.2 [38] to search all possible ECD interacting

orientations. Lamarkian genetic algorithm (GA) was used as the

search algorithm to locate the peptide docking site [39]. 100 GA

runs were performed before clustering the obtained solutions. The

top cluster having rank 1 comprised of 23/100 solutions, the

highest among the 10 obtained clusters. In this cluster, PACAP

was positioned at the same site as in other Class B GPCR:ligand

complex structures. The grid was then made finer and smaller.

The new grid was still made to cover the entire face of ECD where

PACAP docked in the first run. The bonds in the side chains of

K209 and Y139 in PACAP8–27 were made rotatable to allow for a

better fit. This yielded a total of 7 rotatable bonds. The new run

was performed using a search criterion similar to the first run

except that the number of GA runs was raised to 200. Guided by

the knowledge of the other ECD:peptide complex structures, a

cluster with rank 5 (among 17) was chosen as the proposed model.

cAMP signalling assay
PAC1R stimulation by PACAP38MBP was assayed using the

Dual Luciferase Reporter Assay System from Promega. AD293

cells were transfected with full length receptor in pcDNA3.1

(25 ng), CRE-luciferase in pGL4.29 (100 ng) and phRL-TK (5 ng)

plasmids. Receptor was stimulated for 4 hours by adding

PACAP38-MBP at 37uC. The cells were then lysed and CRE

luminescence quantified in 96-well plate using Envision 2104 plate

reader (PerkinElmer) using the manufacturer’s instructions. Renilla

luciferase, expressed using phRL-TK vector, was used as internal

control.

Results

Disulphide shuffling
The ECD of human PAC1R (25–140), which sequence is shown

in Fig. S1, was expressed in the Origami B (DE3) cell. In order to

allow the protein to fold properly and enhance conformational

homogeneity, we shuffled its disulphide bonds using redox

conditions in the presence of DsbC, a bacterial disulfide bond

isomerase, as described previously [24]. The gel filtration profile

gave a comparatively much larger peak at the size of a monomer

and relatively small (approximately 20% of the larger peak) peak at

a very high molecular weight range, which, when analysed on

native PAGE, appeared to be heterogeneous high molecular

weight aggregates. The conformational homogeneity of the final

protein preparation and its relative improvement during the steps

of purification and disulphide shuffling was analysed in non-

reducing native PAGE (Fig. 1a). It is apparent that the protein

from the initial steps has multiple conformations and appears as a

smear in native PAGE but after refolding it gives a single band

with no smear in the native gel, suggesting the conformational

homogeneity of the purified protein.

PAC1R:PACAP interaction
The binding activity of the purified PAC1R ECD to PACAP

was determined by AlphaScreen assay, in which N-terminally

biotinylated and C-terminally amidated PACAP 6–38 (hereafter

called B-Pacap 6–38-NH2) was made to bind with streptavidin

coated donor beads. MBP-PAC1R (25–140) with a C-terminal

6xHis tag was attached to Ni-chelate coated acceptor beads.

Association of PACAP with PAC1R was analysed by Alphascreen

assays, which is based on proximity transfer of excitation energy

from the donor to the acceptor beads in a dose dependent manner.

The Alphascreen signal was disrupted with unlabelled PACAP

fragments, which still retain the essential binding region, to obtain

IC50 values (Fig. 1b). The IC50 values for the truncations,

including PACAP12–27 and PACAP15–31, did not change much

among each other and remained in the 1–10 mM range, which is

consistent with the previously reported values for other class B

GPCR ECDs and their native peptide ligands [24].

Crystal structure of PAC1R ECD
The crystal structure of PAC1R ECD was solved at 1.9 Å

resolution with R and Rfree of 17.6 and 20.6%, respectively. The

overall crystal structure of PAC1R (Fig. 2a, S2) is very similar to

other previously elucidated ECD structures of CRFR1 [27],

CRFR2 [28,29], GLP1R [26], GIP1R [25] and PTH1R [40]. The

three conserved disulphide bonds hold the core of the PAC1R

polypeptide together in a sandwich like configuration [25]. The N

terminus starts with an a-helix that begins from Ala25 and

continues until Asn48. This is followed by a short anti-parallel b
sheet, held below the helix by a disulphide bridge. Then there is

another anti-parallel b sheet, which is held by another disulphide

bond that bridges b5 to the loop just preceding b1. The

orientation of the loop between b3 and b4 relative to a-helix 2

is constrained by the third disulphide bridge between Cys77 and

Cys113. The sequentially invariant amino acids (Fig. 3b), among

the class B GPCR ECDs (apart from the disulphide bonded

cysteins), Asp59, Trp64, Pro78, Gly101 and Trp102, are placed in

the structural core of PAC1R. The structure is further stabilized by

an interaction cluster formed by Asp59, Trp64, Val93, Arg95,

Trp102 and Tyr109 (Fig. 2b). Most of the residues in this cluster,

Asp59, Trp64, Arg95, Trp102, are highly conserved. Residues

Val93 and Tyr109 of this cluster are sequentially less conserved

but still appear to make important interactions. In particular, the

side chain of Tyr109 points inward to contribute to hydrophobic

interactions at the core through its aromatic ring while making a

hydrogen bond with Asp59 through its hydroxyl group. Asp59,

with its side chain directed towards the b turn below helix 1, makes

crucial contacts with the backbone amides of Asn60, Ile61 and

Thr62 to form a b-turn. Although the side chain of Asp59 bends

Figure 2. Structure of PAC1R. (a)(i) The ribbon diagram of the PAC1R ECD. Strands b1 and b2 make an anti-parallel b-sheet and strands b3, b4 and
b5 make another anti-parallel b-sheet. (b) The stereo view of the electron density around the conserved residues that form the core of the PAC1R
structure. The density is contoured at the 2s level. (c) Stereo view of the electron density for the C77–C113 disulphide bond and the residues around
it contoured at 1 s. The residues are as labelled. The electron density obtained for the b3–b4 loop is clean allowing even the side chains to be
discerned clearly.
doi:10.1371/journal.pone.0019682.g002
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towards the b-turn, it is still able to make a salt bridge with Arg95.

This salt bridge is not observed in GIP1R and PTH1R. This is

possible because the long side-chain of Arg95 is pushed down and

towards Asp59 by the protruding side-chain of Met57. Further-

more, an interesting feature is that the bond between Phe106 and

Pro107 is in the cis conformation. It interacts with the backbone

amide of Ser94, causing a turn at Pro107 just before the beginning

of helix 2, thus, constraining its orientation further, in addition to

the third disulphide bridge.

Superimposition of the PAC1R crystal structure with that of

other class B GPCRs (Fig. 3a) depicts that the sandwich fold is well

conserved in this family, even though sequence alignment of the

family members shows relatively less conservation (Fig. S1). In

addition, the B-factor plot of PAC1R does not show any region of

large conformational flexibility. The conserved residues overlap

remarkably well in the structural alignment (Fig. 3b), depicting

their importance in holding the core domain together.

Comparison of PAC1R crystal structure with its NMR
structure and the VIP2R crystal structure

The VIP2R ECD structure was recently deposited to the PDB

database (pdb code: 2X57). The Needleman-Wunsch protocol

[41]aligns the VIP2R and PAC1R sequences with 33.1% identity

and 28.8% gaps, suggesting a significant structural similarity

between them. Fig. 4a clearly shows that the backbones of PAC1R

and VIP2R are very similar. Their overlay is remarkably similar

except at the C-terminus, where they tend to diverge slightly.

However, this is expected due to high B-factors, as a result of

terminal disorder. The conserved residues, as shown in Fig. 4a, are

also well aligned. There is a slight deviation near Leu80 and Phe81

of PAC1R which are less conserved in the family. The two crystal

structures align with an RMSD of 0.99 Å (for 64 Ca atoms), as

determined by the ‘align’ routine of Pymol (The PyMOL

Molecular Graphics System, Version 1.2, Schrodinger, LLC).

Similar conformational properties are also expected from the

NMR PAC1R structure [30]. Surprisingly, that does not appear to

be the case. In a structural alignment of class B GPCRs, the NMR-

PAC1R structure stands out due to differences in the topology of

the region between b3 and b4 and the arrangement of disulfide

bonds. Most notably, in the NMR structure, Pro78, which is an

invariant residue among the family members, is positioned very

differently from the crystal structures as seen in Fig. 4b. Pro78, and

its corresponding residues in the family, play important role in the

structural stability of the ECD. In PAC1R, Pro78 fills the

hydrophobic cavity formed by Glu30, Ile61, Thr62, Leu80 and

Phe81. In the structure of Glip1R the proline residue correspond-

ing to Pro78 has been shown to play a structurally important role

in forming a ligand binding site [26]. In addition, mutation in the

corresponding proline in human parathyroid hormone receptor 1

has been shown to cause embryonic lethal disorder [42].

Therefore, such variation in the conformation of Pro78, as seen

in the NMR-PAC1R structure, is highly unlikely. Moreover, the

alternate arrangement of the polypeptide in that region in the

NMR structure, as evidenced in Fig. 4b, seems impossible because

it would require the disruption of the Cys77-Cys113 disulphide

bond.

The RMSD of structural alignment between NMR-PAC1R and

X-ray PAC1R is 3.05 Å for (73 Ca atoms). The sequence

alignment between PAC1R and VIP2R is only 33% identity and

yet the RMSD between their structures is only 0.99 Å. The

Figure 3. Superimposition of the backbone of the ECD of class
B members. (a) Superimposition of the backbone of the ECD of
class B members GIP1R (black, PDB code:2QKH), GLP1R (red, PDB
code:3C5T), PAC1R (green, PDB code:3N94) and VIP2R (blue, PDB
code:2X57). The disulphide bridges C34–C63, C54–C97 and C77–
C113 are labelled. (b) superimposition of conserved residues. The
color scheme is as in panel A. (c) Ligand orientation in class B GPCRs.
The ligands incretin of GIP1R, glucagon of GLP1R and PTH of PTH1R
are shown in black, orangeand yellow, respectively. For simplicity
the surface diagram of PAC1R ECD alone is shown in white with the
trace of PAC1R in green. PACAP from the NMR structure is shown in
magenta. While all the class B ligands follow the same binding site
and orientation, PACAP of the NMR structure is shown to bind

PAC1R at a different location. Furthermore, its polarity does not
follow that of the other ligands.
doi:10.1371/journal.pone.0019682.g003

Crystal Structure of the PAC1R ECD
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RMSD between the NMR and X-ray structures of PAC1R is far

larger than the RMSD between the crystal structure of PAC1R

and VIP2R, even though the NMR and X-ray structure of

PAC1R have identical amino acids. To further evaluate these

structural differences we superimposed the structures of GIP1R,

GLP1R, PTH1R and VIP2R ECDs using the Superpose 1.0 web

server [43] to derive an average model. Alignment of this average

model with the NMR-PAC1R and X-ray-PAC1R structures gave

RMSDs of 3.01 and 2.17 Å, respectively. This fact as well as

Fig. 3a highlight that the fold in all class B ECDs is likely to be well

conserved. Furthermore, the X-ray structure follows the consensus

class B fold nicely, suggesting a unified consensus mechanism for

hormone binding. The deviation of the NMR-PAC1R structure

from all the published class B ECD crystal structures, which align

well among themselves, implies that the accuracy of the NMR

structure of the PAC1R:PACAP complex remains to be validated.

Important residues for PAC1R-PACAP interaction
Despite numerous attempts, even with various lengths of

PACAP, we could not obtain a complex crystal. Hence we built

a model of the PAC1R ECD/PACAP(12–27) based on the

structure of the GLP1R/GLP1 complex as PACAP and GLP1

share a great degree of similarity. PAC1R-ECD has a predom-

inance of negatively charged residues. In fact, it is interesting to

note that the sequence has significant abundance of both Asp and

Glu. The opposite is true for its ligand where the most abundant

amino acid is Lys while Arg is the second most abundant. This

suggests that their interaction might be dominated by charge

interactions and salt bridges. In order to further investigate this we

did an Ala scanning of the peptide using the Alphascreen assay

(Fig. 1c). Our assay identifies three Ala mutations (V19A9, K20A9,

L27A9) that affect the binding to PAC1R the most. The K20A9

mutation almost completely abolishes the ability of the peptide to

bind the receptor ECD. The other important residues for binding

are hydrophobic residues, Lue279 and Val199. This suggests that

the major contribution to binding energy comes from a possible

ionic interaction (K209) that is supplemented by hydrophobic

interactions mediated by V199 and L279. In the case of PTH1R,

GIP1R, and CRFR1, peptide binding to ECD is also mediated by

positively charged residues on the peptide, which is further

stabilized by hydrophobic interactions from surrounding residues

[27,28]. Based on these observations, we attempted to derive the

mechanism of PACAP binding. We initially started with a blind

search for the peptide binding site in our structure using the

essential region (residues 8–27) of the PACAP structure (residues

1–38, PDBId: 2D2P) in AutoDock 4.2 [38]. Guided by the

putative peptide binding site, we chose a solution of the blind

search for further examination. We then made the side chains of

the peptide residues at the interface flexible and repeated the

search with a finer grid. Our results are consistent with the

hypothesis that PACAP8–27 docks with PAC1R at the putative

binding site, as observed in other ECD:hormone complex

structures. The peptide is oriented parallel to Helix 1. In this

orientation, the N-terminal portion of the peptide is pointed

Figure 4. Superimposition of PAC1R/VIP2R and PAC1R X-ray and NMR structures. (a) the C-terminal portion of PAC1R (green) and VIP2R
(blue) depicts the expected similarity in (i) the backbone and (ii) the position of the conserved residues. (b)(i) Superimposition of the backbone of the
X-ray (green) and NMR (magenta) structures of the PAC1R ECD. The two molecules were aligned using Pymol and laterally separated (ii) the close up
of selected residues in the two structures. Note the unexpected dissimilarity in the position of the conserved residues and near the C77–C118
disulphide linkage, which would warrant its disruption to allow such massive displacement in solution. Furthermore, the region around Pro78 is very
different between the X-ray and NMR structures. However, this region of the X-ray PAC1R structure and the VIP2R structure superimposes well and
shows the expected conformational similarity.
doi:10.1371/journal.pone.0019682.g004
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Figure 5. PAC1R and PACAP interaction model. (a) (i) The surface charge distribution of PAC1R is depicted with red and blue potentials,
ranging from 210 KeT to +10 KeT. The potentials were calculated using APBS [47]. PACAP is shown in cyan. Our docking result correlates well with
other published class B GPCR ECD:ligand complex structures. (ii) The polarity of the N-terminal a-helix of PAC1R and the PACAP is in the same
direction. Following other structures, PACAP residues 1–8 are not expected to make any contact with the ECD of PAC1R and hence not included in
our docking study. (b) A close-up view of the interaction. The residues that are likely to make important contacts are shown as sticks and are labeled.
K209 and E104 form a salt bridge with a distance of 2.6 Å. (c) (i) Alphascreen of mutations in PAC1R affecting the binding to PACAP. All the mutations
were made on the outer surface of the receptor so that the structural core of PAC1R is unaffected. The mutants and the wildtype receptor ECDs were
assayed for interaction with biotin-PACAP(6–38) at increasing equimolar concentration to enable the reading of the assay to reach saturation. (ii) The
location of the mutated residues on the surface of PAC1R ECD. ECD is coloured in green while the side chains of the mutated residues are shown as
blue sticks.
doi:10.1371/journal.pone.0019682.g005
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towards the TM domain, consistent with its role in activation of

the receptor. In contrast, the PACAP in the NMR structure is in a

reverse orientation with its N-terminus pointing away from the

TM domain of the receptor, further raising questions regarding

the validity of the NMR structure.

The docking model based on our X-ray structures correlates

well with the binding data of alanine scanning peptides (Fig. 1c).

The PACAP residues that are identified to be crucial for

binding, according to the competition assay, are oriented

towards the ECD, Fig. 5a, b. Val199 and Leu279 make

hydrophobic interactions with the ECD. More importantly,

Lys209 makes a salt bridge with Glu104 of the ECD, which is

the same conserved residue in CRFR1 that requires the

positively charge residues (R359) in CRF and urocortin 1 for

the binding to the receptor [27,28]. This relatively strong

interaction appears to explain the ability of K209A mutation to

almost completely abrogate the peptide binding. This interac-

tion implies that mutating E104 should also affect PACAP

binding in a reciprocal manner. Fig. 5c shows that E104R

mutation of the PAC1R ECD does reduce its binding to PACAP

in an Alphascreen assay. In contrast, mutation in two surface

hydrophobic residues (F84A and F110A) did not affect PACAP

binding (Fig. 5c).The mutant ECDs were analysed for

homogeneity in a manner analogous to the wild type ECD to

ensure that the mutations do not affect the ECD’s fold (Fig. S3).

Mutational analysis in full length receptor system
To test our docking model in the full length receptor, we used a

cAMP activated luciferase reporter in cell based assays. As shown

in Figure 6 (a) and (b), mutations in the peptide/receptor interface

affect PAC1R activation (L279A, V199A, and K209A in the

peptide; E104A, E104R, and F110A). In contrast, mutations

outside of the peptide/receptor interface have little effects on the

receptor activation (K159A in the peptide; S94A and E99A in the

receptor). Together with the ECD binding data, these results

support the docking model of PACAP binding to the PAC1R

ECD, and the exact intermolecular interactions between PACAP

and PAC1R will require a high resolution structure of a

PACAP:PAC1R complex.

Discussion

In this paper, we determined the crystal structure of the PAC1R

ECD at 1.9 Å resolution, which reveals the same overall fold of

other class B GPCR ECDs. Even though the NMR structure of

PAC1R has been highlighted to have certain unique features

among this class of receptors, there have been some differing views

[44]. In our X-ray crystallographic structure, PAC1R follows the

same conserved a+b fold. This fold is similar to the glucagon/VIP

family due to the presence of a C-terminal helix. The previously

reported NMR structure of PAC1R differs in the Ca tracing

between b3 and b4 and displays a different topology of disulfide

bond arrangement, as discussed in a review earlier [44]. The

NMR structure of PAC1R is unlikely to be an alternate

conformation in solution. Such an arrangement would be

impossible without the disruption of the Cys77-Cys113 disulphide

bond. The Ca atoms in the b3 and b4 loop have been recognised

to be very important for ligand binding in other class B ECDs. In

the complex structure of GIP1R, GLP1R (with both exendin-4

and glucagon) and PTH1R this loop forms a hydrophobic cluster.

This hydrophobic cluster is the seat of hydrophobic interactions

with the peptide in the complex structures of the above indicated

ECDs. This cluster also contains the sequentially invariant Pro78,

whose mutation in PTH1R leads to an embryonic lethal disorder.

Therefore, the correct orientation of this loop is essential to

structurally interpret PACAP binding. A different Ca trace in this

region would change the hydrophobic pocket and would affect the

binding of the peptide. In the NMR structure of PAC1R, PACAP

makes no hydrophobic contacts in this region, making it unique in

an otherwise unified class with respect to the hormone binding

mechanism. Moreover, the polarity of PACAP in the NMR

structure is opposite to all other known complex structures in this

family. While the other structures report that the N-terminus of

the peptide is roughly oriented towards the N-terminus of the

ECD, in the NMR-PAC1R structure, the PACAP is oriented in an

opposite way.

A two domain model of peptide binding to receptor has been

suggested for class B GPCRs [21]. In this model, the C-terminal of

the peptide first interacts with the ECD and this ‘affinity trap’ then

helps the binding of the N-terminal part of the peptide with the

Figure 6. Stimulation of cAMP signaling by PACAP38-MBP. AD293 cells transiently transfected with PAC1R were stimulated with PACAP38-
MBP for 4 hrs at 37uC after which the cells were lysed and assayed for cAMP content. All data points are average of duplicate samples and normalized
to the stimulation level of wild-type receptor and peptide. (a) 0.03 nM PACAP38-MBP mutants were used to stimulate AD293 cells transiently
expressing full length PAC1R-wt. (b) 0.03 nM PACAP38-MBP wt was used to stimulate cells transiently expressing PAC1R mutants.
doi:10.1371/journal.pone.0019682.g006
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juxtamembrane region of the receptor and activates the receptor.

Based on our crystal structure, mutational analysis and the docking

results, we propose a model for the PACAP binding to PAC1R. In

this PACAP binding model, the PAC1R ECD adopts the same

conserved fold as other class B GPCRs, and the PACAP peptide

adopts a single helix that docks into the similar peptide binding site

as observed in GLP1 and PTH peptides. This model highlights

several critical features that are supported by structures and

biology of Class B GPCRs. First, PAC1R belongs to the same

subfamily of receptors as glucagon and GLP1. Thus, it is expected

that their ECDs adopt the same topology in their structures as

confirmed by their crystal structures [45,46]. Second, PACAP also

shares high degree sequence homology to glucagon and GLP1.

Given this conservation and the conserved fold in their receptor

ECD structures, it is reasonable to predict that PACAP adopts the

same binding mode as GLP1 [46], therefore allowing its N-

terminal residues to face the receptor TM domain to activate the

receptor.

Finally, our proposed model is consistent with the mutagenesis

data, including the PACAP alanine scanning peptides and

mutation in the PAC1R ECD, particularly the K20A9 and

E104R, respectively. These mutations stress a charge complemen-

tary mechanism for the binding of PACAP to PAC1R. The same

charge complementary mechanism has also been revealed for a

number of Class B GPCRs, including PTH1R, GLP1R, and

CRFR1. Together, the results from our structural, biochemical,

and modelling studies highlight a consensus structural fold for

hormone recognition by Class B GPCRs, and should have

important implications in hormone binding by several other

members of Class B GPCRs, whose structures remain to be

determined.

Supporting Information

Figure S1 Sequence alignment of class B GPCRs. Invariant

residues are highlighted and partially conserved residues are

boxed. The secondary structural elements are shown for PAC1R.

a-helices are drawn as helices and b-strands are drawn as arrows.

PAC1R shares a significant level of sequence (33.1% identity) and

structural similarity with VIP2R. Numbers are of PAC1R.

(TIF)

Figure S2 Cartoon of the overall PAC1R topology. The

disulphide bonds are indicated as dashed lines.

(TIF)

Figure S3 Native PAGE of the refolded E105R mutant PAC1R

ECD. The band of DsbC was removed by Ni chelate affinity

chromatography and the minor upper bands were removed by size

exclusion chromatography as described for the WT protein.

(TIF)
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