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ABSTRACT
Quaternary period geological events and climatic oscillations significantly affect the
geographic structure and genetic diversity of species distribution in arid northwestern
China. Amygdalus mongolica is a relict and endangered shrub that occurs primarily in
arid areas of northwestern China. Based on variation patterns present at three cpDNA
regions (psbK-psbI, trnL-trnF and trnV) and in one nDNA sequence (ITS1-ITS4) in 174
individuals representing 15 populations, the spatial genetic structure and demographic
history ofA. mongolicawas examined across its entire geographic range. The 17 different
haplotypes and 10 ribotypes showed two lineages, distributed across the Western
(Mazong Mountains, Hexi Corridor, and Alxa Left Banner) and Eastern regions (Urad
Houqi, Yinshan Mountains, Urad Zhongqi, and Daqing Mountains) according to
the median-joining network and the BI (Bayesian inference) and ML (Maximum
likelihood) trees. AMOVA analysis demonstrated that over 65% of the observed
genetic variation was related to this lineage split. The expansions of the Ulanbuhe
and Tengger deserts and the eastward extension of the Yinshan Mountains since the
Quaternary period likely interrupted gene flow and triggered the observed divergence
in the two allopatric regions; arid landscape fragmentation accompanied by local
environmental heterogeneity further increased local adaptive differentiation between
the Western and Eastern groups. Based on the evidence from phylogeographical
patterns and the distribution of genetic variation,A. mongolica distributed in the eastern
and western regions are speculated to have experienced eastward migration along the
southern slopes of the Lang Mountains and westward migration along the margins
of the Ulanbuhe and Tengger deserts to the Hexi Corridor, respectively. For setting
a conservation management plan, it is recommended that the south slopes of the
Lang Mountains and northern Helan Mountains be identified as the two primary
conservation areas, as they have high genetic variation and habitats that are more
suitable.
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INTRODUCTION
Climatic oscillations, especially those that occurred in the Pleistocene glacial-interglacial
cycles during the Quaternary period, shaped contraction and expansion patterns of species,
and undoubtedly left genetic signatures in extant populations (Arbogast, 2001; Hewitt,
1996). Many plant phylogeographic studies using the combined approach of molecular
data and paleoclimatic evidence have found that Pleistocene glaciations had a profound
influence on the genetic diversity, population structure, and evolutionary history of species
throughout theNorthernHemisphere (Hewitt, 2000;Riccioni et al., 2019). In the arid region
of northwest China, although pollen records and paleodata show no evidence of glaciation
(Shi, 2006), Quaternary climatic shocks have also profoundly affected the local plant
growth, during the Last Glacial Maximum, the current coniferous and deciduous forests
were replaced by steppe and even desert vegetation in northern and northwestern China
(Harrison, G. Yu & Prentice, 2001; Ni et al., 2006; Yu et al., 2000). Aridification occurred in
northwest China due to the uplifts of the Tibet Plateau and the difficulty of water vapor
reaching inland areas, and further intensified as desert conditions began to emerge during
the late Miocene (Zhang & Jiang, 1992). At the same time, extremely arid climates and
geological events created fragmented landscapes in northwestern China, potentially having
led to the reduction of suitable plant habitat in these areas (Jia & Zhang, 2021; Li et al.,
2019; Qiu et al., 2017). The fragmented landscape in arid northwestern China during the
Quaternary period restricted gene flow between different geographical populations, and
has played significant roles in determining divergence and diversification of local desert
plants in isolated and allopatric regions. Currently, there is significant regional divergence
in xerophytic Tugarinovia mongolica from Inner Mongolia due to habitat fragmentation
following enhanced aridification (Zhao et al., 2019a). Intraspecific differentiation and the
deeply shaped genetic structure for Gymnocarpos przewalskii and Lagochilus ilicifolius were
primarily caused by variation of desert habitats during the Pleistocene (Gao, Meng &
Zhang, 2014; Zhang, Wang & Jia, 2020). In contrast, xerophytic plants such as Zygophyllum
xanthoxylon and Clematis songorica appeared to adapt to the changes in aridity, and no
evidence of genetic divergence among different populations was detected (Shi & Zhang,
2015; Zhang et al., 2013). Several refugia for several local desert species have been revealed
in fragmented and arid areas in the Tarim Basin, Tianshan Mountains, Hami Basin, Helan
Mountains and northwestern areas of InnerMongolia in northwestern China, and evidence
of post-glacial expansion following glacial periods has been detected (Shi & Zhang, 2015;
Xu & Zhang, 2015; Zeng et al., 2018). The arid Tianshan Mountains have greatly affected
many plants genetic structure, such as Clematis sibirica of a woody perennial vine growing
primarily under conifer forests (Zhang & Zhang, 2012) andDelphinium naviculare growing
at forest edges and in grassy slopes (Zhang et al., 2013); the Helan Mountains likely acted

Zhang et al. (2022), PeerJ, DOI 10.7717/peerj.13345 2/24

https://peerj.com
http://dx.doi.org/10.7717/peerj.13345


as the center of diversification for Lagochilus ilicifolius (Meng & Zhang, 2011) and were
inferred as the refugial locations for Zygophyllum xanthoxylon (Shi & Zhang, 2015).

Amygdalus mongolica is a xerophitic desert shrub that ranges from the Mazong
Mountains in the northernmost Gansu, through the Hexi Corridor and Alxa Left Banner
to the Urad Houqi, Yinshan Mountains, Urad Zhongqi, and Daqing Mountains in
northeastern Inner Mongolia in northwestern China (Fu & Chin, 1992). The area for this
study was concentrated in areas of severe aridity, characterized by low annual precipitation
and high evaporation (Ma et al., 2015), where altitude was greater than 1,000 m and
the terrain was mainly plateaus (Alxa Plateau and Ordos Plateau) and desert landscapes
(Badain Jaran Desert, Tengger Desert, Ulan Buhe Desert and Kubuqi desert). The Ordos
Plateau is surrounded by the Yin Mountains in an east–west direction with many deep
valleys, and the Helan Mountains in a south-north direction that has many valleys and
steep terrain. A. mongolica, as a Tertiary Miocene relic plant of the Ancient Mediterranean,
offers an optimal case for investigating the evolutionary processes in response to the
Quaternary climate oscillations and aridification in arid northwestern China (Fu & Chin,
1992). Moreover, it is endangered (listed on the China Species Red List) and is a protected
plant of third conservation priority (Fu & Chin, 1992). Because of this, the genetic structure
of the A. mongolica population has high importance, for understanding both the origin
and evolution of plants in the Chinese northwestern desert, as well as for plant protection
and conservation. In a previous study by our group, the presence of two chloroplast
intergenic spacers (psbK-psbI and trnL-trnF) supported two fragmented geographic groups
among different populations of A. mongolica (Ma et al., 2019). A large number of shared
haplotypes exist between the two geographic groups, however, likely because of incomplete
lineage sorting; the limited polymorphic fragments were deficient for studying population
dynamics, genetic structure, and conservation of species genetic diversity.

Previous studies have shown that a variety of genes, such as maternally inherited
chloroplast DNA (cpDNA) markers in combination with biparentally inherited nuclear
DNA (nDNA) markers, show an integral view for identifying the relationships and genetic
structure among taxonomic groups and populations (Li et al., 2019). Here, multiple
methods of population genetic analysis and landscape genetic analysis were used along with
a least-cost path (LCP) analysis to investigate the genetic structure and demographic history
of 15 natural populations of A. mongolica in northwestern China based on three highly
polymorphic chloroplast DNA fragments (psbK-psbI, trnL-trnF and trnV) and a nuclear
marker (ITS1-ITS4). This study aimed to assess the spatial genetic structure and intraspecific
differentiation and detect whether incomplete lineage sorting exists in A. mongolica
populations in northwestern China according to cpDNA and nDNA sequences variation,
inference of phylogeographic and demographic history of A. mongolica populations during
Quaternary climate fluctuations and desert expansion was also performed, along with
comprehensive identification of potential conservation areas for A. mongolica populations.
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MATERIAL AND METHODS
Sample collection
A total of 174 individuals of A. mongolica from 15 natural populations were investigated
(Table 1) throughout its geographic distribution in northwestern China (Fig. 1A). The
details of sampling populations are described in our previous study (Ma et al., 2019),
including three from Gansu Province and twelve from Inner Mongolia (Table 1). Fresh
young leaves were collected from 7–15 individuals in each population. Individual plants
were sampled at least 10 m apart to avoid sampling close relatives and to ensure a robust
sampling. The leaves were dried on silica gel and stored at 4 ◦C until DNA extraction.
The Provincial administrative boundary data of the study area were obtained from the
Data Center of Resources and Environment Sciences, Chinese Academy of Sciences
(http://www.resdc.cn/).

Laboratory procedures
Total genomic DNA was extracted from approximately 100 mg of silica gel-dried leaf
tissue using a modified 2× CTAB protocol (Doyle, 1987). Three polymorphic chloroplast
DNA intergenic spacers, psbK-psbI, trnL-trnF and trnV (Shaw et al., 2007) and one nDNA
fragment, ITS1-ITS4 (White et al., 1990) were chosen for this study.

We used a 30 µL volume containing 20 mM dNTP, 2 mM MgCl2, 0.025 U mL−1 Taq
polymerase and 1 pmol of each primer (Takara Co. Ltd., Beijing, China) to conduct the
polymerase chain reaction (PCR) (Takara Co. Ltd., Beijing, China). TheDNA amplification
profile was 94 ◦C for 2 min, followed by 30 cycles of 94 ◦C for 30 s, annealing at 52 ◦C
(psbK-psbI, trnL-trnF), 54 ◦C (trnV) and 55 ◦C (ITS1-ITS4) for 30 s, 72 ◦C for 90 s, and
a final extension at 72 ◦C for 10 min. The processing method of all PCR products were
previously described in Ma (Ma et al., 2015). Specifically, the study used a PCR product
purification kit (Viogene, Sunnyvale, CA, USA) to purify from agarose gel (0.1–0.5%) and
used the ABI 3730 DNA Analyzer to sequence on forward and reverse strands by BigDye
terminator chemistry (Applied Biosystems, Foster City, CA, USA). For the heterozygous
sites for nuclear genes after sequencing, using the Bayesian approach of PHASE 2.1 to infer
haplotypes from genotype data (Stephen & Donnelly, 2003), and our study was corrected
using default parameters in DnaSP 6.0 and verified in MEGA-X ver. 10.1.8. Sequences were
aligned using CLUSTAL X1.83 (Thompson et al., 1997) and then manually used BioEdit
7.2.5 (Hall, 1999) for alignment. Each insertion/deletion in this study was treated as a
single mutation event and encoded as substitutions in subsequent analyses (Simmons &
Ochoterena, 2000).

Genetic diversity and genetic structure analyses
Molecular parameters, containing cpDNA haplotype/nDNA ribotype diversity (Hd, Rd),
and nucleotide diversity (π) based on cpDNA and nDNA dataset, were calculated in
DNASP 6.0 (Librado & Rozas, 2009). The two indexes were also mapped using ‘ggplot2’
package in R 4.0.5 (https://cran.r-project.org/web/packages/ggplot2/index.html) (Wickham,
2016). Total genetic diversity across all populations (HT), average genetic diversity within
populations (HS), and two parameters of population differentiation (GST, NST) were
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Table 1 Sample and genetic variation information for 15 populations of Amygdalus mongolica.

Population
location/code

Lat/Lon Sample
size

cpDNA haplotype Hd (± SD) cpDNA π

(± SD*10−2)

nDNA ribotype Rd (± SD) nDNA π

(± SD*10−2)

Western group 102 0.791± 0.036
0.720± 0.045

0.00683± 0.33
0.00591± 0.21

MZS 41.95◦/97.05◦ 11 H1 (9), H2 (2)
R1 (8), R2(3)

0.327± 0.15
0.436± 0.13

0.00842± 0.39
0.00341± 0.21

ZYS 38.78◦/101.18◦ 11 H3 (11)
R1 (11)

–
–

–
–

YCQ 38.15◦/101.83◦ 11 H3(10), H4 (1)
R1 (8), R3 (3)

0.439± 0.16
0.431± 0.01

0.00574± 0.22
0.00711± 0.30

ZTL 39.92◦/105.65◦ 12 H7 (12)
R3 (12)

–
–

–
–

ZQK 40.40◦/105.72◦ 12 H5 (7), H6 (1), H7 (4)
R3 (12)

0.534± 0.06
–

0.00962± 0.13
–

ZTM 37.82◦/104.93◦ 12 H8 (12)
R3 (12)

–
–

–
–

ZQL 38.85◦/105.83◦ 11 H5 (11)
R3 (11)

–
–

–
–

WSM 39.38◦/106.63◦ 7 H5 (7)
R4 (4), R5 (3)

–
0.509± 0.01

–
0.00683± 0.32

WSH 39.54◦/106.58◦ 15 H5 (14), H9 (1)
R4 (9), R5 (6)

0.417± 0.01
0.513± 0.008

0.00342± 0.23
0.00911± 0.39

Eastern group 72 0.804± 0.04
0.576± 0.01

0.00723± 0.24
0.00394± 0.19

WLB 41.07◦/107.02◦ 13 H10 (4), H11 (3), H12 (6)
R6 (2), R7 (4), R8 (7)

0.567± 0.13
0.676± 0.07

0.00544± 0.11
0.00922± 0.39

YMM 41.35◦/107.08◦ 13 H12 (13)
R8 (13)

–
–

–
–

YMF 41.34◦/107.09◦ 12 H11 (4), H12 (8)
R8 (12)

0.467± 0.132
–

0.00681± 0.32
–

WLJ 41.29◦/107.58◦ 10 H12 (1), H13 (9)
R8 (10)

0.410± 0.15
–

0.00652± 0.34
–

BTQ 40.92◦/109.58◦ 12 H14 (1), H15 (5), H16 (6)
R6 (4), R9 (8)

0.530± 0.076
0.513± 0.082

0.00682± 0.22
0.00612± 0.17

BTE 40.72◦/109.90◦ 12 H15 (5), H17 (7)
R10 (12)

0.447± 0.032
–

0.00211± 0.13
–

calculated using HAPLONST 3.0 (Pons & Petit, 1996). PERMUT 2.0 was used to test
the significance of population differentiation (GST, NST) (Bandelt, Forster & Röhl, 1999;
Pons & Petit, 1996) with 1,000 replicates. Phylogeographical structure is present if NST is
significantly higher than GST (Pons & Petit, 1996).

An AMOVA analysis was employed to investigate genetic differentiation among overall
populations and the defined population groups by phylogenetic clustering results using
ARLEQUIN 3.5.2.2 (Excoffier & Lischer, 2010). The relationships among haplotypes were
estimated using the median-joining method, implemented in Network 5.01 (Bandelt,
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Figure 1 Map of the sampling sites, geographical distribution of the chlorotypes and ribotypes, the
phylogenetic network and genetic barriers among populations of Amygdalus mongolica. (A) Sampling
localities and geographic distribution of 17 cpDNA haplotypes (labelled as H1–H17) and 10 nDNA ri-
botypes (labelled as R1–R10), identified from 15 populations of A.mongolica in Northwest China. Pie
graphs reflect the frequency of each haplotype (the black pie) and each ribotype (the red pie), the popula-
tion codes listed in Table 1. (B) The median-joining network for the 17 haplotypes and 10 ribotypes. The
sizes of the circles in the network are proportional to haplotype/ribotype frequencies. Branch lengths are
roughly proportional to the number of mutation steps between haplotypes/ribotypes and nodes. (C, D)
Genetic barriers to chlorotypes and ribotypes between different sampling areas, respectively.

Full-size DOI: 10.7717/peerj.13345/fig-1

Forster & Röhl, 1999). Based on the genetic distances among populations, we used Principal
coordinate analyses (PCoAs) to analyze the genetic structure for A. mongolica using the
‘vegan’ package in R 4.0.5 (Oksanen et al., 2007), and then we performed 3D visualization
using the ‘scatterplot3d’ package in R 4.0.5. Alleles In Space (Miller, 2005) was used to
exploreGenetic landscape shape analysis ofA. mongolicawhich can reveal the level of genetic
differentiation among different populations from the perspective of Landscape genetics,
and the result of genetic landscape shape analysis plot which x- and y-axes correspond
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to geographical locations and the z-axis to genetic distance, and the peak height on the
z-axis represents the degree of genetic differentiation between populations. Furthermore,
based on Monmonier’s maximum difference algorithm, we estimated the possible genetic
barriers in BARRIER v2.2 (Manni, Guérard & Heyer, 2004). We implemented a multiple
matrices test based on 100 replicates of population average pairwise difference matrices
in order to assess the robustness computed barriers. These matrices were generated by
resampling of genotype sequences in DnaSP 6.0 (Librado & Rozas, 2009) and subsequent
analyses in ARLEQUIN 3.5.2.2 (Excoffier & Lischer, 2010). In order to identify whether
the genetic barriers and biogeographic barriers were spatially consistent, we corrected the
possible spatial position of genetic barriers in ArcGIS 10.5 (ESRI, Redlands, CA, USA)
according to the sampled population points.

Phylogenetic analysis and estimation of divergence
Phylogenetic trees with cpDNA haplotypes and nDNA ribotypes in A. mongolica were
reconstructed using maximum likelihood (ML) analysis with MEGA-X ver. 10.1.8 (Sudhir
et al., 2018) and a Bayesian inference (BI), as implemented in BEAST 2.2.1 (Drummond &
Rambaut, 2007) . Amygdalus davidiana and Prunus trilobawere selected as the outgroups in
the analysis owing to their relatively close evolutionary relationship (Delplancke et al., 2016).
FigTree v1.4.4 (http://tree.bio.ed.ac.uk/software/figtree/) was used for tree-visualization
(Zhao et al., 2019b).

The HKY substitution model was selected by MODELTEST as the best-fitting model
for the data set (Posada & Crandall, 1998). Based on the synonymous substitution rates
for most angiosperm species of cpDNA genes (1.0× 10−9 to 3.0× 10−9 s/s/y) (Wolfe,
Li & Sharp, 1987), and substitution rates of plant ITS (3.46×10−9 to 8.69×10−9 s/s/y)
(Richardson et al., 2001), we used a normal prior distribution and set a mean of 2×10−9

s/s/y and a standard deviation of 6.08×10−10 s/s/y for cpDNA, and a mean of 6.73×10−9

s/s/y and a standard deviation of 1.99×10−9 s/s/y for ITS (Zhang et al., 2013). The Markov
chain Monte Carlo (MCMC) analysis was run for 10 million generations and sampled
every 1000 generations for the Bayesian analysis. Bayes factor (BF) values were used to
detect MCMC convergence, and the effective sample size (ESS) of each parameter above
200 after the first 10% of generations was discarded as burn-in (Baele et al., 2012).

Demographic history analysis and potential migration corridors
The mismatch distribution analysis and the parameter calculations were all implemented
in ARLEQUIN 3.5.2.2 (Rogers & Harpending, 1992). Tajima’s D (Tajima, 1989) and Fu’s
Fs statistics were calculated to test the recent demographic expansion. Significantly large
negative values for D and FS suggested that populations have experienced range expansion
or natural selection (Fu, 1997; Tajima, 1989). And the Harpending’s raggedness index
(Hrag), the sum of squared deviation (SSD) and their p values were computed to test the
significance of this population expansion model. A non-significant value (p> 0.05) of SSD
and Hrag indicated population expansion (Excoffier, Laval & Schneider, 2005; Harpending,
1994). Themismatch distribution analysis was used to test whetherA. mongolica underwent
a recent range expansion for the overall populations and the defined groups (Excoffier &
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Lischer, 2010). Unimodal distributions of pairwise differences suggested populations that
could have undergone range expansions, whereas populations in demographic equilibrium
were characterized by multimodal mismatch distributions (Rogers & Harpending, 1992).
Expansion tests with 10,000 permutations were performed for the significance test. To
further detect the expansion trend and estimate the expansion time of A. mongolica,
BEAST 2.2.1 was used to construct the Bayesian skyline plot (BSP) according to the
previous sequence mutation rate in Bayesian inference, and Tracer 1.5 was used to generate
the BSP (Rambaut & Drummond, 2009).

Based on the assumption that sites with higher species distribution frequencies have
lower migration costs, the species distribution model was converted to a species habitat
resistance model. We inverted the species distribution model (1-SDM) for the last glacial
maximum (LGM, based on MIROC-ESM Model) and present (1970–2000) periods
generated in MAXENT 3.4.1 to a ‘‘dispersal cost layer (resistance layer)’’; Second, based
on the least-cost path (LCP), the resistance layer of A. mongolica using SDMtoolbox 2.0
(Brown, 2014) in ArcGIS 10.5 was used to create a cost distance raster for each sample
locality, and the corridor layers were established between every two localities based on
the cost distance raster; Finally, all of the pairwise corridor layers were summed as the
eventual dispersal corridor for A. mongolica (Jiang et al., 2018). The data required for
species distribution model of LGM and present periods were obtained from our previous
study (Ma et al., 2019).

Identification of potential protection areas
Comprehensive consideration of population genetic diversity, the suitable distribution
habitats and the Land use/cover were necessary for the scientific and effective conservation
of species (Wei et al., 2014). The dataset of Genetic diversity landscapes, Land Use/Cover
Change (LUCC) and the species distributions suitability of A. mongolica were employed
to identify the potential conservation areas for A. mongolica (Wei, 2020). Genetic diversity
was mapped by genetic landscape GIS toolbox in ArcGIS 10.5 according to genetic diversity
values (Hd and Rd) of each studied population and interpolated by using an established
inverse-distance-weighted interpolation algorithm (Vandergast et al., 2011; Yu et al., 2014).
LUCC (2018; 1 km× 1 km) in study area was obtained from the Data Center of Resources
and Environment Sciences, Chinese Academy of Sciences (http://www.resdc.cn/). According
to the characteristics of suitable habitats of A. mongolica (Ma et al., 2015), a correlation
value was assigned to each different land use type of LUCC, and the suitable habitats
(grassland, sand, bare rock, and others, etc.) were assigned values ranged from 0 to 1
(Table S3; Ren, 2019). Present potential suitable distribution data was obtained by species
distribution models (MAXENT) from the previous study (Ma et al., 2019). The dataset of
Genetic diversity landscapes, LUCC and the potential distribution were overlaid by using
weight of 0.7, 0.2 and 0.1 in ArcGIS 10.5, and classified into three classes using the natural
discontinuity grading method, which were defined as the low potential protection areas,
medium potential protection areas and high potential protection areas (Wei, 2020).
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Environmental heterogeneity analysis of geographically weighted
regression
Geographically weighted regressionmodel (GWR)was implemented to test the relationship
between genetic diversity values among A. mongolica populations and the environmental
variables.

GWR was a spatial regression model that was an extension of traditional regression to
predict, detect and estimate spatial non-stationary coefficient for model variables (Daniel,
2004), it can reflect the spatial heterogeneity of variable distribution (Abebaw et al., 2021).

We used the genetic diversity values (Hd and Rd) of each population from both
cpDNA and nDNA as the response variable. As predictor variables, we choosed 8
environmental factors from species distribution model and altitude data (Worldclim,
http://www.worldclim.org), then we removed multicollinearity (variance inflation factor
> 7.5) between variables independent variables, and finally we kept five factors which
were altitude, annual mean temperature (Bio1), isothermality (Bio3), temperature annual
range (Bio7), and mean temperature of driest quarter (Bio9). In order to obtain dependent
variable, we used the fishing net tool generate points with resolution of 2,000 m, and then
extracted the dependent variable and independent variable information in ArcGIS10.5.
GWR4.08 (https://gwrtools.github.io/) software was used to finish geographically weighted
regression analysis, and ARCGIS10.5 was used to analyze the results visually.

RESULTS
The characteristics of cpDNA and nDNA sequences
The cpDNA aligned sequences of trnL-trnF, psbK-psbI and trnV were 402 bp, 230 bp and
572 bp in length respectively, and 1,204 bp in total. In the combined data (Table S1), we
identified 17 different haplotypes (H1–H17) and 24 polymorphic sites (18 substitutions
and 6 indels). The aligned fragment ITS1-ITS4 was 625 bp in length, with 9 nucleotide
substitutions and 10 ribotypes (R1–R10) were defined (Table S2, Fig. 1).

Haplotype/ribotypes geographical distributions
According to the cpDNA and nDNA dataset, the network analysis revealed two clades, the
9 haplotypes (H1–H9) and 5 ribotypes (R1–R5) in the Clade 1 are from the populations of
the Western group, and the remaining 8 haplotypes (H10–H17) and 5 ribotypes (R6–R10)
in the Clade 2 belong to the Eastern group, and no genotype was shared between the two
groups (Fig. 1B). The results of PCoA show that the haplotypes and ribotypes mentioned
above were independently clustered together, and the first three axes have explained a
cumulative percent variation of 81.19% and 80%, respectively (Fig. 2).

The Western group mainly distribute in Alxa Left Banner and Hexi Corridor. The most
widespread haplotype was H5, which shared by 4 populations and mainly distributed in
Alxa Left Banner (ZQL, ZQK, WSH and WSM), and there are 7 private haplotypes (1, 2,
4, and 6–9) in the Western group. The most common ribotype was R3, which distributed
among 5 populations, mainly from Hexi Corridor (YCQ) and Alxa Left Banner (ZTM,
ZQL, ZTL and ZQK; Table 1 and Fig. 1).
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Figure 2 Plots of the first three coordinates of the principal coordinates analysis (PCoA) at a popula-
tion level based on the cpDNA and nDNA pairwise differentiation matrix for Amygdalus mongolica.
Colors of dots represent the individuals in the Western and Eastern groups (as in Fig. 1).
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In the Eastern group, the most widespread haplotype was H12, which were detected
among each of the four populations and distributed in Urad Zhongqi (WLJ), Yinshan
Mountains (YMM and YMF), and Urad Houqi (WLB); and five private haplotypes (10,
13, 14, 16 and 17) were revealed. The most common ribotype was R8, which distributed in
Urad Zhongqi (WLJ), the Yinshan Mountains (YMF and YMM) and Urad Houqi (WLB);
R7, R9 and R10 were detected as three private ribotypes (Table 1 and Fig. 1).

Population genetic diversity and genetic differentiation
The cpDNAhaplotype/nDNA ribotype diversity (Hd,Rd) among the 15 populations ranged
from 0 to 0.567 (cpDNA) and 0 to 0.676 (nDNA); Nucleotide diversity (π) ranged from 0
to 0.00962 (cpDNA) and 0 to 0.00922 (nDNA), respectively (Table 1). According to both
the cpDNA and nDNA datasets, the higher levels of genetic variation were identified in the
populations MZS (Mazong Mountains), ZQK (Southwestern Lang Mountains) and WSH
(Northern Helan Mountains) from the Western group, and the WLB (Urad Zhongqi) and
BTQ (Daqing Mountains) from the Eastern group (Fig. S2).

The HT (cpDNA: 0.807 ± 0.050; nDNA: 0.815 ± 0.077) was much higher than HS

(cpDNA: 0.225 ± 0.053; nDNA: 0.212 ± 0.014) with both cpDNA and nDNA data,
indicating considerable population differentiation. A higher level of NST (0.858/0.829;
P < 0.05) than GST (0.712/0.690; P < 0.05), indicated a significant phylogeographical
structure across the species range (Table 2). AMOVAs based on cpDNA and nDNA
sequences showed that 83.87% and 79.33% of the total variation primarily occurred
among populations, and 66.25% and 73.14% occurred among groups (Table 3). Results of
PCoA showed that the populations from the Western and Eastern groups based on cpDNA
and nDNA were independently clustered together, which revealed that the Western group
was clearly distinct from the Eastern group (Fig. 2). The genetic landscape shape analysis
of A. mongolica showed significantly divergence in study area, and signifcant genetic
differentiation occurred between theWestern and Eastern regions (Fig. 3). Meanwhile, two
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Table 2 Estimates of gene diversity and population differentiation (mean± SD) for the total popula-
tions of Amygdalus mongolica.

Data set HT HS GST NST

cpDNA 0.807± 0.050 0.225± 0.053 0.712± 0.070 0.858± 0.083
nDNA 0.815± 0.077 0.212± 0.014 0.690± 0.036 0.829± 0.013

Notes.
HT, total gene diversity; HS, average gene diversity within populations; GST and NST , population differentiation values.

Table 3 Analysis of molecular variance (AMOVA) for 15 populations of Amygdalus mongolica.

Data set Source of variation d. f. Sum of
squares

Variance
components

Percentage
of variation (%)

Fixation
index

Among populations 14 612.031 4.356 83.87
Within populations 159 114.769 0.838 16.13 FCT= 0.839
Total 173 726.800 5.194
Among groups 5 421.824 2.862 66.25 FSC= 0.731
Among populations within groups 10 74.343 1.066 24.67 FST= 0.91
Within populations 159 53.376 0.392 0.393 FCT= 0.663

cpDNA

Total 173 549.544 4.320
Among populations 14 163.713 1.166 79.33
Within populations 159 41.334 0.034 20.67 FCT= 0.793
Total 173 205.407 1.470
Among groups 5 149.993 1.116 73.14 FSC= 0.314
Among populations within groups 10 10.018 0.12 8.44 FST= 0.816
Within populations 159 38.257 0.281 18.43 FCT= 0.731

nDNA

Total 173 198.268 1.527

Notes.
FST, correlation within populations relative to the total; FSC, correlation within populations relative to groups; FCT, correlation of haplotypes/ ribotypes within groups relative to
the total.

strong genetic barriers between the Western and Eastern groups, with over 81% bootstrap
support, were detected in the Kubuqi and Ulanbuhe deserts based on Monmonier’s
maximum difference algorithm (Figs. 1C, 1D).

Phylogenetic analysis and divergence time dating
Similar gene genealogies of genotypes in the BI trees and ML trees based on cpDNA and
nDNA were obtained (Fig. 4 and Fig. S1). The nine haplotypes (1–9) and five ribotypes
(1–5) corresponded to the Western group, while the remaining eight haplotypes (10–17)
and five ribotypes (6–10) corresponded to the Eastern group (Fig. 4 and Fig. S1).

BEAST analysis showed that the cpDNA and nDNA divergence between the two groups
of A. mongolica were 0.28 million years ago (Ma) and 0.31 Ma (Fig. 4). The timing of
divergence for two groups are consistent with the middle Pleistocene during a period of
strong expansion of aridification in northwestern China (Comes & Kadereit, 1998).

Demographic history analysis
The parameters of Tajima’s D and Fu’s Fs for the overall population and the two groups
were not significant and were positive, indicating that A. mongolica has not experienced a
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Figure 3 Spatial genetic landscapes constructed from the cpDNA sequences and nDNA sequences
across the total distributions of Amygdalus mongolica. The abscissae and ordinates correspond to ge-
ographical coordinates covering the entire distributional populations, and the vertical axes represent ge-
netic distances.

Full-size DOI: 10.7717/peerj.13345/fig-3
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recent expansion (Table 4). Despite this, post-glacial range expansion indicated that the
overall population as well as the two groups had evidence of recent expansion through
the unimodal mismatch distribution curves of nDNA (Fig. 5). This conclusion was also
supported by the SSD andHrag which were not significant (p > 0.05) in cpDNA and nDNA
for the overall populations or the two groups in cpDNA and nDNA (Table 4). However,
the Bayesian skyline plot summarize instantaneous estimates of effective population size
based on cpDNA for the total populations, the Eastern group, and the Western group, and
showed recent population decline for A. mongolica. A slight population decline was found
for the Eastern group and Western group, and a contraction followed by a small amount
of population growth was found for the total population according to the nDNA (Fig. 6).
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Table 4 Results of neutrality tests andmismatch distribution analysis for the overall populations and two regional groups based on the cpDNA
and nDNA dataset.

Group cpDNA dataset nDNA dataset

SSD P Hrag P Fu’s Fs Tajima’sD SSD P Hrag P Fu’s F s Tajima’sD

Overall 0.184 0.072 0.337 0.391 2.365 1.3045 0.186 0.054 0.371 0.317 1.189 1.240
Eastern group 0.225 0.063 0.3 0.457 0.665 2.6346 0.197 0.245 0.351 0.354 2.734 1.154
Western group 0.091 0.126 0.335 0.303 6.495 −0.5173 0.191 0.079 0.397 0.297 1.142 1.020

Notes.
SSD, sum of squared deviations; HRag , Harpending’s raggedness index.

Figure 5 Mismatch distribution analysis based on the cpDNA and nDNA sequences for the total pop-
ulations, as well as populations in the Eastern andWestern groups (i.e., the grouping of populations
consistent with Fig. 1).

Full-size DOI: 10.7717/peerj.13345/fig-5

In the LGM based on MIROC-ESM climate model, the Lang Mountains, the edge of
Tennger deserts, and the Hexi Corridor are the important corridors for the dispersal of
A. mongolica (Fig. 7A). In the present period, the dispersal corridors of A. mongolica were
similar to the model, but the edges of the Ulanbuhe deserts was identified as the most
important migration corridors for the species (Fig. 7B).

Identification of potential protection areas
Considering the overall genetic diversity, distribution suitability of A. mongolica and Land
use/cover in northwestern China, high potential protection areas were identified in the
south slopes of the Lang Mountains and the northern Helan Mountains (Fig. 8). These two
areas had high genetic diversity based on cpDNA and nDNA (Hd and Rd > 0.70), high
distribution suitability as determined by MAXENT (>0.80), and more natural habitats
with little human activity (including sand, bare rock and grasslands).
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Environmental heterogeneity analysis
The spatial distribution of regression coefficients of different environmental factors was
significantly different across in the study area, indicating spatial heterogeneity between
different environmental factors and genetic diversity of A. mongolica (Figs. S4, S5). In the
Eastern group region, genetic diversity was positively correlated with altitude, Bio1, Bio3,
and Bio7, but was negatively correlated with Bio9. In the Western group region, genetic
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Figure 8 The potential protection area (PPA) of Amygdalus mongolica based on genetic diversity (A:
cpDNA; B: nDNA).

Full-size DOI: 10.7717/peerj.13345/fig-8

diversity was positively correlated with Bio1, Bio3, Bio7, and Bio9, but was negatively
correlated with altitude (Figs. S4, S5).

DISCUSSION
Allopatric divergence between the Western and Eastern regions
The strong phylogeographic structure of A. mongolica indicated that separate and isolated
lineages occupy the different geographic regions (Fig. 1). Both the chloroplast and nuclear
phylogenetic analyses showed two distinct lineages distributed in the Western and Eastern
regions (Fig. 1). The network and PCoA analysis also indicated similar results: with nine
haplotypes and five ribotypes from the Western region clustered together and apparently
separated from the other seven haplotypes and five ribotypes distributed in the Eastern
region (Figs. 1 and 2).

No incomplete genealogical sorting was detected within the distribution range of
A. mongolica, indicating that the polymorphism of molecular markers used in this study
were relatively appropriate. By contrast, we previously identified a large number of shared
haplotypes (H2, 4, 6) between the Western and Eastern groups based on two cpDNA
sequences, and phylogenetic analysis also revealed incomplete genealogical sorting (Ma
et al., 2019). More than 75% of the observed differences were revealed between the two
regions. The significant divergence among the Western and Eastern population groups
was estimated to occur during mid-Pleistocene (Figs. 3 and 4). We therefore hypothesize
that there is a close link between the increased aridification and desertification during the
Quaternary glacial periods and intraspecific divergence of A. mongolica.

The mountains and deserts in the distribution areas of A. mongolica have leaded to
distinct patterns of genetic isolation between 15 populations (Fig. 1), and these arid
mountains slope and sand likely acted as geographical barriers and significantly affected
interspecific differentiation of the desert land vegetation in northwestern China, such as
Euphrates poplar, Gymnocarpos przewalskii, Reaumuria soongarica and Lycium ruthenicum
(Jiang et al., 2018; Shi et al., 2020; Wang et al., 2021). For A. mongolica, the pre-existence
and rapid expansions of the Ulanbuhe and Kubuqi deserts during Pleistocene (Guan et
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al., 2011), increased aridification and likely create potential barriers to gene flow between
populations in the eastern and western regions. The two deserts were inferred as the genetic
barriers for the two groups of A. mongolica (Figs. 1C, 1D).The sampled populations located
in the different secondary valleys of the Yinshan Mountains, and the uplifts and eastward
extensions of these valleys since the Quaternary period (Lee & Zhang, 2010), which likely
further isolated the Eastern populations from the populations in the western regions.
Moreover, in recent decades, with the intensification of drought and desertification in the
arid northwestern China added the change of Land use/cover, A. mongolica and its natural
habitats have been greatly disturbed and destroyed (Duan et al., 2020; Ma et al., 2015), the
arid landscape fragmentation have caused the fragmented distributions and populations
isolation, which hence restricted movement of pollen and seed of A. mongolica. Thus,
the fragmentation of arid landscape was the potential barriers limiting gene flow, and
it probably increased genetic differentiation among different populations. Furthermore,
long-term isolation among plant populations in heterogeneous habitats can gradually lead
to local adaptive differentiation and eventually create genetic heterogeneity across different
landscapes (Chen et al., 2020; Jiang et al., 2018). For A. mongolica, the typical mountain
basin–deserts isolation patterns between the eastern and western sampled areas, the arid
landscape fragmentation and the corresponding environmental heterogeneity (Figs. S4, S5)
have combined to promote differentiation between the Western-Eastern regions through
local environmental adaptation.

Pleistocene population history of A. mongolica
Climatic oscillations in the Quaternary period have caused range shifts for many xerophytic
plants in the arid regions of northwestern China (Zhang, Zhang & Sanderson, 2016). During
glacial periods, most desert plants reduced their distributions due to the unusually cold-dry
climates, and had recolonized areas that are more suitable at the end of glacial periods (Sun
et al., 2020; Zhao et al., 2019a). The unimodal mismatch distribution curves based on ITS
sequences along with significant SSD andHrag values all demonstrate that A. mongolica and
the two population groups underwent post-glacial range expansions (Table 4 and Fig. 5).
Considering the phylogenetic network according to cpDNA and nDNA datasets, genotypes
H5/R3 andH12/R8 had high frequencies in theWestern and Eastern groups, and ‘‘star-like’’
clusters originating from these genotypes mentioned were found (Fig. 1), also reflecting
the historical signature of post-glacial expansions in the two regions. Plants in rapidly
colonized regions generally possess low levels of genetic variation (Hewitt, 2000). For the
Western group, the widespread distribution of H5 and R3 in the Alxa Left Banner (ZQK,
WSH, WSM, ZQL, ZTM and ZTL) and the eastern Hexi Corridor (YCQ) supports the
hypothesis that A. mongolica expanded westwards along the margins of the Ulanbuhe and
Tengger deserts to the Hexi Corridor. Similarly, the demographic pattern of the widespread
genotypes H12 and R8 revealed an expansionary trajectory of the Eastern group along the
eastern edge of the Lang Mountains (Fig. 1). Moreover, the Bayesian skyline plot of species
as determined by nDNA also identified a recent population expansion. Compared with
cpDNA, the genetic information of nDNA can reflect the recent gene status. The low
replacement rate of nDNA reduces the anti-mutation and parallel mutation, including
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the fixed differentiation information of a single locus and low convergence data to lead to
better statistical results (Harris & Hey, 1999). The recent population expansion revealed by
nDNA was likely associated with the warm and humid climate of the post-glacial period
(Su & Zhang, 2013).

The Western and Eastern groups of A. mongolica experienced rapid range expansions
during the Late Pleistocene-Early Holocene (Fig. 5). During the Late Pleistocene, the
continued progress of aridification in northwesternChina contributed to desert expansions,
which in some cases may have provided a broader appropriate habitats (such as at the edges
of deserts and arid piedmont grassland) for expansions of arid land plants (Ma, Zhang &
Sanderson, 2012). The inferred post-glacial expansion tracks along desertmargins have been
revealed in some desert shrubs in northwestern China, including Reaumuria soongarica,
Nitraria tangutorum and Gymnocarpos przewalskii (Jiang et al., 2018; Shi et al., 2020; Sun
et al., 2020). For A. mongolica, the Western and Eastern groups were also found to have
experienced significant outward expansions since the LGM, likely along the edges of the
Ulanbuhe and Tengger deserts and Lang Mountains, respectively (Fig. 7). The warmer
climates during the early Holocene facilitated snow melting on many of the peaks of the
middle and south of the Qilian, Helan and Lang Mountains, a greater amount of runoff
from melting snow and glacial ice resulted, making the local habitats of A. mongolica,
such as the edges of the Ulanbuhe and Tengger deserts and the Lang Mountains wetter
(Shi et al., 2003; Yang et al., 2011). The wet conditions favored the eastward migration of
the eastern populations along the Lang Mountains and the westward migration of the
western populations along the edges of the Ulanbuhe and Tengger deserts towards the
Hexi Corridor.

Conservation implications
Habitat fragmentation and reduction, such as increasing arable land area and urbanization,
accompanied by low genetic variation, could ultimately increase the chance of genetic drift
and inbreeding within populations. In this study, the arid landscape fragmentation led
to the low levels of genetic variation within populations in the YMM (mid-levels of the
Yinshan Mountains), YMF (foot of the Yinshan Mountains) and WLJ (Urad Zhongqi) in
the Eastern group, and in the WSH (northern Helan Mountains), WSM (Wusutu town
of Alxa Left Banner), and ZQL (Southern Helan Mountains) in the Western group (Fig.
1 and Table 1). An integrated assessment and identification of conservation centers is a
more effective way to optimize conservation strategies for A. mongolica (Zhang, Li & Li,
2018). Overall, conservation populations with high levels of genetic diversity facilitate
the maintenance of evolutionary potential and the potential for adaptation to future
environment change (Zhang, Wang & Jia, 2020). However, it is important to consider
habitat suitability and the current and future Land use/cover during establishment of
potential protected areas. Because of this, the south slopes of the Lang Mountains and
the northern Helan Mountains were identified as potential important protected areas, as
they would be beneficial for accumulation of genetic variation, and generation of genetic
mutations, ultimately increasing the evolutionary potential of A. mongolica. For these

Zhang et al. (2022), PeerJ, DOI 10.7717/peerj.13345 17/24

https://peerj.com
http://dx.doi.org/10.7717/peerj.13345


two protected areas, it is recommended that suitable strategies be adopted for in situ
conservation, considering the habitats in both areas are relatively intact.

CONCLUSIONS
This study suggests a combination of climatic fluctuations and aridification during the
Quaternary period combined with significant environmental heterogeneity in the Western
and Eastern groups to play an important role in the phylogeographic structure and genetic
diversity of A. mongolica. For this species, the enhanced aridity along with expansions of
the Ulanbuhe and Tengger deserts, and the eastward extension of the Yinshan Mountains
since the Quaternary period likely interrupted gene flow, triggering the current divergence
in the two allopatric regions. The south slopes of the Lang Mountains and northern Helan
Mountains were identified as having the most potential to be important protected areas for
A. mongolica which is meaningful for the management of this endangered species. Future
experiments will focus on how to better quantitatively describe gene flow.
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