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Abstract

Enrichment of protective microbiota in the rhizosphere facilitates disease suppression. However, how the disruption of
protective rhizobacteria affects disease suppression is largely unknown. Here, we analyzed the rhizosphere microbial
community of a healthy and diseased tomato plant grown <30-cm apart in a greenhouse at three different locations in South
Korea. The abundance of Gram-positive Actinobacteria and Firmicutes phyla was lower in diseased rhizosphere soil (DRS)
than in healthy rhizosphere soil (HRS) without changes in the causative Ralstonia solanacearum population. Artificial
disruption of Gram-positive bacteria in HRS using 500-ug/mL vancomycin increased bacterial wilt occurrence in tomato. To
identify HRS-specific and plant-protective Gram-positive bacteria species, Brevibacterium frigoritolerans HRS1, Bacillus
niacini HRS2, Solibacillus silvestris HRS3, and Bacillus luciferensis HRS4 were selected from among 326 heat-stable
culturable bacteria isolates. These four strains did not directly antagonize R. solanacearum but activated plant immunity. A
synthetic community comprising these four strains displayed greater immune activation against R. solanacearum and
extended plant protection by 4 more days in comparison with each individual strain. Overall, our results demonstrate for the
first time that dysbiosis of the protective Gram-positive bacterial community in DRS promotes the incidence of disease.

Introduction

Rhizosphere microbiota play an important role in plant fit-
ness, development, and immunity [1-4]. The negative and
positive effects of monocropping-induced soil microbial
changes on plant health have been studied for a long time
[5-8]. Monocropping alters the soil environment to
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facilitate disease progression in plants via a phenomenon
known as negative plant—soil feedback [7]. On the other
hand, after continuous and severe disease outbreak, mono-
cropping also suppresses the progression of soil-borne dis-
eases [5, 6]. Disease-suppressive soil was defined as soil
with minimal disease incidence, despite the coexistence of
virulent pathogens and susceptible plant hosts [5]. Disease-
suppressive soil was mainly effective against soil-borne
fungal pathogens such as Rhizoctonia solani, Pythium
ultimum, Gaeumannomyces graminis var. tritici, Plasmo-
diophora brassicae, and Fusarium oxysporum, and a bac-
terial pathogen Ralstonia solanacearum [9-15]. In
continuous monocropping systems, disease-suppressive soil
can be induced by altering beneficial microbial communities
in the rhizosphere [1, 16].

Rhizosphere microbes play a complex role in the estab-
lishment of disease-suppressive soils. Early studies on dis-
easesuppressive soils focused mainly on the direct
mechanism of microbes against a target pathogen. The best
example of an antagonistic microbe in disease-suppressive
soil is the fluorescent pseudomonads, which directly
inhibited the growth of G. graminis var. tritici by producing
the antibiotic 2,4-diacetylphloroglucinol [6, 17]. On the
other hand, the elicitation of induced systemic resistance
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(ISR) contributes indirectly to disease suppression [18-20].
ISR referred to the activation of immunity in the entire plant
against a broad spectrum of pathogens by a rhizobacteria
inoculated at a spatially distant site rather than at the site of
pathogen infection [19, 20]. ISR is primarily regulated by
jasmonic acid (JA) and ethylene (ET) signaling in Arabi-
dopsis and tomato [21, 22]. Certain rhizobacteria can also
trigger salicylic acid (SA)-dependent elicitation of ISR in
plants [23, 24].

Most studies on disease-suppressive soils have focused
on the effect of a selected microbial strain, rather than that
of a microbial consortium, on the target pathogen
[1, 6, 17, 25, 26]. Diverse beneficial rhizobacterial genera
have been identified as disease-suppressing microbes
including the genus of Pseudomonas [1, 17, 25], Bacillus
[27, 28], Paenibacillus [29], and Streptomyces [14, 26].
Over the last decade, advances in next-generation sequen-
cing approaches revealed that disease-suppressive soil is
formed by the orchestrated action of a microbial complex
rather than by a single microbial strain [1-4]. Recently, to
mimic a natural disease-suppressive community, introduc-
tion of a synthetic community (SynCom), comprising
multiple microbial strains, into germ-free or
suppressive soil has been attempted [2, 30, 31]. However,
most exogenous microbes lack the ability to survive in and
colonize the rhizosphere or to protect the host plant under
field conditions [32]. Thus, to design an artificial disease-
suppressive SynCom, it is vital to understand and maintain
homeostasis between the introduced SynCom and the pre-
existing microbial community in the rhizosphere [32-34].

The eubiosis of host-associated microbial communities
can potentially alter disease occurrence [35-39]. In animals,
dysbiosis of gut microbiota, with respect to the composi-
tion, quantity, diversity, and metabolism of microbial
populations, shows a strong correlation with inflammatory
bowel disease, irritable bowel syndrome, neocritical dis-
orders, and colorectal cancer [37—40]. Thus, microbial
dysbiosis can lead to other pathological conditions [41]. In
plants, network analyses reveal differences in the abun-
dance of rhizosphere microbial communities between
disease-suppressive and -conducive soils [26, 42, 43].
However, the effect of the disruption of specific protective
bacteria on the rhizosphere is largely unknown. Dysbiosis
of the phyllosphere microbiota was recently reported to
cause disease on Arabidopsis leaves [44]. Reduction of
Firmicute caused by an increase of the antagonistic Pro-
teobacteria population was the main indication of dysbiosis.

Here, we examined the rhizosphere of two adjacent
paired tomato plants with and without disease symptoms
grown within a 30-cm distance in a greenhouse in three
different geographic locations in South Korea. Both plants
showed drastic differences in the incidence of bacterial wilt,
despite the presence of a similar amount of the causal

non-

pathogen, Ralstonia solanacearum, in their rhizosphere.
Analysis of the rhizosphere samples by 16S rRNA amplicon
sequencing and cultivation-based approaches revealed a
decline of Firmicutes and Actinobacteria in the diseased
rhizosphere soil (DRS). Strikingly, the disruption of Fir-
micutes and Actinobacteria in the healthy rhizosphere soil
(HRS) using the antibiotic vancomycin led to the DRS-
mimicking phenomenon. Furthermore, a SynCom of HRS-
specific strains activated JA signaling-dependent ISR
against R. solanacearum in tomato. Based on our results,
we suggest that dysbiosis of the protective microbial com-
munity in the soil disrupts disease suppression. Our results
will help to broaden the agricultural applications of syn-
thetic microbial communities as biological control agents
against plant pathogens.

Materials and methods
Experimental setup and sampling

HRS and DRS samples were collected from three tomato
plastic greenhouses, one each in Damyang (35°15'53.4"N
and 126°55’11.8"E), Yongin (37°06'20.6"N and 127°08’
14.3"E), and Gwangju (37°29'24.1”N and 127°18'22.6"E),
in South Korea. Each greenhouse was 6.6 x 100 m in size
and contained 950-1200 tomato plants. The temperature in
each greenhouse was maintained at 30+5°C. Tomato
plants in the selected DRS samples showed severe bacterial
wilt symptoms including stem blight; wilting of petioles,
main stem, branch tips, and leaves; and chlorosis and
necrosis of foliage. Tomato plants in HRS samples did not
show bacterial wilt symptoms and were adjacent to DRS
samples (within a distance of 30 cm). The HRS and DRS
were filtered through a 2-mm mesh to remove large soil
particles and collected only rhizosphere soil without plant
root tissue and debris. Then, the HRS and DRS were sus-
pended in sterile distilled water for 30 min to remove tightly
attached soil particles. The soil solution was centrifuged at
8000 rpm for 10min, and the soil pellet containing the
microbiome was stored at —80 °C until needed for micro-
bial community analysis.

Extraction of soil microbiota

Soil microbiome was extracted from HRS and DRS samples
as described previously [45]. Briefly, HRS and DRS frac-
tions (1 g/mL each) in 2.5-mM 2-(n-morpholino) ethane-
sulfonic acid (MES) monohydrate buffer were applied to the
root system of 14-day-old tomato seedlings for 30 min
using the root-dipping method. The HRS/DRS fraction-
treated tomato plants were transplanted in sterilized soil and
inoculated with R. solanacearum, the causal organism of
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bacterial wilt. At 10 days post inoculation (dpi), the severity
of bacterial wilt was recorded on a 0-5 scale [46], with O
indicating no symptoms, 1 indicating one partially wilted
leaf, 2 indicating one to two wilted leaves, 3 indicating two
to three wilted leaves, 4 indicating four or more wilted
leaves, and 5 indicating the death of the entire plant.

Disease suppression by the extracted soil microbiota

Seedlings of the bacterial wilt susceptible tomato variety,
Juiken, were cultivated in sterile soil for 14 days after
germination. Roots of tomato seedlings were treated with
soil microbial fractions using the root-dipping method. On
day 14, the treated roots were washed with distilled water
to remove the attached soil particles and were immersed in
20-mL soil fraction for 30 min. Then, tomato seedlings were
transplanted in sterilized soil and grown at 28 °C for 5 days.
To inoculate tomato seedlings with the pathogen, R. sola-
nacearum was grown in casamino acid-peptone-glucose
(CPG) broth (1-g/L. casamino acids, 10-g/L peptone, and
5-g/LL glucose) at 30°C for 24h, and 10-mL pathogen
suspension (ODggg = 1) was applied to the soil by drench
application. All experiments were performed in triplicate,
with 12 plants per treatment.

Structure of the tomato rhizosphere microbiome

Microbial genomic DNA was extracted from HRS and DRS
samples using the FastDNA Spin Kit (MP Biomedicals,
Irvine, CA, USA) and quantified using Epoch Spectrometer
(Biotek, VT, USA). PCR amplification was performed
using primers targeting V3 and V4 regions of 16S rRNA
genes. The first round of amplification was carried out using
primers 341F and 805R (Table S1) under the following
conditions: denaturation at 95°C for 30s, annealing at
55 °C for 30 s, and extension at 72 °C for 5 min. Secondary
amplification was performed to attach the Illumina NexTera
barcodes using primers i5-F and i7-R (Table S1) under the
same amplification conditions as described above; however,
the number of amplification cycles was set to eight. The
PCR products were separated by electrophoresis on 1%
agarose gel and visualized using a Gel-Doc system (Bio-
Rad, Hercules, CA, USA). Then, the PCR products were
purified using the CleanPCR Kit (CleanNA, Waddinxveen,
the Netherlands), and equal concentrations of the purified
products were pooled together. Nontarget short fragments
were removed using the CleanPCR Kit, and the quality and
size of PCR products were assessed using the DNA 7500
chip on Bioanalyzer 2100 (Agilent, Palo Alto, CA, USA).
Pooled amplicons were sequenced at ChunLab, Inc. (Seoul,
South Korea) using the Illumina MiSeq platform, according
to the manufacturer’s instructions.

SPRINGER NATURE

Data analysis using the MiSeq pipeline

The quality of the native sequence was evaluated by
FastQC, and low-quality cutoffs for forward and reverse
readings were determined. Then I brought forward and
reverse readings to QIIME2 (v 2020.2) [47] for quality
control, diversity analysis, and sequence classification.
The quality control function in DADA?2 [48] was used to
cut forward, reverse readout and noise cancellation, chi-
mera detection, and removal. Alpha diversity estimates for
community abundance included Shannon Index and
operational taxonomic unit, and community uniformity
estimates included Pielou’s uniformity. Phylogenetic trees
were developed in QIIME?2 to estimate beta diversity. The
pairwise sample estimates (beta diversity) included the
Bray—Curtis similarity distance matrix. The classification
level of all sample readings was assigned to the species
level using the Silva 132 Reference Taxonomy Database
(https://docs.qiime2.org/2019.1/data-resources/). Relative
proportions were calculated because changes in propor-
tions at the Phlyum level are related to soil conditions. For
this analysis, samples were normalized within the group
using DESeq?2.

We also used linear discriminant analysis effect size
(LDA score>2, P value<0.05) [49] to identify taxa
features that were differentially expressed between
samples.

Estimation of viable Firmicutes and Actinobacteria
bacteria in soil samples

The ratio of viable Firmicutes and Actinobacteria bacteria
to the total number of Gram-negative bacteria in HRS and
DRS samples was measured using two methods. A total of
180 bacterial colonies were first tested using the 3% KOH
string test [50], and the ratio of Firmicutes and Actino-
bacteria bacteria to the total number of Gram-negative
bacteria was calculated using the following equation:

Viable KOH reactive Gram—positive bacteria (%)

_ Number of non—reactive bacterial colonies « 100

(1)

Number of reactive bacterial colonies

Then, HRS and DRS microbial fractions were inoculated
onto Tryptic Soy Agar (TSA, Difco Laboratories, Detroit,
MI, USA) medium containing no selection marker, 20-ug/
mL polymyxin B, or 5-ug/mL vancomycin, and were
incubated at 30 °C for 1 day. The ratio of Firmicutes and
Actinobacteria bacteria to the total number of Gram-
negative bacteria was calculated based on the colony-
forming unit (CFU) values of bacterial isolates, as shown
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below:

Viable Gram—positive bacteria (%)

CFU on TSA containing polymyxin B i
_ on confaming polymyxin s 0. .

~ CFU on TSA containing vancomycin
All experiments were performed in triplicate.
Optimization of vancomycin treatment

To optimize the vancomycin treatment, HRS and DRS
microbial fractions (1 g/mL each) were treated with three
different concentrations of vancomycin (5, 50, and 500 pg/
mL) for three different durations (0, 3, and 6 h). The HRS
and DRS fractions treated with 500-pg/mL vancomycin
were centrifuged, and pellets were washed twice with 2.5-
mM MES buffer to remove residual vancomycin. Soil
fractions treated with or without vancomycin were inocu-
lated on TSA medium containing 0- or 5-ug/mL vanco-
mycin. To induce the dysbiosis of Firmicutes and
Actinobacteria, each soil fraction was added to 500-ug/mL
vancomycin and incubated at 30 °C for 3 h.

To examine the vancomycin sensitivity of the bacterial
wilt pathogen and protective bacteria, a suspension
(ODggp = 1.0) of R. solanacearum was plated on a CPG
medium containing 2,3,5-triphenyl tetrazolium chloride
(TZC), and that of each of the four selected protective
bacterial strains HRS1, HRS2, HRS3, and HRS4 was plated
on TSA medium. Then, 10-uL vancomycin (500, 50, 5, and
0.5 ug/mL) or kanamycin (50 pg/mL; control) was dropped
on each inoculated plate and incubated at 30 °C for 2 days.
The plates were examined after 2 days to examine the
development of an inhibition zone. All experiments were
performed in triplicate.

Isolation and cultivation of spore-forming bacteria
in vitro

To isolate spore-forming bacteria, HRS and DRS fractions
were incubated at 80 °C for 30 min [51], plated on TSA
medium, and incubated at 30 °C for 48 h. To determine the
identity of each bacterial colony, 16S rRNA sequencing was
performed at GenoTech (Daejeon, South Korea) using the
primer pair 27F/1492R (Table S1). Sequence reads were
aligned using BLASTn (http://blast.ncbi.nlm.nih.gov/Bla
stcgi), and the closest match was identified.

Root colonization capacity of HRS-specific bacterial
isolates

To assess the colonization of tomato roots by the four
selected bacterial isolates, CFU values of the four sponta-
neous rifampicin-resistant strains of HRS1, HRS2, HRS3,

and HRS4 were measured as described previously [52, 53].
Briefly, rhizosphere soil suspension and tomato seedling
roots treated with each rifampicin-resistant bacterial sus-
pension (ODgyy = 20) were prepared at 0, 1, and 2 weeks
post inoculation (wpi). The rhizosphere soil suspension was
incubated on TSA medium containing 100-pug/mL rifampi-
cin for 2-3 days at 30 °C, and then the bacterial population
was measured. All experiments were performed in triplicate,
with five plants per treatment.

Evaluation of disease suppression by HRS-specific
bacterial isolates

The selected bacterial species were cultured on TSA med-
ium for 24 h and then suspended in sterile distilled water
(ODggp = 1.0). Tomato seedling roots were washed with
sterile water and immersed in each bacterial suspension for
30 min. Then, the tomato seedlings were transplanted in
sterilized soil and grown at 28 °C for 5 days. Subsequently,
tomato roots were inoculated with R. solanacearum via
drench application, as described above. This experiment
was performed in triplicate, with 12 plants per treatment.

To perform the ISR test, roots of tomato seedlings were
treated with the four selected bacterial strains HRS1, HRS2,
HRS3, and HRS4 and two soil fractions (HRS and DRS).
After 7 days, 50-uL. R. solanacearum suspension was
injected into the stem of these tomato plants using a 200-puL
pipette tip. To conduct the SynCom treatment, suspension
cultures of all four strains were mixed, and the final ODggg
of each bacteria was adjusted to 1.0. This experiment was
performed in triplicate, with 12 plants per treatment.

Antagonistic effects of each of the four selected isolates
against R. solanacearum were examined using the co-
culture method [54]. A suspension of R. solanacearum
(ODgpp = 1.0) was plated on TSA medium. Then, 10 pL
each of HRS1, HRS2, HRS3, and HRS4 (ODg¢yy = 1.0) or
of gentamycin (0.5 mg/mL; control) was dropped on the
pathogen-inoculated plate. The plates were then incubated
at 30 °C, and the development of an inhibition zone was
examined after 2 days. This experiment was performed in
triplicate.

Expression analysis of defense signaling marker
genes in tomato

Total RNA was extracted from tomato leaves harvested at O
and 12 h after pathogen inoculation, and first-strand cDNA
was synthesized as described previously [55]. Then, quan-
titative real-time PCR (qRT-PCR) was performed on the
Chromo4 Real-Time PCR System (Bio-Rad, Hercules, CA,
USA) using the cDNA template, iQTM SYBR® Green
Supermix (Bio-Rad), and 10-pM sequence-specific primers
(Table S2) wunder the following conditions: initial
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that of Ubiquitin3 mRNA. All qRT-PCR experiments were
performed in triplicate.
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Fig. 1 Differences in rhizosphere disease suppression between two
adjacent tomato plants. a Images of healthy and diseased tomato
plants grown within a 30-cm distance in three different locations
(Damyang, Yongin, and Gwangju) in South Korea. Red arrows indi-
cate the wilted tomato plants infected by Ralstonia solanacearum. To
prepare the microbial fraction, healthy rhizosphere soil (HRS) and
diseased rhizosphere soil (DRS) were suspended in 2.5-mM MES
buffer. Roots of 14-day-old tomato seedlings were dipped in the
microbial fractions for 30 min. Severity of bacterial wilt disease caused
by R. solanacearum was quantified. Data represent mean + standard
error of the mean (SEM; n=12 plants per treatment). Asterisks
indicate significant differences (*P <0.05, **P <0.01, ***P <0.001).
b Cell density of R. solanacearum in HRS and DRS fractions plated
on casamino acid-peptone-glucose (CPG) agar medium containing
2,3,5-triphenyl tetrazolium chloride (TZC), 0 or 50-g/mL ampicillin
(AP), and 0 or 5-g/mL vancomycin (Van). ¢ Scoring of disease
severity on a 0-5 scale. d Disease severity in HRS and DRS fraction-
treated tomato plants at 10-14 days post inoculation (dpi). BTH, 0.5-
mM benzothiadiazole treated tomato; control, 2.5-mM MES buffer-
treated tomato.

Statistical analysis

Two-way analysis of variance and two-tailed Student’s ¢ test
were performed in the R program [56] to analyze the data.
Differences were considered statistically significant at P <0.05.

Results

Uneven distribution of bacterial wilt symptoms in
the greenhouse

In this study, we observed the occurrence of bacterial wilt
disease in three different greenhouses located in Yongin,
Gwangju, and Damyang, South Korea; however, these
symptoms randomly appeared only in local areas (<l-m
diameter) and did not spread throughout the greenhouse at
the end of season in any of the three locations, where the
physicochemical properties of soil differed (Fig. la and
Table S3). A patch of dead or dying tomato plants affected
by bacterial wilt appeared between two healthy plants
spaced <30-cm apart (Fig. 1a). The population of the casual
pathogen, R. solanacearum, was 9.3 x 10° and 1.1 x 10°-
CFU/g soil in HRS and DRS, respectively, and this differ-
ence in population size was not statistically significant (P =
0.05) (Fig. 1b). The inoculum potential of R. solanacearum
at 10°7 CFU/mL is sufficient to cause bacterial wilt [57].
Therefore, changes in the pathogen population in the rhi-
zosphere did not underlie the difference in the occurrence of
bacterial wilt between healthy and diseased plants.
Because the composition of rhizosphere microbiome
can be used to determine the suppression of bacterial wilt
in tomato, as demonstrated previously [4, 58], we exam-
ined whether microbial fractions prepared from HRS and
DRS samples were responsible for bacterial wilt

occurrence (Fig. 1a). In plants treated with 2.5-mM MES
buffer (negative control), bacterial wilt symptoms began
to appear at 11 dpi (Fig. 1a). Treatment of tomato plants
with 0.5-mM benzothiadiazole (BTH; a positive control),
which activates plant immunity against R. solanacearum
without antagonism [59], reduced the disease severity by
75% at 11 dpi and by 58% at 13 dpi, but not at 12 or 14
dpi, compared with the control (Fig. 1d). The HRS frac-
tion significantly reduced bacterial wilt severity by 83%,
65%, and 64% at 11, 13, and 14 dpi, respectively, com-
pared with the control, but did not reduce disease severity
at 12 dpi (Fig. 1d). On the other hand, the DRS fraction
failed to suppress bacterial wilt disease at all time points
(Fig. 1d). These data indicate that the difference in bac-
terial wilt occurrence between two tomato plants was
caused by the difference in soil microbiome composition
between HRS and DRS fractions, rather than by the dif-
ference in pathogen abundance.

Comparison of microbiome between HRS and DRS
fractions

To detect differences in microbial composition between
healthy and diseased rhizosphere samples, seven HRS and
eight DRS collected from Damyang, Yongin, and Gwangju
were subjected to 16S rDNA amplicon sequencing (Fig. 2).
Relative abundance analysis indicated that Proteobacteria,
Firmicutes, Actinobacteria, Acidobacteria, and Bacteroidete
were major bacterial communities at the phylum level
(Fig. 2a). Alpha diversity analysis revealed no differences in
bacterial evenness and richness indices (Fig. S1), whereas
principal coordinate analysis, based on the Bray—Curtis dis-
similarity index, revealed clear differences between HRS and
DRS samples (Fig. 2b). Among five major phyla, the read
numbers of Gram-positive Firmicutes and Actinobacteria
were higher in HRS samples than in DRS samples (Fig. 2c).
The read numbers of Firmicutes in HRS were increased by
1.57-fold, 1.13-fold, and 1.25-fold in Damyang, Yongin, and
Gwangju, respectively (Fig. 2c¢). The read numbers of Acti-
nobacteria in HRS were increased by 1.15-fold, 1.12-fold, and
1.23-fold in Damyang, Yongin, and Gwangju, respectively
(Fig. 2¢). On the other hand, the read numbers of Proteo-
bacteria and Bacteroidetes phyla were lower in HRS samples
than in DRS samples in Damyang and Gwangju, but higher in
Yongin (Fig. 2c). Conversely, the read numbers of Acid-
obacteria phyla were lower in HRS samples than DRS sam-
ples in Yongin, but higher in Damyang and Gwangju
(Fig. 2c). To validate the enrichment of viable Firmicutes and
Actinobacteria in the HRS fraction, we conducted the 3%
KOH string test, and cultured Firmicutes and Actinobacteria
on selective media containing 20-ug/mL polymyxin B or
5-pug/mL vancomycin to calculate their CFU values (Fig. 2d).
In both experiments, the ratio of viable Firmicutes and
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Actinobacteria to Gram-negative bacteria in HRS samples

was increased

with DRS samples (Fig. 2d).
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by 26.2% and 26.3%, respectively, compared  variant (ASV) in Firmicutes and Actinobacteria in HRS,

we selected the top three Firmicute and Actinobacteria
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<« Fig. 2 Comparison of soil community structure between HRS and

DRS samples based on pyrosequencing of 16S rRNA amplicons. a
Relative abundance of rhizobacteria at the phylum level in HRS and
DRS samples collected from greenhouses in Damyang, Yongin, and
Gwangju in South Korea. b Two-dimensional principal coordinate
analysis (PCoA) of Bray—Curtis dissimilarity. Significant differences
in microbial community composition were detected between HRS and
DRS samples in Damyang, Yongin, and Gwangju. ¢ The absolute read
numbers of Firmicute, Actinobacteria, Proteobacteria, Acidobacteria,
and Bacteroidetes in HRS and DRS from fields in Damyang, Yongin,
and Gwangju. Gram+ Gram-positive bacterial groups, Gram— Gram-
negative bacterial groups. d Measurement of the ratio of viable Fir-
micutes and Actinobacteria to Gram-negative bacteria in HRS and
DRS samples using the 3% KOH string test and based on the quan-
tification of colony-forming unit (CFU) values of bacterial isolates on
TSA medium containing 20-pg/mL polymyxin B (toxic to Gram-
negative bacteria) and 5-ug/mL vancomycin (toxic to Gram-positive
bacteria). Data represent mean + SEM. Asterisks indicate significant
differences (*P <0.05, **P <0.01, ***P <0.001). e LefSe analysis of
the Firmicutes and Actinobacteria community in HRS and DRS
samples collected from Damyang, Yongin, and Gwangju. LefSe ana-
lysis was used to identify the most discriminating ASVs of Firmicutes
and Actinobacteria phyla in HRS.

ASVs showing a significant difference in relative abun-
dance between HRS and DRS fractions using the Lefse
method (Fig. 2e). Among Firmicute ASVs, three Bacilli
class ASVs in Damyang and Yongin, and two Bacilli class
ASVs and one Clostridia class ASV in Gwangju, were the
most discriminating ASVs enriched in HRS samples
(Fig. 2e). Meanwhile, among Actinobacteria ASVs, two
Actinobacteria class ASVs and one Acidimicrobiales class
ASV in Yongin, and three Actinobacteria class ASVs in
Gwangju, were the most discriminating ASVs enriched in
HRS samples (Fig. 2e). Collectively, these data led us to
hypothesize that changes in the relative abundance of
Bacilli and Actinobacteria classes in the rhizosphere
determine the suppression of bacterial wilt in tomato.

Effect of Firmicutes and Actinobacteria disruption
on disease suppression in HRS

To examine the role of Firmicutes and Actinobacteria in
bacterial wilt incidence in tomato, we specifically inhib-
ited the growth of Firmicutes and Actinobacteria in HRS
using vancomycin, which is an antibiotic against Gram-
positive bacteria [60] (Figs. 3a and S2). Based on the
optimization experiment (Fig. S2 and Table 1), HRS and
DRS fractions pretreated with or without 500-ug/mL
vancomycin were applied to the tomato root system
(Figs. 3b and S3). Compared with the HRS treatment
(HRS), vancomycin-pretreated HRS (HRS + vancomy-
cin) significantly increased bacterial wilt severity by 1.8-,
1.7-, 1.5-, 1.5-, and 1.5-fold at 12, 13, 14, 15, and 16 dpi,
respectively (Figs. 3b and S3). Conversely, vancomycin-
pretreated DRS (DRS + vancomycin) did not alter bac-
terial wilt severity compared with the DRS treatment

(DRS) (Figs. 3b and S3). Compared with the control,
exogenous vancomycin treatment (500 mg/mL) did not
reduce the severity of bacterial wilt (Fig. 3b and S3), and a
droplet of vancomycin (0.5, 5, 50, and 500 ug/mL) did not
directly inhibit the growth of R. solanacearum (Fig. S4a).

Interestingly, the viable Firmicutes and Actinobacteria
ratio in HRS + vancomycin-treated tomato rhizosphere was
significantly lower than that in HRS-treated tomato rhizo-
sphere by 25.5% in the 3% KOH string test, and by 35.1%
on selective medium (based on CFU values) at 5 wpi
(Fig. 3d); by contrast, no differences were detected between
DRS and DRS + vancomycin treatments (Fig. 3d). How-
ever, R. solanacearum and total bacterial population
showed no significant differences between HRS, HRS +
vancomycin, DRS, and DRS + vancomycin treatments at 5
wpi (Figs. 3¢ and S5). These data indicate that disruption of
vancomycin-sensitive HRS-specific Firmicutes and Acti-
nobacteria attenuated HRS-mediated disease suppression
against R. solanacearum.

Isolation of Firmicutes and Actinobacteria enriched
in HRS samples

Out of 326 bacterial colonies, 59 and 67 Gram-positive bac-
teria belonging to Firmicutes and Actinobacteria phyla were
isolated from heat-treated HRS and DRS fractions, respec-
tively (Fig. 4a), and 30 Bacillales and one Actinomycetales
were specifically isolated from three different HRS samples
(Fig. 4a, b). One Actinomycetales (Brevibacterium frigor-
itolerans) and 12 Bacillales (Bacillus niacini, B. luciferensis,
B. indicus, B. loiseleuriae, B. onubensis, Gracilibacillus
ureilyticus, Lysinibacillus acetophenoni, Oceanobacillus
caeni, Ornithinibacillus californiensis, Paenibacillus konsi-
densis, Paenisporosarcina quisquiliarum, and Virgibacillus
marseillensis) were isolated from the Damyang HRS sample
(Fig. 4b). One Actinomycetales (B. frigoritolerans) and nine
Bacillales (B. niacini, Solibacillus silvestris, B. aerius,
B. amyloliquefaciens, B. humi, B. megaterium, B. methylo-
trophicus, B. thioparans, and L. alkaliphilus) were isolated
from the Yongin HRS sample (Fig. 4b). One Actinomycetales
(B. frigoritolerans) and ten Bacillales (B. endophyticus,
B. flexus, B. oceanisediminis, B. subtilis, B. thuringiensis, B.
toyonensis, B. vini, B. wiedmannii, L. louembei, and Rum-
meliibacillus pycnus) were isolated from the Gwangju HRS
sample (Fig. 4b). B. frigoritolerans HRS1 (HRS1), B. niacini
HRS2 (HRS2), S. silvestris HRS3 (HRS3), and B. luciferensis
HRS4 (HRS4) were selected as keystone taxa isolates
conferring HRS, with culturable bacterial abundance >5%
(13%, 10%, 10%, and 6%, respectively) (Fig. 4b). HRS1 was
isolated from all three regions, HRS2 was isolated
from Damyang and Yongin, while HRS3 and HRS4 were
specifically isolated only from Yongin and Damyang,
respectively (Fig. 4b). These four isolates were sensitive to
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500-pug/mL vancomycin (Fig. S4b). The relative abundance of
B. frigoritolerans and B. niacini in HRS fractions was 5.5-
and 5.22-fold higher than that in DRS fractions, respectively
(Fig. 4c and Table 2). Although the relative abundance of S.
silvestris and B. luciferensis in HRS was slightly higher than
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that in DRS, this difference was not statistically significant
(Fig. 4c).

Compared with the control, strains HRS1 and
HRS?2 significantly reduced disease severity at 13 dpi (by up
to 2.6- and 2.1-fold, respectively) and 14 dpi (by 2.2- and
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<« Fig. 3 Dysbiosis of Firmicutes and Actinobacteria in the tomato i:’ o o o o
rhizosphere. a Disease severity and viable Firmicutes ratio in HRS sl9 s 5 %
and DRS samples pretreated with or without 500-pg/mL vancomycin. NS oo S
After 3-h incubation at 30 °C, soil fractions were washed twice with =
2.5-mM MES buffer. The prepared soil fractions pretreated with or i — n < oo
without vancomycin were applied to tomato roots via the root-dipping g &8 g 8 8
method. b Severity of bacterial wilt disease in tomato plants treated 2 i’l i’l i’l ﬁ’l
with HRS and DRS fractions, with or without 500-ug/mL vancomycin S = =
pretreatment. HRS HRS fraction, HRS + vancomycin HRS pretreated <\; = S g f,
with 500-ug/mL vancomycin, DRS DRS fraction, DRS + vancomycin
DRS pretreated with 500-ug/mL vancomycin, 500-mg/mL vancomy- s g ~ o <
cin root-dipping treatment with 500 mg/mL vancomycin. Data repre- g g= E o o = A
sent mean = SEM. Different letters indicate significant differences 3 =18 ?I ?I ?I i’l
between treatments (P < 0.05; least significant difference [LSD] test). g § § © — o o
¢ Changes in R. solanacearum cell density in HRS and DRS fractions S = 3 % % % =
pretreated with or without 500-pg/mL vancomycin. d Changes in g © nonownn
Firmicutes abundance in HRS and DRS fractions pretreated with or é 2 £
without 500-pg/mL vancomycin. The ratio of viable Firmicutes bac- & S § é g % 2
teria was measured using the 3% KOH string test and by the quanti- li' Ll o S s S g
fication of the CFU values of bacterial isolates grown on TSA medium e - §
containing 20-ug/mL polymyxin B or 5-ug/mL vancomycin. 2 g >
Slezzz| g
. ) 5 8ls s s S 3
2.1-fold, respectively) (Fig. 4d). By contrast, BTH reduced o0 S|+ + o+ =
. . . . = > — —_
disease severity only at 13 dpi (by 2.4-fold), while HRS3 :g el = g 23 §
and HRS4 failed to suppress bacterial wilt disease at all time | S e 'a:j
points (Fig. 4d). These results indicate that B. frigoritoler- ; S5l e o o o <
ans (HRS1) and B. niacini (HRS2) play an important role in 2 § g % E g § 4
. . L S
bacterial wilt suppression in tomato. g ;‘::’ = HoHoH §
R T
ARCINEEEEI
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The population of HRS1, HRS2, HRS3, and HRS4 was 4 : 5
1.8x107, 1.6x107, 24x 107, and 1.7x 10°CFU/g soil, & §° Sl4 - 4 o §
respectively, at 0 wpi; 3.5x 10, 5.2x10%, 7.6x10%, and 2 = g § § g § §
1.3x IOS-CFU/g soil, respectively, at 1 wpi; and 6.1 x 105, 3 & § ooy <+r| g
3.1x10% 7.3 % 10%, and 3.6 x 103—CFU/g soil, respectively, g j:/ ecl=58 8 8 E]
at 2 wpi (Fig. 4e). However, these four strains were not & g 3 A
detected in macerated surface-sterilized root and stem tis- =| 2|8 El o = » o g
- - AR E EEEE: 3
sues at any time point (data not shown). zl=|2|§|s3s<3<S Z
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212 <
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Because of the lack of antagonism between R. solana- oy & &=
T . . . . RN =
cearum and individual strains during co-cultivation é 5 S
<
(Fig. 5a), we hypothesized that the four rhizobacterial S|& §
. . . . =) [5)
strains suppress R. solanacearum by activating ISR in g =2 §
tomato. While the four isolates were applied to the tomato i z >
root, R. solanacearum was injected into the stem of the gl e . £
. . . . = |.2 g 5
tomato plant to maintain spatial separation between the Z| & g 3
rhizobacteria and the pathogen [61, 62] (Fig. 5a, b). = 3 g éﬁ
In the control treatment, bacterial wilt symptoms devel- % g v £
oped 9 days earlier with stem inoculation compared with ERE: = =
root drench application (Fig. 5c, d). BTH significantly Sl s 2
- | = 8
reduced disease severity by 1.5-fold at 2 dpi compared with 28 o || E
. . < ~
the control (Fig. 5¢). HRS1 and HRS2 reduced disease e > cw ®K|EC
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severity by 1.4- and 1.6-fold, respectively, at 3 dpi com-  However, HRS3 and HRS4 failed to suppress disease
pared with control, and their effect on disease suppression  severity (Fig. 5c). These data show that HRS1 and HRS2
was >1.5-fold greater than the effect of BTH (Fig. 5c). elicit ISR against R. solanacearum in tomato. In addition,
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<« Fig. 4 Identification of heat-stable Firmicutes and Actinobacteria g
in HRS and DRS samples. a Isolation of spore-forming Firmicutes 2
bacteria from HRS and DRS fractions treated with high temperature '5 é g E E
(80 °C) for 30 min. Heat-treated soil fractions were inoculated on TSA
medium and incubated at 30 °C for 3 days. b Identification of HRS- g
specific Firmicutes bacteria present in soil from tomato fields in K]
Damyang, Yongin, and Gwangju. A total of 326 colonies of spore- Ql|loc oo o
forming bacteria were randomly selected and identified by 16S rDNA
sequencing, and 21 species were identified as HRS-specific bacteria. =
¢ Investigation of the distribution of selected bacteria in the tomato g
rhizosphere using 16S rRNA sequencing. d Severity of bacterial wilt ._‘15’, “ o —
in tomato seedlings treated with HRS-specific Firmicutes bacteria. & 2
Data represent mean = SEM (n = 12 plants per treatment). Asterisks
indicate significant differences (*P <0.05, **P <0.01, ***P <0.001). £
ISR activated by the HRS fraction was twofold greater than g E § § -
that activated by HRS1 or HRS2 at 3 dpi, and was main-
tained until 5 dpi (Fig. 5d). The HRS fraction significantly %
reduced disease severity by 2.4-, 2.5-, and 1.4-fold at 2, 3, e o o
and 5 dpi, respectively, compared with the control (Fig. 5d). 3 " AT %
However, the DRS fraction failed to suppress bacterial wilt
disease, except at 2 dpi (Fig. 5d). These results led us to §
hypothesize that Firmicutes and Actinobacteria elicit a gl _ —ww
combinatorial effect in HRS. Sl Y g 3
Activation of ISR by a minimum SynCom of &
Firmicutes and Actinobacteria Ol e
g |5
HRS1 and HRS?2 failed to reduce bacterial wilt disease after 4 %’_ g
dpi when applied individually (Fig. 5c); however, a mixture g % - < — oo
of these two strains (HRS1 + HRS2) significantly reduced £ = -
disease severity by 1.7- and 1.5-fold at 4 and 5 dpi, respec- é £
tively, compared with the control, and to similar levels as the 2|5
HRS fraction (Figs. 5d and 6a). Therefore, we generated a 2 g
minimum SynCom by amending the two-strain mixture =1 E
(HRS1 4+ HRS2) with HRS3 and/or HRS4, and tested its 5 %D = §r § §
effect on disease severity (Fig. 6a). Although the HRSI + &
HRS2 + HRS3 mixture reduced bacterial wilt severity by 1.5- = g
fold at both 4 and 5 dpi compared with the control, it showed Eg_ 2l 2w g
no significant difference compared with HRSI1 -+ HRS2 = 5|l% %5 2
(Fig. 6a). On the other hand, the HRSI +HRS2 + HR4 Al IR
mixture reduced disease severity by 1.5-, 2.0-, and 1.3-fold at _E:i 3
4, 5, and 6 dpi, respectively, compared with the control é §
(Fig. 6a). A mixture of all four isolates (HRS1 + HRS2 + €| 5
HRS3 + HRS4) further reduced disease severity by 2.0-, 1.8-, fj _§ &g 493
1.3-, and 1.2-fold at 4, 5, 6, and 7 dpi, respectively, compared § « @
with the control (Fig. 6a). These data indicate that a SynCom bS] 2
comprising all four isolates activated the highest level of ISR g §
against R. solanacearum in tomato. <5 £
To examine whether the SynCom comprising all four bac- —5 <:> §° § -2
terial isolates activates defense signaling in tomato, we ana- 23 ? 2 ;§ §
lyzed the expression patterns of the defense-related marker % g § g ; §
genes involved in JA, SA, ET, and abscisic acid (ABA) sig- i s § ; 3 E
naling in systemic leaves at 0 and 12-h post inoculation (hpi) 2 E = & § &
(Figs. 6b and S6). Treatment with the SynCom upregulated the Elelas &8I
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Fig. 5 Activation of induced systemic resistance (ISR) against
Ralstonia solanacearum in HRS samples by the spore-forming
Firmicutes and Actinobacteria. a Co-cultivation of HRS-specific
Firmicutes bacteria and bacterial wilt pathogen R. solanacearum on TSA
agar medium. Four selected bacterial strains (50 pL; ODgyy = 1), genta-
mycin (GM; 0.5mg/mL; positive control), or sterile distilled water
(Control; negative control) were dispensed on a lawn of R. solanacearum
on TSA agar plates, and photographs were captured after 2 days.

expression of JA signaling marker genes Pin2, AOS, and LoxD
by 3.9-, 1.8-, and 1.9-fold, respectively, at 12 hpi compared
with the control; however, treatment with BTH did not activate
these genes (Fig. 6b). In addition, compared with the control,
SynCom upregulated the expression of SA signaling marker
genes PR-P6, NPRI, and PRIa by 3.5-, 1.7-, and 2.0-fold,
respectively, at 12 hpi (Fig. 6b), whereas BTH activated these
genes by 6.1-, 1.5-, and 7.9-fold, respectively (Fig. 6b).
However, the expression of ET and ABA signaling genes was
not activated by the SynCom or BTH (Fig. S6). These data
showed that the SynCom primed JA- and SA-dependent ISR
against R. solanacearum in tomato.

Discussion
Plants manipulate rhizosphere microbiota to establish dis-
ease suppression in the soil [2-4, 63]. Recent studies mostly

focused on disease suppression by protective single bacteria
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b Spatial separation system. A suspension of R. solanacearum (50 uL;
ODgy = 1) was injected into the tomato stem 7 days after the root
system was treated with each of the four selected Firmicutes strains.
Severity of bacterial wilt disease caused by the injection of R. solana-
cearum suspension into the stems of tomato plants treated with HRS-
specific Firmicutes bacteria (c), or with HRS and DRS fractions (d). Data
represent mean + SEM (n = 12 plants per treatment). Asterisks indicate
significant differences (*P < 0.05, **P <0.01, ***P <0.001).

and unidentified bacterial consortium in the rhizosphere
[3, 16, 32, 64-66]. In animal science, dysbiosis of protec-
tive microbiota has been correlated with disease incidence
[37—41, 67]; however, in plants, the effect of the disruption
of rhizosphere bacteria on disease suppression is largely
unknown. In this study, we showed that disruption of ISR-
eliciting Firmicutes and Actinobacteria abundance in
tomato rhizosphere conferred suppression of bacterial wilt
(Figs. le and 2) [40, 41, 67]. Because a homeostatic balance
of microbial community composition is important for
healthy host—microbe relationships, both the enrichment
and disruption of microbiota abundance serve as important
mechanisms of disease incidence in plants [67-71].

To confirm the role of rhizosphere microbiota disruption
in disease suppression, we used vancomycin to disrupt
populations of bacteria belonging to Firmicutes and Acti-
nobacteria phyla in tomato rhizosphere. Previous studies
employed a pasteurization method, involving the use of
moist heat, methyl bromide, or chloropicrin, which kills a
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Fig. 6 Activation of ISR by a SynCom comprising four HRS-
specific Firmicutes strains (HRS1-4). a Severity of bacterial wilt
disease in tomato plants inoculated with Ralstonia solanacearum after
treatment with different combinations of the four selected Firmicutes
bacteria. HRS1+ HRS2 mixture of Brevibacterium frigoritolerans
(HRS1) and Bacillus niacini (HRS2), HRS1 + HRS2 + HRS3 mixture
of HRS1, HRS2, and Solibacillus silvestris (HRS3), HRS1 + HRS2 +
HRS4 mixture of HRS1, HRS2, and Bacillus luciferensis (HRS4),
HRS1 + HRS2 + HRS3 + HRS4 mixture of all four Firmicutes
strains. Data represent mean+SEM (n =12 plants per treatment).

wide range of microbes in the soil [6]; therefore, it was
difficult to disrupt specific taxa in these studies. On the
other hand, vancomycin specifically inhibits cell wall bio-
synthesis in Firmicutes and Actinobacteria [72]. Therefore,

Asterisks indicate significant differences (*P <0.05, **P<0.01,
**#%P <0.001). b, ¢ Relative expression levels of jasmonic acid (JA)
signaling marker genes (b) and salicylic acid (SA) signaling marker
genes (c¢) in systemic leaves of tomato plants treated with the SynCom
comprising all four HRS-specific strains (HRS1-4) at 0 and 12-h post
inoculation (hpi) with R. solanacearum. Different letters indicate
significant differences between treatments (P <0.05; LSD test). Data
represent mean = SEM. SynCom mixture of all four Firmicutes bac-
terial strains, BTH 0.5-mM BTH treatment, control 2.5-mM MES
buffer treatment.

in this study, vancomycin pretreatment reduced the popu-
lation of Firmicutes and Actinobacteria, and increased
bacterial wilt occurrence in only HRS, not in DRS, without
changing pathogen abundance (Fig. 3). This result suggests
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that the disruption of HRS-specific vancomycin-sensitive
Firmicutes and Actinobacteria taxa in the rhizosphere plays
a critical role in disease suppression.

Intriguingly, R. solanacearum reduced the diversity and
abundance of non-pathogenic rhizobacteria [58]; however,
the population size of R. solanacearum was similar in HRS
and DRS fractions (Fig. 1d). This raised a fundamental
question: what are the driving forces that cause disruption
of Firmicutes and Actinobacteria in DRS? First, it is pos-
sible that root exudates vary between HRS and DRS. Host
plant-derived root exudates including SA, JA, 6-methoxy-
benzoxazolin-2-one, amino acids, and organic acids reshape
the rhizosphere microbiota and modulate plant immunity
[2, 63, 73]. In our previous study, the bacterial volatile 2,3-
butanediol induced the secretion of root exudates, which
selectively inhibited the growth of specific rhizobacteria in
pepper [36]. Root exudates of Arabidopsis plants containing
an antifungal compound, scopoletin, also selectively sup-
pressed the growth of fungal pathogens, whereas the ben-
eficial plant growth-promoting rhizobacteria were resistant
to scopoletin, which is more effective against Gram-positive
bacteria than Gram-negative bacteria [60, 74]. Further
profiling of antibacterial compounds in root exudates should
be conducted using liquid chromatography—mass spectro-
metry or gas chromatography—MS analyses. In addition,
comparative genomic analysis of tomato plants with HRS
and DRS phenotypes grown in HRS and DRS is also
required because root exudate composition varies with the
host genotype [74-76].

The second possible scenario underlying microbial dis-
ruption in DRS is the induction of plant immune signaling.
The correlation between defense signaling and rhizosphere
microbial composition has been studied previously. In
Arabidopsis, the relative abundance of Firmicutes was
lower in the rhizosphere of mutant plants, with reduced
immune response, than in the rhizosphere of the wild type
[2], and deletion of SA or JA signaling genes, which reg-
ulate plant immunity, changed the rhizosphere microbiota
[2, 63]. For example, the population of Firmicutes and
Actinobacteria genera Bacillus and Streptomyces was
higher in the med25 mutant rhizosphere than in the wild-
type rhizosphere [63]. In addition, in tomato, because host
disease resistance changes the rhizosphere microbiota [4],
genetic variation in defense signaling between tomato
genotypes grown in HRS and DRS can lead to composi-
tional changes in the tomato rhizosphere.

A previous study showed that Firmicutes taxa, Bacillus and
Paenibacillus, and the Actinobacteria taxon, Streptomyces,
establish disease suppression by a single strain or SynCom via
antagonistic effect [6]; however, our data showed JA-
dependent ISR activation by SynCom without antagonistic
activity (Fig. 6a, b). While SynCom-mediated ISR is largely
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unknown, a single Bacillus strain has been shown to elicit JA-
dependent ISR [20, 55, 77-80]. The designed SynCom acti-
vated greater ISR against R. solanacearum than its constituent
individual strains (Figs. 5c and 6a). Similarly, a combination
of beneficial rhizobacteria improved ISR and plant immune
responses, such as activation of peroxidase, chitinase enzyme,
and polyphenol oxidase, compared with individual rhizo-
bacteria [3, 81-84]. The keysonte taxa strains, HRS1 and
HRS2, as well as minor strains, HRS3 and HR4, orchestrately
played important roles in enhancing ISR against R. solana-
cearum. The relative abundance of Firmicutes taxa was lower
in the Gwangju HRS sample (lacking HRS3 and HRS4
strains) than in the Damyang and Yongin HRS samples
(Fig. 2a). Recent studies reported that the presence or absence
of a specific strain with <0.1% abundance can alter the
abundance of other strains in the rhizosphere [85, 86]. Thus,
the low-abundant HRS3 and HRS4 strains might boost ISR by
the enrichment of Firmicutes and Actinobacteria in the rhi-
zosphere (Figs. 4c and 6). The production of secondary
metabolites in SynCom can also enhance ISR activation.
Brevibacterium produces phenazine, which is not only an
antibiotic but also triggers ISR [87, 88]. A mixed culture of B.
subtilis and Lactobacillus sakei increased the production of y-
aminobutyric acid, which triggers the plant immune response
[89, 90]. In addition, co-cultivation of Streptomyces coelicolor
(Actinobacteria) and B. subtilis (Firmicutes) increased the
production of undecylprodigiosin, which suppressed the
fungal pathogen, Verticillium dahliae [91, 92]. However,
SynCom-derived molecular determinants are likely very
complex and should be investigated further.

In this study, we first demonstrated that the specific
disruption of the protective Firmicutes and Actinobacteria
community in tomato rhizosphere enhanced the incidence
of bacterial wilt disease. Although sustained monoculture
can lead to a considerable decline in rhizosphere microbiota
diversity and consequently local disruption of disease sup-
pression, this diversity can be recovered by amending the
soil with a minimal SynCom. Further investigations are
needed to (1) identify the factors responsible for the local
collapse of disease suppression, (2) identify an early diag-
nostic marker of microbiota disruption by microbiome
analysis before disease occurrence, and (3) understand
individual microbial determinants that activate plant
immunity. Because of the high stress tolerance of R. sola-
nacearum in soil and the limitation of the control method, it
is difficult to control the incidence and spread of bacterial
wilt [93]. Our results suggest that the emergence of DRS
indicates the conversion of disease-suppressive soil into
disease-conducive soil. The introduction of SynCom, as a
probiotic and prebiotic material that enhances Firmicutes
and Actinobacteria abundance, could be a novel and stable
biological control method against R. solanacearum.
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