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Abstract: A medium-carbon Cr–Mo–V martensitic steel was thermally processed by quenching (Q) at
890 ◦C and tempering (T) at increasing temperatures from 650 ◦C to 720 ◦C and the effect of tempering
temperature, Tt, on sulfide stress cracking (SSC) behaviors was estimated mainly via double
cantilever beam (DCB) and electrochemical hydrogen permeation (EHP) tests and microstructure
characterization. The results indicate that the threshold stress intensity factor for SSC, KISSC, increased
with increasing Tt. The overall and local H concentration around the inclusions decreased with
increasing Tt, due to reductions in the amounts of solute atoms, grain boundaries and dislocations,
which effectively prevented SSC initiation. Also, increasing Tt caused an increased fraction of
high-angle boundaries, which evidently lowered the SSC propagation rate by more frequently
diverting the propagating direction and accordingly restricted SSC propagation. The overall SSC
resistance of this Q&T–treated steel was therefore significantly enhanced.

Keywords: sulfide stress cracking (SSC); martensitic steel; tempering; double cantilever beam test;
hydrogen permeation; SSC initiation; SSC propagation

1. Introduction

Quenching and tempering (Q&T)–treated martensitic steels have long been widely used for
important oil country tubular goods production, such as C90–C110 or higher grades for sour oil/gas
well service [1,2], T125 and V150 grades for ultra-deep oil/gas well service [3–5] and 155 ksi or
higher grades for perforation and drill services [6]. However, these high-strength martensitic steels
normally have a high susceptibility to sulfide stress cracking (SSC)/hydrogen-induced cracking
(HIC) [1]. Therefore, there have been extensive efforts [7–22] to understand the mechanisms governing
SSC/HIC behaviors and to achieve the desired combination of high strength, high toughness and
superior SSC/HIC resistance in these steels by optimizing the alloying design, metallurgical quality
and Q&T parameters.

Among these efforts, the correlations between various metallurgical factors and the susceptibility
to SSC/HIC have recently received increasing attention [7–22]. Once these steels are exposed to the sour
environment, atomic hydrogen (H) can form on the material surface due to the H+→H reaction [11],
which depends on environmental and surface conditions. After the H atoms enter the material,
these metallurgical factors might have their respective impacts on H mobility or diffusion [10], by acting
as reversible (solute atoms, dislocations, grain boundaries, etc.) or irreversible (nonmetallic inclusions,
precipitated particles, voids, etc.) traps for H atoms, depending on their binding enthalpies with H [12]
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and contributing to the susceptibility to SSC/HIC in different degrees [23–25]. Some investigations
have suggested that reversible traps, where the H commonly escapes at room temperature, might
have a strong effect on H embrittlement [13]. In contrast, irreversible traps, where H can escape
only at high temperatures, such as 250 ◦C or above, might not participate in this behavior [13–15].
However, previous works have also identified SSC/HIC initiation at certain inclusions, such as
non-deformable Al2O3 [17,18] and large-sized TiN/TiC particles [19] and at their interface with the
matrix [26], even though they were irreversible traps. Moreover, once SSC/HIC initiates, it might
propagate toward certain preferred directions or zones, such as the phase boundary, the segregation
zone, or the particular crystallographic orientation. According to Reference [20], high-angle grain
boundaries (HAGBs) with a high misorientation angle (MA ≥ 15◦) might store higher energy and
provide both more potent sites for H trapping and easier paths for crack propagation, in comparison
with low-angle grain boundaries (LAGBs, MA < 15◦), eventually leading to higher susceptibility to
HIC in X70 pipeline steel. On the contrary, it was reported that for Q&T–treated martensitic steels,
SSC could be arrested at HAGBs [26] and the threshold stress intensity factor for SSC, KISSC, increased
with decreasing size of martensitic packet with high-angle boundaries [22], indicating enhanced SSC
resistance. On the other hand, Omura et al. [27] reported significantly enhanced SSC resistance in a
martensitic steel via increases in tempering temperature, Tt and time and attributed it to a martensitic
ferrite matrix with fewer dislocations and more dispersed carbides. This indicates that the SSC
resistance of martensitic steels could be effectively enhanced by improving the tempering process.

Therefore, these various metallurgical factors have exerted complex effects on the susceptibility to
SSC/HIC, which were originally and essentially correlated to SSC evolution, including three stages of
the entry of H atoms, SSC/HIC initiation and propagation. The effects of some metallurgical aspects
(e.g., GB, dislocation and precipitate) on a single stage of SSC/HIC evolution in martensitic/bainitic
steels, namely the entry of H atoms and SSC/HIC propagation, were estimated in previous work [28]
by electrochemical hydrogen permeation (EHP) [29] and double cantilever beam (DCB) tests [30].
This led to some contradictory effects (e.g., GBs) on the overall resistance to SSC/HIC in previous
reports. It was therefore essential to further clarify their effects on the overall resistance to SSC/HIC
by determining their correlation with the whole SSC/HIC evolution. However, these efforts have been
rarely reported, to the authors’ knowledge.

For this attempt, a martensitic steel was thermally processed via Q&T at differing Tt, providing a
group of samples with quite different microstructural features of GBs, dislocations and precipitates.
Their effects on SSC behavior, namely H mobility, SSC initiation/propagation and overall resistance to
SSC (KISSC), were estimated mainly through microstructure characterization and EHP and DCB tests.
The mechanisms governing these correlations are also discussed.

2. Results

2.1. Mechanical Property and KISSC Values

The mechanical properties of each Q&T–treated sample are summarized in Table 1, indicating that
the yield strength (YS), tensile strength (TS) and hardness (HRC) decreased, while the elongation (EL)
at rupture increased with elevating Tt. The KISSC for each Q&T–treated sample was also determined
via the DCB test and is also summarized in Table 1. As the table shows, KISSC increased from
17.16 MPa·mm−0.5 to 33.26 MPa·mm−0.5 with increasing Tt from 650 ◦C to 720 ◦C, indicating an
enhanced overall resistance to SSC due to the increased Tt.

Table 1. Summary of mechanical properties and KISSC value for quenching and tempering
(Q&T)–treated samples. YS: yield strength; TS: tensile strength; EL: elongation; HRC: hardness.

Sample Tt/◦C YS/MPa TS/MPa EL/% HRC KISSC/MPa·mm0.5

1 650 1007 1062 18 35.4 17.16
2 700 776 857 23 25.1 29.02
3 720 728 805 25 23.4 33.26
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The instantaneous SSC propagation length for each Q&T–treated sample was measured with the
DCB test interrupted, according to the NACE (National Association of Corrosion Engineer) TM0177
standard [31] and evaluated as a function of immersing time (t), as shown in Figure 1. This reveals
that SSC probably developed in three stages: initiation, rapid and palliative propagation. For the first
stage, SSC was not detected for a couple of hours, the inoculation period after the DCB specimen was
immersed in the solution, during which the diffusion of H atoms into the crystalline interstices and
voids was assumed to be accumulated for initializing the H damage. For the second stage, SSC grew
rapidly with the simultaneous assistance of the highly concentrated stress and the accumulated H
atoms. For the third stage, SSC grew at a gradual reduced rate and approached a metastable state,
where its propagation was almost imperceptible, probably due to the relaxation of concentrated stress
and the approximately saturated H atom concentration.
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Figure 1. ∆a as a function of immersion duration time (t) for Q&T–treated samples at differing Tt.

As also indicated in Figure 1, the steel tempered at 720 ◦C had both the longest inoculation
period for detected SSC and the least SSC propagation length among these Q&T–treated samples.
SSC initiated over a longer time and propagated at a decreased length with the increased Tt.

SSC propagation behaviors were also interpreted in terms of the correlation between da/dt and
KIapplied, as shown in Figure 2. This indicates that da/dt decreased as a result of decreasing KIapplied.
With KIapplied decreased to a certain value, da/dt approached zero, where KISSC was obtained, according
to the NACE TM0177 standard [31]. Furthermore, da/dt decreased and KISSC increased with increasing
Tt, indicating that the high-temperature tempering retarded SSC propagation and correspondingly
enhanced SSC resistance.
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2.2. SSC Fracture Morphology of the DCB Specimen

Figure 3 shows a typical SSC fracture morphology of the DCB specimen tempered at 700 ◦C. It can
be seen that the fracture surface was covered with a corrosion product film that was rich in Fe and S,
as examined by EDS (energy dispersive spectroscopy) analysis, illustrated in Figure 4. The corrosion
film was loose and featured microcracks and micropores, probably leading to poor resistance to the
migration of HS− or S2− to the fresh material surface.
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Figure 3. Typical macroscopic observation of sulfide stress cracking (SSC) fracture in double cantilever
beam (DCB) sample tempered at 700 ◦C.
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Figure 4. Typical SEM observation of corrosion film covering SSC fracture surface in (a) DCB sample
and (b) its EDS (energy dispersive spectroscopy) spectrum.

The corrosion film was subsequently removed with a solution of dilute hydrochloric acid and
hexamethylene tetramine and the real SSC fracture surface is shown in Figure 5. Actually, the SSC
fracture was a typical quasi-cleavage cracking, featuring some random secondary cracks underneath
the fracture surface, consistent with an early work reported by Dadfarnia et al. [28]. In addition,
some intergranular fracture areas were also perceptible on the fracture surface in all the DCB samples.
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Figure 5. Typical SEM observations of real SSC fracture surface in DCB sample tempered at (a) 650;
(b) 700; and (c) 720 ◦C, with the corrosion film removed.

2.3. Microstructure Observation

2.3.1. Prior Austenite Grain Observation

The typical prior austenite grain (PAG) morphology of the samples quenched at an identical
temperature of 890 ◦C, waiting for further tempering at differing Tt, is shown in Figure 6. The average
PAG size, Dγ, was quantitatively estimated and is summarized in Table 2. As the table states,
Dγ remained at almost the same level of 7.5 µm under identical quenching conditions.
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Table 2. Quantitative determinations of PAG and martensitic substructure features in Q&T–treated
samples at differing Tt.

Tt/◦C Dγ/µm Dp/µm Db/µm Wl/µm f GBMA≥15◦ /% ρ/1014 m−2

650 7.6 3.73 1.15 0.32 66.8 1.41
700 7.5 4.01 1.32 0.53 69.8 0.84
720 7.1 4.20 1.35 0.58 70.5 0.62

2.3.2. Martensitic Structure Observations

The PAG of martensitic steel can normally be partitioned into three types of martensitic
substructures: packet, block and lath [32,33]. The martensitic packet and block in each Q&T–treated
sample were also characterized via SEM and electron back-scattered diffraction (EBSD), as shown
in Figures 7 and 8, respectively. The average packet and block size, Dp and Db, were quantitatively
determined and are summarized in Table 2. This demonstrates that Dp and Db increased with
increasing Tt from 650 ◦C to 720 ◦C. The grain boundary misorientation angle (GBMA) might play
a significant role in controlling SSC resistance by affecting hydrogen permeability [20,34] and crack
propagation [21,26]. Therefore, the GBMA distribution of martensitic substructure in each Q&T–treated
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sample was also analyzed via EBSD and the fraction of the HAGBs, f GBMA≥15◦ , is summarized in
Table 2. As presented, HAGBs were in the majority in each sample and f GBMA≥15◦ increased slightly
with increasing Tt from 650 to 720 ◦C.
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2.3.3. Martensitic Lath and Precipitate Observations

TEM micrographs of each Q&T–treated sample are presented in Figure 9. As the figure shows,
the martensite consisted of regular laths in the minority and irregular ones in the majority. The irregular
laths had a curved boundary, which were assumed to derive from the polygonization of prior regular
laths in as-quenched samples, due to tempering at a high Tt. In contrast, a small quantity of regular
laths might possess a particular crystallographic orientation with high thermodynamic stability [35]
and could survive heavy tempering. Also, as this figure shows, the polygonized irregular martensitic
laths evidently increased with elevating Tt, at the expense of the regular martensitic laths. The average
lath width, Wl, was further determined quantitatively and is also summarized in Table 2. Wl obviously
increased with increasing Tt, indicating a widening of the martensitic lath, probably due to the interface
migration or the merging of two neighboring laths [36].
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differing Tt of (a) 650; (b) 700; and (c) 720 ◦C and their enlarged micrographs (ai, bi and ci). The red
frame showing the rod-like precipitated particles distributed in the martensitic laths boundaries.
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There still appeared to be a large quantity of rod-like and spherical precipitated particles
distributed in the martensitic laths or at their boundaries, as also shown in Figure 9. Meanwhile,
the rod-like precipitated particles were spheroidized gradually as the Tt increased. The average
equivalent diameter, D and the volume fraction, f, of the precipitates were further estimated
quantitatively and are provided as the function of Tt in Figure 10. This shows that both the D
and f of precipitates obviously increased with increasing Tt.
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2.3.4. Dislocation Estimations

The dislocation density, ρ, of each Q&T–treated sample was determined by XRD pattern, as
shown in Figure 11 and summarized in Table 2. The dislocation density decreased from 1.41 × 1014 to
0.62 × 1014 m−2 with increasing Tt from 650 ◦C to 720 ◦C. The present result is in agreement with a
previous work by Masakatsu et al. [37]. They reported that the half-width of the (211) peak in the XRD
pattern, indicating the dislocation density, reduced with elevated Tt due to the addition of 0.1 wt %
vanadium to the 0.5Cr–0.7Mo steel.
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2.4. Hydrogen Permeation

Figure 12 shows the H permeation curves for Q&T–treated samples. The H diffusion coefficient,
D0 and the diffusion H concentration, C0, were calculated with Equations (10) and (11) and the results
are summarized in Table 3. As the table shows, D0 increased and C0 decreased with increasing Tt,
indicating lower H permeability.
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Table 3. H permeation test results for Q&T–treated samples at differing Tt.

Tt/◦C Do/10−7cm2/s Co/ppm

650 0.48 6.45
700 1.78 1.87
720 2.20 0.86

3. Discussion

3.1. Relationships among Tempering Temperature, H Mobility and SSC Initiation

3.1.1. Effect of Tempering Temperature on H Permeability

C0, indicating H permeability, decreased with increasing Tt, as shown in Figure 12 and Table 3.
Actually, C0 is dominantly dependent on the density of reversible H traps, NT, on the assumption that
the irreversible traps could be saturated by the H atoms [38]. According to previous works [39–42],
H traps such as solute atoms, GBs and dislocations were generally regarded as reversible traps, due to
their bonding energy being lower than 60 kJ/mol. Among these reversible traps, the solute atoms were
assumed to decrease with increasing Tt, due to increased precipitation, as shown in Figures 9 and 10.
Accordingly, the number of reversible traps provided by the solute atoms, NT-SA, also decreased with
increasing Tt. However, the precipitates in this Q&T–treated Cr–Mo–V–Ti–B martensitic steel were
highly diversified and complicated in their structure [43] and hence it is rather intricate to discern
between the atoms consumed for these precipitates and the residual solute atoms. Quantification of
NT-SA therefore remains challenging. Accordingly, the NT for these Q&T–treated samples at differing
Tt were quantified mainly as functions of the GBs (PAG, martensitic packet/block/lath boundaries,
etc.) and the dislocations, respectively, to better understand their effects on C0.

The H trap density provided by the GBs, NT-GB, was estimated, with the grain assumed to be an
approximate sphere and counted as n per cubic meter, using the following equation [44]:

NT-GB =
nSGxGB

2nVGxa3 (1)

where VG and SG are the volume and surface area of one grain, respectively; the factor of 1/2 is
due to one grain plane shared by two grains; xa is atomic distance, 0.26 nm; xGB is the width of GB,
about 10 times that of xa. Equation (1) can then be simplified as:
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NT-GB =
30

dGxa2 (2)

where dG is the grain size. This equation indicates that the NT-GB is in inverse proportion to dG,
by which NT-GB for these Q&T–treated samples were estimated and are listed in Table 4.

The H trap density provided by the dislocations, NT-dis, was estimated by:

NT-dis =
5ρdis

xa
(3)

where ρdis is dislocation density and the factor of 5 is assumed to be the ratio of the dislocation width
to xa. The NT-dis for these Q&T–treated samples were calculated and are also listed in Table 4.

Table 4. Summary of calculated NT provided by various grain boundaries (GBs) and the dislocations.

Tt/◦C 650 700 720

NT-PAG/1025 m−3 5.8 5.9 6.2
NT-MP/1025 m−3 11.9 11.1 10.6
NT-MB/1025 m−3 38.6 33.6 32.9
NT-ML/1025 m−3 138.7 83.7 76.5
NT-GB/1025 m−3 92.6 58.4 53.9
NT-dis/1025 m−3 0.27 0.16 0.12

As Table 4 shows, the estimated NT-MP, NT-MB and NT-ML provided by the martensitic packet,
block and lath boundaries decreased with their increasing size and accordingly their decreasing
number of boundaries, whereas NT-PAG remained at almost the same level. As the martensitic lath
boundaries normally occupied all the PAG and the martensitic packet/block boundaries, NT-ML

contained NT-PAG, NT-MP and NT-MB. In general, the PAG and the martensitic packet/block boundaries
were confirmed to be HAGBs [45] and correspondingly the effective reversible traps [34], whereas
the lath boundaries in as-quenched martensitic steels were normally accepted as LAGBs with MA
≤ 10◦ [32], probably contributing little to the C0 [34]. However, according to the EBSD analyses in
Figure 8 and the actual TEM observations in Figure 9, the HAGBs surrounding the irregular laths
constituted the major fraction of the martensitic lath boundaries due to their polygonization via heavy
tempering, essentially supplying much to the C0. In contrast, the remnant LAGBs encircling the regular
laths comprised a minor fraction of the martensitic lath boundaries, still contributing little to the
C0. Thus, the final NT-GB was calculated approximately by combining the NT-ML (in Table 4) and the
fraction of HAGB, f GBMA≥15◦ , essentially for the polygonized irregular martensitic lath (in Table 2),
that is, NT-GB = NT-ML × f GBMA≥15◦ , with the result presented in Table 4.

Consequently, the amount of reversible H traps provided by the various GBs, the dislocations
and even the solute atoms all decreased with increasing Tt and therefore the overall diffusion H
concentration (C0) decreased markedly, as shown in Table 3.

3.1.2. Effect of H Permeability on SSC Initiation

A certain number of inclusions with a large size of more than 3 µm were still present in this
experimental steel, although it was prepared by melting in an electric furnace and purifying in
a vacuum degassing furnace. There appeared mainly two types of complex inclusions in each
DCB sample: the massive Al2O3·SiO·CaO and the slender Al2O3·CaO·TiO particles, as shown in
Figure 13a,b. The slender one was typically located in a corrosion pit where SSC was initiating.
This observation was in agreement with previous work by Schiapparelli et al., in which HIC was
triggered at a non-deformable inclusion of Al2O3 [17].
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Figure 13. (a) Corrosion pit and (b) secondary microcrack typically initiating from massive
Al2O3·SiO·CaO and slender Al2O3·SiO·CaO·TiO complex inclusions, respectively, underneath the SSC
fracture surface of DCB sample tempered at 700 ◦C.

In addition, the local H concentration, Cσ, of the highly stressed regions in the DCB sample can
be estimated using the following equation [46]:

Cσ = C0exp(σhVH/RT) (4)

where C0 is the diffusion H concentration, σh is the hydrostatic stress, VH is the partial molar volume of
H in iron (2.1× 10−6 m3/mol), R is the gas constant and T is the ambient temperature. As this equation
indicates, Cσ decreased as the result of decreased C0. When the H-induced stress concentration
exceeded the atomic binding force, SSC eventually initiated.

Susceptibility to SSC initiation can be estimated by the incubation time for SSC origination, ti,
which was attained by fitting the crack propagation length (∆a) vs. the time curve, as demonstrated in
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Figure 1. The optimum imitated Equations (5)–(7) for the samples tempered at 650, 700 and 720 ◦C,
respectively, as follows:

∆a = 33.6582− 34.4650× 0.9841t (5)

∆a = 16.5937− 17.0433× 0.9879t (6)

∆a = 11.9662− 14.4518× 0.9820t (7)

Supposing ∆a = 0, the ti for the Q&T–treated samples, tempered at 650, 700 and 720 ◦C was 1.5,
2.2 and 10.4 h, respectively, indicating a lowered susceptibility to SSC initiation with increasing Tt.

Therefore, the increasing Tt led mainly to martensitic lath polygonization and widening, providing
a decreased amount of HAGBs and accordingly reversible H traps, inducing a lowered overall and
local diffusion H concentration (C0 and Cσ), leading to a depressed stress concentration around the
inclusions and simultaneously a prolonged incubation time and finally decreased susceptibility to
SSC initiation.

3.2. Effect of GBs on SSC Propagation

To further understand the effect of GBs with certain crystallographic orientations on crack
propagation, secondary microcracks underneath the SSC fracture surface of DCB samples were
observed and the corresponding misorientation angles between grains adjacent to the crack were
analyzed by EBSD, as shown in Figure 14 and Table 5. LAGB/HAGB is generally defined as the grain
boundary with a misorientation angle of 2–15◦/>15◦ [47], indicated by the white/black line. It can
be seen that the microcrack propagated unimpededly through the LAGBs within grains 1, 2 and 3,
indicating that the LAGBs could not hinder the SSC from propagating. In contrast, the microcracks
diverted direction when they came across the HAGBs of grains 2 and 3 and finally arrested also at the
HAGBs of grains 3 and 4.
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Figure 14. Typical inverse pole figure map displaying grain boundaries with different crystal
orientations in a Q&T–treated sample at Tt = 700 ◦C. Dotted arrow line stands for the crack propagation
direction; black solid arrow line denotes high-angle grain boundaries (HAGBs) and red solid arrow
lines indicate low-angle grain boundaries (LAGBs).

Table 5. Effects of HAGBs on SSC propagation behavior shown in Figure 14.

Grain Boundary Misorientation Angle (◦) Cracking Behavior

1 and 2 49.3 Deviated
2 and 3 35.6 Deviated
3 and 4 59.5 Arrested
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Hence, HAGB could play a significant role in hindering SSC propagation, whereas LAGB failed
to provide an evident barrier, showing the two different impacts on crack propagation. According
to previous observations [48], the change in operating slip system was essential for the GB to act
as a barrier for the dislocation movement when the crack came across the GB. For the HAGB,
its own operated slip system might induce a dislocation-free zone formation in the adjacent grain and
accordingly lead to a significantly diverted direction of the crack. In contrast, LAGB could only yield a
relatively low retardation of crack propagation, due to the minor difference in orientation between the
two neighboring grains.

The increasing Tt brought about martensitic lath polygonization and widening to a higher degree,
providing an increased fraction of HAGBs and also an increased mean GBMA, restraining SSC
propagation by lowering their propagation rate (Figure 2), finally resulting in an elevated KISSC value.

4. Materials and Methods

4.1. Materials and Heat Treatment

The 28CrMo48VTiB martensitic steel used for this work was melted in an electric furnace,
continuously cast with argon shielding and thermally pieced-rolled-stretched into a seamless tube
177.8 × 10.36 mm (diameter × thickness). The chemical compositions are presented in Table 6.

Table 6. Chemical compositions of 28CrMo48VTiB steel (wt %).

C Si Mn P S Cr Mo V Ti B

0.28 0.25 0.40 0.008 0.002 1.00 0.80 0.15 0.015 trace

The samples with dimension 300 × 100 mm were cut from the steel tube, reheated at 890 ◦C for
20 min and water quenched and consequently tempered at differing Tt of 650, 700 and 720 ◦C for
60 min.

4.2. Estimations of Mechanical Properties and SSC Susceptibility

The conventional tensile properties of each Q&T–treated sample were determined according to
the ASTM (American Society for Testing Material) Standard A370-10 [49]. Each sample was machined
along the longitudinal direction of the tube, with geometry and dimensions as shown in Figure 15 and
tensioned in a CMT5305 Instron machine at room temperature. Two tensions for each sample were
performed and their average values are reported. The hardness for each sample was also determined
in a Rockwell hardness tester using a load of 1500 N. For precision, the hardness at 6 different positions
in each sample were measured and their average values are reported.
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Figure 15. Geometry and dimensions of the tensile specimen.

The susceptibility to SSC in each sample was estimated with the DCB test, according to the
NACE TM0177 standard, Method D [31]. The standard DCB specimen is illustrated in Figure 16.
A double-taper wedge with certain thickness was selected to provide the desired arm displacement
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and load by inserting into the DCB specimen. All DCB tests were performed with their specimens
immersed in the same standard NACE TM0177 solution A, consisting of 5.0 wt % NaCl and 0.5 wt %
CH3COOH dissolved in distilled water saturated with 1 atm H2S. The pH value of the solution did
not exceed 3 at the start and 4 at the end of the test. The tests were performed for 2 weeks at ambient
temperature, during which the instantaneous applied stress intensity factor, KIapplied and the threshold
stress intensity factor, KISSC, were obtained using Equations (8) and (9):

KIapplied = p×ai(2
√

3+2.38h/ai)(B/Bn)
1/
√

3

B·h1.5
(−26.232+51.886a/h+8.523(a/h)2+8.5178(a/h)3)

(−26.232+51.886ai/h+8.523(ai/h)2+8.5178(ai/h)3)
(8)

KISSC =
p× a(2

√
3 + 2.38h/a)(B/Bn)

1/
√

3

B · h1.5 (9)

where P is the final equilibrium wedge lift off load, determined from an abrupt change in the slope of
load-displacement curve; ai/a is the instant/final crack length of SSC for estimating KIapplied/KISSC,
obtained by subtracting 6.35 mm from the distance between the slot end and the mean position
of the crack front; h is the arm height; and B and Bn are the DCB specimen and web thickness,
respectively. Three parallel DCB tests were performed for each Q&T–treated sample and the average
values are reported.
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Figure 16. Typical illustration of standard DCB specimen.

In order to further understand SSC crack initiation and propagation behaviors occurring in the
DCB tests and their dependence on metallurgical aspects, the crack propagation length, ∆a, as a
function of immersing time, t, was measured by the NACE TM0177 standard, Method D [31]. Then the
crack propagation rate, da/dt, was obtained by seeking derivation of the ∆a vs. t curves. Finally, da/dt
as a function of the corresponding KIapplied was described.

4.3. Electrochemical H Permeation Test

The H permeation behavior in each Q&T–treated sample was quantitatively estimated with the
EHP test at 298 K using the classical Devanathan-Stachursky technique. The electrolyte for H charging
was a solution of 0.5 mol/L H2SO4 and 0.25 g/L CH4N2S, while the electrolyte for H expanding was an
aqueous solution of 0.2 mol/L NaOH. The H charging time might depend on the purpose. The sample
for the H permeation estimation was 0.8 mm thick, with the nickel-plated surface acting as the anode
side. The current was measured when the background current decreased and reached a steady value
of 0.1 µm/cm2 or lower.
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The diffusion coefficient of H, D0 (cm2/s), was calculated using the following equation:

D0 =
L2

6t0.63
(10)

where L is the specimen thickness (cm) and t0.63 is the time lag for 0.63 saturation of permeation current
density at the steady state (s). The reversible H concentration, C0 (ppm), was estimated using the
following equation:

C0 =
i∞L
FD0

(11)

where i∞ is the steady-state atomic H permeation current, µA/cm2 and F is Faraday’s constant,
9.6485 × 1010 µA·s/mol.

4.4. Microstructure Observation

The as-quenched sample at 890 ◦C was etched in a supersaturated picric acid aqueous solution
for optical microscopy (OM) observations of the prior austenite grain (PAG). Each Q&T–treated
sample was etched in 4% nital for martensitic packet observation in a Hitachi S-3400N scanning
electron microscope (SEM). The electron back-scattered diffraction (EBSD) map was obtained by
a SUPRA550 field emission scanning electron microscope equipped with a TSL (Tinysoft Statistical
analysis Language) orientation imaging microscopy system to reveal the martensitic block substructure
and the misorientation angles between the adjacent martensitic substructure boundaries. SSC inducing
the fractured surface and the secondary crack in a cross-section of the DCB specimen after each trial
were also examined by SEM and EBSD, respectively. The crystallography orientation information
of the martensitic packet/block structures next to the secondary crack and their correlations were
determined; Channel 5 software from Oxford-HKL was used for the orientation data processing.
Each EBSD sample was polished using 0.04 µm colloidal silica slurry in a vibratory polisher for 1 h.
The characteristics of the martensitic lath and the distribution, shape and chemical compositions of
precipitated particles were determined by examining thin foils or carbon extraction replicas using a
JEM-2010 high-resolution transmission electron microscope.

The martensitic structure size for each Q&T–treated sample was quantitatively estimated by
averaging at least 200 PAGs, 200 packets, 150 blocks and 100 laths from the OM, SEM, EBSD and TEM
micrographs, respectively. For estimating the equivalent diameter (Do) and volume fraction (f ) of
precipitated particles of different shapes, the rod-like particles were considered with the spherical
particles and Do was regarded as the particle size. Then f was calculated with the following equation:

f =
N 4π

3
S0Do

(
Do

2

)3
=

NπD2
o

6S0
=

2NS
3S0

(12)

where N is the number of particles per area, S0 is the specific area for estimation and S is the
particle area.

The dislocation density of each Q&T–treated sample was determined by quantitative X-ray
diffraction (XRD) analysis. XRD spectra were obtained by scanning over a scanning angle (2θ) range
of 40–110◦ and at a step size of 0.02◦ in a Rigaku D/max-2500/PC diffractometer (Rigaku, Tokyo,
Japan). In order to correct the XRD line broadening resulted from the instrument, the XRD pattern of a
standard sample of Si powder which was annealed at 300 ◦C for 24 h was measured. This diffraction
line broadening correction was performed with the data processing via the software of Jade 5 (5.0,
Jade Software, Christchurch, New Zealand).
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5. Conclusions

The effect of increasing tempering temperature (Tt) on SSC behavior in a Q&T–treated medium
carbon Cr–Mo–V martensitic steel was estimated in this work and the conclusions are summarized
as follows:

1. KISSC and the overall resistance to SSC of this martensitic steel were obviously enhanced by
increasing Tt from 650 to 720 ◦C.

2. Increased Tt led to decreases in overall and local H concentration around the inclusions, owing
to martensitic lath polygonization and widening and resulted in a lowered susceptibility to
SSC initiation.

3. Increased Tt brought about a higher fraction of HAGBs and resulted in enhanced resistance
to SSC propagation by more frequently diverting the propagating direction and lowering the
propagation rate.
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