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Abstract
The most notable microbial survival models of disinfection kinetics are the original and modified versions of the static Chick-
Watson-Hom’s (CWH) initially developed for water chlorination. They can all be viewed as special cases of theWeibull survival
model, where the observed static curve is the cumulative form (CDF) of the times at which the individual targeted microbes
succumb to the treatment. The CWH model time’s exponent is the distribution’s shape factor, and its concentration-dependent
rate parameter represents the distribution’s scale factor’s reciprocal. Theoretically, the concentration- dependence of the Weibull
model’s rate parameter need not to be always in a form of a power-law relationship as the CWHmodel requires, and two possible
alternatives are presented. Apart from being chemically reactive, most chemical disinfectants are also volatile, and their effective
concentration rarely remains constant. However, the published dynamic versions of the original CWHmodel are mathematically
incongruent with their static versions. The issue is nonexistent in the dynamic version of the Weibull or other distribution-based
models, provided that the momentary inactivation rate is expressed as the static rate at the momentary concentration, at the time
that corresponds to the momentary survival ratio. The resulting model is an ordinary differential equation (ODE) whose numer-
ical solution can describe survival curves under realistic regular and irregular disinfectant dissipation patterns, as well as during
the disinfectant dispersion and/or its replenishment.

Key Points
• The Chick-Watson-Home models are treated as special cases of the Weibull distribution.
• Dynamic microbial survival curve described as ordinary differential equation solution.
• Survival rate models of disinfectant dissipation and replenishment patterns presented.

Keywords Disinfection . Chick-Watson-Hom’s model . Microbial inactivation . Weibull distribution . Rosin-Rammler
distribution . Fermi distribution

Introduction

With the COVID-19 pandemic, issues concerning disinfection
are receiving more public and public health attention. The
kinetics of microbial chemical disinfection has a long history,
and it has been described mathematically by a variety of

models (e.g., Ganguly et al. (2018), Gyurek and Finch
(1998), Luukkonen et al. (2015), Santoro et al. (2007),
Younas et al. (2014)). The most commonly employed models
have been the original and variants of the Chick-Watson and
Hom’s model (Chick 1908; Watson 1908; Hom 1972). These
models’ mathematical properties and application to disinfec-
tants, such as chlorine, chlorine dioxide, ozone, hydrogen per-
oxide, paracetic acid, copper, and ethanol, have been de-
scribed and discussed in numerous publications, e.g.,
Armstrong et al. (2017), Chang et al. (2018), Chong et al.
(2011), Falsanisi et al. (2006), Ganguly et al. (2018), Gyurek
and Finch (1998), Haas and Joffe (1994), Haas and Kara
(1984), Ibarguen-Mondragon et al. (2020), Jessen et al.
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(2008), John et al. (2005), Kampf (2018), Lambert and
Johnston (2000), Luukkonen et al. (2015), Mounaouer and
Abdennaceur (2016), Rattanakul et al. (2015), Rossi et al.
(2007), and Schijven et al. (2019).

Almost invariably, their starting point has been the “static”
model version where the disinfectant’s concentration, as well
as temperature and other factors, are assumed to remain con-
stant. The “dynamic,” or rate model versions, i.e., where the
disinfectant’s concentration vary, primarily due to the disin-
fectant dissipation, has been obtained by expressing the sur-
vival rate as the time derivative of the static semi-logarithmic
survival curve (see below). Since, with very few exceptions
(notably silver), disinfectants are both highly reactive chemi-
cally and volatile, maintaining their concentration constant
can be an issue. Therefore, dynamic models are indispensable
in evaluating the antimicrobial efficacy of single and repeated
treatments with such disinfectants.

The objectives of this study have been to investigate and
highlight the mathematical properties of the Chick-Watson-
Hom’s (CWH) typemodels, propose an expanded version that
would eliminate their theoretical shortcomings, and explore
the potential of alternative kinetic models in the description
of dynamic chemical disinfection.

Chick-Watson-Hom’s inactivation kinetics

The static Chick-Watson model, originally developed for wa-
ter chlorination, is usually presented in the form:

Log10 S tð Þ½ � ¼ Log10
N tð Þ
N0

� �
¼ −kCnt ð1Þ

where the targeted microbe’s momentary survival ratio S(t) =
N(t)/N0, N(t) and N0 being its momentary number after time t
and its initial number, respectively, and C is the disinfectant’s
concentration. The model’s two adjustable parameters, k and
n, are characteristic to the targeted microbe (which can be a
virus, bacterium or other kind of a microbe) and the particular
disinfectant type. These parameters’ magnitudes also depend
on the ambient conditions such as the medium’s temperature
and pH. Notice that the survival ratio’s logarithm base in this
work is 10, which refers to the number of decade reduction in
the targeted microbial population’s size. Using the natural
logarithm in the equations will only affect the numerical value
of k.

Hom’s, or the CWH, model is an expanded version of the
Chick-Watson model, which for static disinfection can be
written as

Log10 S tð Þ½ � ¼ −kCntm ð2Þ
where the exponent m is the added parameter.

By these definitions, the original Chick-Watson is just a
special case of the CWH model where m = 1, and the original
Chick model where m = n = 1.

According to various publications, e.g., Gyurek and Finch
(1998), Haas and Joffe (1994), Jessen et al. (2008),
Mounaouer and Abdennaceur (2016), and Santoro et al.
(2007), the dynamic or rate version of the Chick-Watsonmod-
el is

dLog10 tð Þ½ �
dt

¼ −kCn ð3Þ

and that of the CWH model, of which Eq. 3 is a special case,

dLog10 tð Þ½ �
dt

¼ −kmCntm−1 ð4Þ

However, these two rate equations (Eq. 3 and Eq. 4) can
describe the survival or inactivation rate only if the disinfec-
tant’s concentration remains unchanged, i.e., where C and
hence Cn are constant throughout the process. If the disinfec-
tant concentration does vary in time, i.e., where C = C(t) ≠
constant, then the correct derivation of the differential rate
equation, regardless of whetherm = 1 orm ≠ 1, is (Peleg 2021)

dLog10 S tð Þ½ �
dt

¼ −kC tð Þn−1tm−1 nt
dC tð Þ
dt

þ mC tð Þ
� �

ð5Þ

This mathematical issue is not settled by making Eq. 3 or
Eq. 4 the starting point, in which case, the integration would
produce the equation

Log10 S tð Þ½ � ¼ −∫t0kmC tð Þntm−1dt ð6Þ

which unless C(t) = constant is not the same as Eq. 1 or Eq. 2
(ibid).

Haas and Joffe (1994) have avoided this issue by express-
ing C(t) in Eq. 6 as an exponential decay term, i.e.,

Log10 S tð Þ½ � ¼ −k 0mC0
n∫t0Exp −nk1t½ �tm−1dt ð7Þ

which enabled them to reach an approximate calculation of the
integral (see also Falsanisi et al. (2006) and Chang et al.
(2018)).

Wi th today ’s mathemat ica l sof tware such as
Mathematica® (Wolfram Research, Champaign IL, USA),
the program used to produce the figures in this work, but also
with other commercially available mathematical programs,
the numerical calculation of the corrected dynamic
Log10[S(t)] as defined by Eq. 7 is not an issue. The same
can be said about similar but more elaborate concentration
dissipation patterns. The problem with Eq. 5 as a survival
model is that it allows the survival ratio to rise with the de-
crease in the disinfectant concentration even at a lethal level, a
topic to which we will return in the discussion of the
Weibullian and other distribution-based models.
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According to the CWH type models, when C(t) = 0, the
targeted microbe remains intact indefinitely, i.e., Log10[S(t)] =
0 at all times. It is true of course that the inactivation rate pro-
duced by disinfection with an effective antimicrobial chemical
agent by far exceeds that which occurs naturally. Therefore, con-
sidering the latter negligible is reasonable, in most practical situ-
ations and ignoring it in the model construction fully justified.
Theoretically, however, this may not be always the case, as in a
marginal treatment of a naturally unstable pathogen and/or at the
end of a treatment with a highly volatile chemical agent. In such
cases, at least in principle, the disinfectant’s effective concentra-
tion, unless replenished, can dramatically diminish and reach a
level where the two rates can become of comparable magnitude.
If a correction for such a probably rare scenario is indeed needed,
then the CWH model as formulated by Eq. 3 could be amended
and written in a form such as

Log10 S tð Þ½ � ¼ −k0tm0−kCntm ð8Þ
where k0 and m0 are the natural decay’s parameters of the
targeted microbe under the same ambient conditions.

Or, if m0 = m, then

Log S tð Þ½ � ¼ − k0 þ kCnð Þtm ð9Þ

The cornerstone of the original Chick model has been that
microbial inactivation follows first-order kinetics whose rate
equation is

dN tð Þ
dt

¼ −kN tð Þ ð10Þ

where k is the rate constant. This rate, or exponential decay,
constant, k, according to Chick, is proportional to the disinfec-
tant’s concentration, i.e., k = kCC. In the Chick-Watson model,
the notion of first-order kinetics is preserved, but the rate constant
becomes proportional to the disinfectant’s concentration raised to
a power n, i.e., k = kCWC

n. The Chick-Watson-Hom’s (CWH)
model does away with first-order kinetics by replacing the time t
with tm, but preserves the Chick-Watson rate constant’s concen-
tration dependence in the form k = kCWHC

n.
No doubt the disinfection rate constant k, however de-

fined, should be a concentration-dependent term. But why
should this dependence be universally in a power-law
form, i.e., kC or kCn, is not at all obvious. Here are two
hypothetical not unrealistic situations where replacement
of the power-law term could be justified. A power-law
term, unless accompanied by a clarifying “If statement,”
does not indicate that there might be an effective threshold
disinfectant concentration, or marks the disinfectant level
where the inactivation starts in earnest. At the other end, a
power-law expression does not reveal that there might be a
disinfectant’s concentration level at which its effectiveness
starts to level off. Where such a reservation is appropriate,
the CWH’s model’s fit, as judged by statistical criteria,

would only pertain to the particular experimental concen-
trations range examined.

Weibullian approach to microbial survival
and inactivation kinetics

Consider a population of a virus, bacterium, protist, or any
other microorganism, exposed to a lethal chemical disinfec-
tant in water or other medium, and let’s assume that an indi-
vidual member of this population can be in one of two states,
viable/alive or inactivated/dead (for simplicity, let us also as-
sume that when the targeted microbe is a bacterium or protist,
no cell division takes place on the pertinent time scale, and
ignore the possibility of injury and recovery or adaptation.
These features can be incorporated in the survival model con-
struction, but they should not concern us here). Had the lethal
agent been applied in perfect uniformity, and had all the indi-
vidual microbes been identical genetically, in exactly the same
physiological state, and homogenously dispersed, then, theo-
retically, they would all succumb to the lethal agent at the
same time, and their population’s survival curve would resem-
ble a step function (see Peleg 1996, 2006; Peleg and Cole
1998). In reality, there is always a certain degree of variability
within the exposed microbial population so that the individ-
uals are inactivated and become uncountable at different
times. The observed survival curve is therefore a record of
the exposed microbes’ spectrum of sensitivities (or resis-
tances) to the agent, expressed as the cumulative form
(CDF) of the inactivation/death events’ temporal distribution.
Depending on the targeted microbe, the disinfectant kind, and
the ambient conditions, this distribution can assume different
shapes, symmetric or skewed, narrow or wide, etc. (ibid). The
local slope of the cumulative form of this distribution, regard-
less of its shape, is the momentary survival or inactivation
rate, which has time reciprocal dimension and units. In other
words, the notions of an underlying spectrum of resistances or
sensitivities characterized by a distribution function and of
inactivation kinetics are the two sides of the same coin.

The Weibull distribution

The Weibull distribution function is a flexible mathematical
model which has been applied to many unrelated failure/
survival phenomena, among them microbial inactivation by
heat and other means including chemical disinfection of water
(Corradini and Peleg 2003; Peleg 2006). Since in modeling
disinfection kinetics, we are primarily dealing with inactiva-
tion rates and rate parameters, we will use this model’s orig-
inal version known as the Rosin-Rammler distribution, to
maintain the analogy with the Chick-Watson-Hom’s model.
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In static chemical disinfection, i.e., under constant disinfec-
tant concentration (and at a constant temperature, pH, etc.), the
cumulative Weibullian model can be written as

Log10 S tð Þ½ � ¼ −b Cð Þtm Cð Þ ð11Þ
where b(C) is a concentration-dependent rate parameter, relat-
ed to Weibullian scale factor’s reciprocal, and m(C) a power,
the Weibullian shape factor. Where the power m(C) has no or
weak concentration dependence and can be assumed practi-
cally constant (van Boekel 2002; Corradini and Peleg 2003),
then the static Weibullian model of microbial survival be-
comes

Log10 S tð Þ½ � ¼ −b Cð Þtm ð12Þ

Thus, from a formalistic viewpoint, the CWHmodel can be
considered a special case of Eq. 12, where the Weibullian
model’s rate parameter b(C) = kCn.

According to the Weibullian model, a shape factor larger
that one (m > 1), i.e., a semi-logarithmic survival curve having
downward concavity, indicates that damage accumulation
weakens the survivors’ resistance which progressively
shortens the time needed for their elimination. Upper concav-
ity (m < 1), known as “tailing,” probably indicates that more
susceptible members of the targeted population are eliminated
fast, leaving behind more resistant survivors which takes pro-
gressively longer to inactivate. Log-linear or what is known as
first-order kinetics, according to the Weibullian model, is just
a special case where the shape factor m = 1.

An observed lag time in the otherwise concave downward
survival curve, known as a flat “shoulder,” can be viewed as
indicating that the underlying susceptibility distribution’s
mode is much larger than its variance, and hence, there is no
need for an “If statement” in the model formulation to indicate
its existence (see Peleg 2006, 2021, and below). A sigmoid
survival curve in chemical disinfection exhibiting both a flat
shoulder and tailing of the kind described by Ganguly et al.
(2018) can be viewed as indicating that the population is most
probably a mixture. Dynamic versions of sigmoid inactivation
patterns can be produced in the same way as the Weibullian
(see Peleg (2006)), but they will not be further discussed in
this work.

Expressing the Weibullian rate parameter’s
concentration dependence

Theoretically, there are numerous possible ways to describe
the b(C) vs. C relationship mathematically of which the CWH
power-law is just one. Two such hypothetical power-law b(C)
vs. C curves are shown at the top plots in Figs. 1 and 2, and
two generated with alternative models at the top of Fig. 3.

Stretched exponential model

Consider a hypothetical scenario where the chemical disinfec-
tant is ineffective at low concentrations and its lethality level
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Fig. 1 Simulated survival curves during disinfection with an
exponentially dissipating chemical agent generated with the dynamic
version of the Weibullian model (Eq. 15) where b(C) = kCn as in the
traditional Chick-Watson-Hom’s model. Top - the b(C) vs. C
relationship, middle - two dissipating concentration profiles, and bottom
- the two corresponding survival curves. Notice that the differential rate
equations’ complexity is no hindrance to their numerical solution
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“flattens” at high concentrations. In between, there is a con-
centration range where the lethality rises with the concentra-
tion fast at first and then at a lower pace, approaching a plateau

later. Such a scenario can be described by a sigmoid b(C) vs.C
relationship of the kind shown as a blue curve at the top of Fig.
3. A flexible mathematical model that can describe such a
relationship is the three parameters stretched exponential
model, which can be written in the form

b Cð Þ ¼ basym 1−Exp
C
Cc1

� �p� �� �
ð13Þ

where basym is the asymptotic b(C) level, Cc1 a marker of the
inflection point concentration, and p > 1 an exponent (where p
≤ 1 the b(C) vs. C will have a Monod curve’s shape, i.e., a
curve having a progressively decreasing slope without an in-
flection point).

Log-exponential model

Another hypothetical scenario, represented by the green b(C)
vs. C curve at the top of Fig. 3, describes a situation where the
disinfectant is practically ineffective below a certain concen-
tration level marked by Cc2, i.e., at C < < Cc2, b(C) ≈ 0, and at
C > > Cc2, b(C) rises linearly with the concentration (as in
Chick’s model). To describe such a scenario, one can use the
two parameters log-exponential model (Corradini and Peleg
2003; Peleg 2006).

b Cð Þ ¼ Log 1þ Exp kb C−Cc2ð Þ½ �½ � ð14Þ

According to this model, at C > > Cc2, b(C) ≈ kb(C−Cc2).

Dynamic disinfection

The local slope of a static semi-logarithmic survival curve is
constant, i.e., time-independent, only if the inactivation fol-
lows first-order kinetics (i.e.,m = 1 and n = constant using the
CWH model’s terminology). Therefore, in dynamic disinfec-
tion where m ≠ 1, and where C(t) varies with time, the mo-
mentary inactivation rate is the static rate at the momentary
concentration at the time which corresponds to the momentary
survival ratio (Peleg and Penchina (2000), Corradini and
Peleg (2003)). This translates into the differential rate equation

dLog10 S tð Þ½ �
dt

¼ −b C tð Þ½ �m −Log10 S tð Þ½ �
b C tð Þ½ �

� � m−1ð Þ=m

¼ −b C tð Þ½ �1=mm –Log10 S tð Þ½ �½ � m−1ð Þ=m ð15Þ

which for m = 1, i.e., for first-order kinetics, is reduced to
dLog10/dt = − b[C(t)].

Despite its cumbersome appearance, Eq. 15 is an ordinary
differential equation (ODE), and can be rapidly solved numer-
ically for almost any conceivable realistic concentration history
C(t), including when presented as an interpolating function.
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Fig. 2 Simulated survival curves during disinfection with an irregularly
dissipating chemical agent generated with the dynamic version of the
Weibullian model (Eq. 15) where b(C) = kCn as in the traditional
Chick-Watson-Hom’s model. Top - the b(C) vs. C relationship, middle
- two dissipating concentration profiles, and bottom - the two
corresponding survival curves. Notice that the differential rate
equations’ complexity is no hindrance to their numerical solution
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Figure 1 (bottom) shows two simulated dynamic survival
curves where the disinfectant’s concentration dissipates expo-
nentially (middle plots). They were generated with the dynamic

Weibullian model (Eq. 15) where the b(C) vs. C relationship is
expressed by the power-law model, b(C) = kCn as in the CWH
model. Figure 2 describes two such survival curves generated
for two hypothetical scenarios where the dissipating disinfec-
tant’s concentration exhibits irregular oscillations. As expected,
the complicated fluctuating concentration profiles (shown at the
middle of the figure) were no hindrance to their corresponding
differential rate equations numerical solutions, which produced
the corresponding survival curves almost instantaneously.

Two additional examples of the use of Eq. 15 to simulate
disinfection with an irregularly dissipating chemical agent are
shown in Fig. 3. The two generated survival curves, shown at
the bottom of that figure, were generated with the same
Weibullian rate model, except that the rate parameter’s,
b(C)’s, concentration dependence was defined by Eq. 13
(blue) or Eq. 14 (green). Here again, the fluctuating concen-
tration profile’s complexity, shown at the middle of the figure,
and that of the corresponding b[C(t)]’s terms was no hin-
drance to the two corresponding rate equations numerical so-
lution. And here too, the survival curves have been rendered
almost instantaneously.

(An interested reader can generate his or her own dynamic
survival curves, with Eq. 14 as the concentration dependence
model, using the freely downloadable interactive Wolfram
Demonstration https://demonstrations.wolfram.com/
MicrobialSurvivalWithDissipatingDisinfectant/.)

Notice that the shown oscillatory dissipating concentration
profiles in Figs. 2 and 3 were generated in a manner that the
disinfectant’s concentration cannot rise unless it is replenished,
and that the formulation of Eq. 15 guarantees that the survival
ratio can only drop or remain stable but never rise (Peleg 2006),
unless recontamination occurs or growth may resume at very
low residual disinfectant concentration (except for viruses).

The dynamic version of the Weibullian model for microbi-
al survival was originally developed for and has been repeat-
edly validated in thermal inactivation. Only later has it been
validated for water disinfection by volatile disinfectants
(Corradini and Peleg 2003). By “validated,” we do not mean
good fit to experimental survival data as judged by statistical
criteria or successful interpolation, but that themodel correctly
predicted experimental data not used in the calculation of its
parameters (ibid).

Alternative underlying distribution functions

Although the flexible Weibullian model can be viewed as a
natural choice for describing most concave upward and down-
ward semi-logarithmic survival curves, it need not be unique for
some kinds of survival curves, and deficient for others. For ex-
ample, it can and has been demonstrated with published micro-
bial survival data having inevitable experimental scatter that the
lognormal distribution performed just as well when applied to
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Fig. 3 Simulated survival curves during disinfection with an
irregularly dissipating chemical agent generated with the
dynamic version of the Weibullian model (Eq. 15) where b(C)
follows the alternative models Eq. 13 (green) and Eq. 14 (blue).
Top - the b(C) vs. C relationship, middle - the irregularly
dissipating concentration profile, and bottom - the two
corresponding survival curves. Notice that the differential rate
equations’ complexity is no hindrance to their numerical solution
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concave downward curves (Aragao et al. 2007). The Weibullian
model’s advantage here is that with a fixed shape factor, m[C(t)]
= constant, only b[C(t)] ought to be expressed mathematically,
while when using the lognormal distribution, both its logarithmic
mean and standard deviation ought to be determined and
expressed as functions of the disinfectant’s concentration and
time. The same can be said about the numerous other unimodal
distribution functions which one might consider (see Walck
(2007)). This is not an issue where the experimental semi-
logarithmic survival curves are concave upward in which case
the lognormal distribution cannot be even considered (but the
exponential distribution function can). Or, if skewness reversal
is involved, the log-beta distribution might be a particularly suit-
able model.

There are two types of survival patterns for which the
Weibull and any of its alternative distribution functions is
clearly not a useful model. One is where at the end of a notable
flat “shoulder” (lag time), the survival ratio drops so steeply
that the survival curve resembles a step function (Peleg 1996).
The other is where the drop beyond the notable shoulder is
clearly log-linear (Najm 2006). Theoretically, the latter can be
observed at low disinfectant concentrations while the former
at high concentrations as shown schematically in Fig. 4. This
figure also demonstrates that in such a case, the shoulder gets
shorter as the disinfectant’s concentration is increased.

These two kinds of survival curves, and transitions between
them, can be described by the Fermi distribution function
(Peleg 1996), which for our purpose can be written in the form

S tð Þ ¼ 1

1þ Exp
t−tc Cð Þ
k F Cð Þ

� � or Log10 S tð Þ½ �

¼ −Log10 1þ Exp
t−tc Cð Þ
k F Cð Þ

� �� �
ð16Þ

where tc(C) marks the shoulder’s concentration-dependent du-
ration and kF(C) the linear semi-logarithmic survival curve’s
slope well beyond it. According to this model when kF(C) <
< t − tc, the curve becomes practically indistinguishable form a
step function, i.e., at t < tc, S(t) ≈ 0 and at t > tc, S(t) ≈ 0. Yet S(t)
or Log10[S(t)] as defined by Eq. 16 is a continuous function that
has real derivatives.

The dynamic version of the Fermi distribution
model

The notion that the momentary inactivation (or survival) rate
is the static rate at the momentary concentration at the time
that corresponds to the momentary survival ratio can be ex-
tended to the Fermi model as well as to any other dynamic
model survival model. In the Fermi model’s case, the rate
equation can be written in the form

dLog10 S tð Þ½ �
dt

¼ −
Exp

t* tð Þ−tc tð Þ
k F t½ �

� �

1þ Exp
t* tð Þ−tc tð Þ

k F t½ �
� �� �

k tð ÞLn 10½ �
ð17Þ

where the time that corresponds to the momentary survival
ratio, t*(t), is

t* tð Þ ¼ tc tð Þ þ k F tð ÞLn 10−Log10 S tð Þ½ �−1
h i

ð18Þ

Again, despite its cumbersome appearance, Eq. 17 is an
ODE and can be solved numerically for almost every conceiv-
able realistic concentration profile C(t). This rate equation
differs from the Weibullian model described by Eq. 15 not
only in the underlying model equation, which contains two
time-dependent terms, tc(t) = tc[C(t)] and kF[(t) = [C(t)], in-
stead of one, b[C(t)] where m = constant, but also in it the
boundary condition. Unlike the Weibullian (or lognormal)
distribution whose domain is from 0 to ∞, the Fermi’s
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Fig. 4 Isothermal survival curves generated with Fermi’s distribution as a
model. Top - on linear coordinates and bottom - on semi-logarithmic
coordinates
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distribution’s domain is from − ∞ to ∞, and hence, at t = 0
Log10[S(t)] < 0 by definition. This discrepancy is taken care of
by assigning the boundary condition not as Log10[S(0)] = 0,
but the very small static value of Log10[S(0)] at the initial
disinfectant’s concentration.

Two examples of the Fermi model use to generate survival
curves under irregularly dissipating disinfectant concentra-
tions are given in Fig. 5. The shown survival curves were
generated for a hypothetical disinfectant whose Fermian
model’s two parameters, the tc and kF in Eq. 16, decrease
exponentially with its concentration (see figure’s top). The
survival curves themselves were calculated and plotted prac-
tically instantaneously, as expected, again demonstrating that
the two rate equations complexity were no hindrance to their
numerical solutions.

Disinfectant replenishing and accounting
for its dispersing time

The survival patterns presented in Figs. 1, 2, 3, 4, and 5, as
well as in most if not all the cited publications, describe the
outcome of hypothetical treatments with dissipating disinfec-
tants having known initial concentration, i.e., at t = 0, C(t) =
C0. The proposed rate models, however, are also applicable to
processes where the disinfectant is replenished, as demonstrat-
ed in Fig. 6. The figure describes an idealized hypothetical
scenario where the disinfectant is replenished twice. The as-
sumptions are that the replenishment is instantaneous and
followed by the disinfectant exponential dissipation. The
mathematical expression that describes the shown concentra-
tion profile has two “If statements” and the dynamic
Weibullian survival model (Eq. 15) has its b(C) described by
a power-law term as in the CWH model. As before, the
resulting differential rate equation complexity has been no
hindrance to its numerical solution by Mathematica®, and
the corresponding survival curve plot was rendered almost
instantaneously.

A more realistic scenario is where both the disinfectant
initial application and its replenishment are not instantaneous,
and its dissipation is irregular rather than perfectly exponen-
tial, as shown in Fig. 7. The expression used to generate the
shown profile had only one “If statement,” and the survival
rate model was again the Weibullian with its b(C) described
by a power-law term as in the CWH model. Once more, the
resulting differential rate equation complexity has been no
hindrance to its numerical solution, and, as before, the survival
curve has been rendered instantaneously for all practical
purposes.

Figures 6 and 7 clearly demonstrate that currently available
mathematical software offers a handy tool to generate and
study realistic disinfection patterns, which include the

disinfectant replenishment and dispersion stages. With a pro-
gram such as the one used to generate these two figures, one
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Fig. 5 Simulated survival curves during disinfection with an irregularly
dissipating chemical agent generated with the dynamic version of the
Fermi distribution function (Eqs. 17 and 18), whose parameters tc(C)
(solid green curve) and kF(C) (dotted green curve) drop exponentially.
Top - the tc(C) and kF(C) vs. C relationships, middle - two irregularly
dissipating concentration profiles, and bottom - the two corresponding
survival curves. Notice that the differential rate equations’ complexity is
no hindrance to their numerical solution
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can compare different survival models and application regimes
in a very short time. One can also rapidly examine the effect of
variation or uncertainties in the targeted microbe’s survival
parameters, the disinfectant’s properties and the concentration

profile, and assess their influence on the treatment’s efficacy.
Such simulations would assist in the disinfectant selection, the
choice of its initial concentration, and its application mode,
which might include its replenishment timing.
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Fig. 6 Simulated survival curves generated by the dynamic version of the
CWH-Weibullian model for twice replenished disinfectant. Notice that
the “If statements” in the model’s rate equation is no hindrance to its
numerical solution
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Fig. 7 A simulated survival curve generated by the dynamic version of
the CWH-Weibullian model for a replenished disinfectant whose
dispersion in the treated medium takes substantial time. Notice that the
differential rate equations’ complexity (which also includes an “If
statement”) is no hindrance to its numerical solution
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Concluding remarks

This work has focused on the mathematical properties
of the traditional chemical disinfection kinetic models
and options of their replacement in the study of dynam-
ic disinfection with dissipating/volatile disinfectants.
Therefore, no effort has been made to compare the ef-
ficacy and feasibility of different disinfectants or the fit
of different kinetic models to experimental data. The
main findings of the work are as follows:

The static version of the Chick-Watson-Hom’s model can
be viewed as the cumulative (CDF) form of a targeted mi-
crobe’s Weibullian inactivation-time distribution. The time’s
exponentm in this model’s equation is the distribution’s shape
factor, and the rate parameter, b(C) = kC or kCn, represents its
scale factor.

Despite being supported by published experimental
data, the universality of the power-law relationship be-
tween the rate parameter and the disinfectant concentra-
tion cannot be taken for granted. At least theoretically,
it can be replaced by other expressions, and two alter-
natives and their rationale are offered.

There is a mathematical issue with the published CWH
model’s dynamic and static versions, which can be eliminated
by its replacement with the dynamic version of theWeibullian
model. The result is an ordinary differential equation (ODE)
that can be solved numerically for almost every conceivable
realistic concentration profile.

Similar disinfection models can be constructed based on
alternative underlying distribution functions. An example is
the Fermi distribution, which can account for survival curves
resembling a step function and/or having a substantial lag time
with log-linear continuation.

The same modeling approach can be used for a dis-
infectant’s replenishment mode, and for accounting for
what happens until it reaches its intended initial concen-
tration. Despite the complexity of the resulting rate
equations, they too are ODE’s and can be rapidly
solved numerically.
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