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The Quantitative Imaging Network of the National Cancer Institute is in its 10th year of operation, and re-
search teams within the network are developing and validating clinical decision support software tools to
measure or predict the response of cancers to various therapies. As projects progress from development ac-
tivities to validation of quantitative imaging tools and methods, it is important to evaluate the performance
and clinical readiness of the tools before committing them to prospective clinical trials. A variety of tests, in-
cluding special challenges and tool benchmarking, have been instituted within the network to prepare the
quantitative imaging tools for service in clinical trials. This article highlights the benchmarking process and
provides a current evaluation of several tools in their transition from development to validation.

INTRODUCTION
A distinguishing advantage of any research network is the
opportunity for the ensemble of member teams to collaborate in
areas of shared interest, addressing common scientific or tech-
nological problems, to compare individual approaches, and ul-
timately to build consensus. As a result, the ensemble of teams
in a research network is often greater than the sum of its parts.
For the past 10 years, the National Cancer Institute (NCI) Quan-
titative Imaging Network (QIN) has provided a network environ-
ment where the development and validation of quantitative
imaging (QI) analysis software tools designed to measure or
predict response to cancer therapies in clinical trials have been
pursued. The motivating hypothesis for the QIN has been that
clinical trials in systemic or targeted chemo-, radiation-, or
immunotherapies can benefit from the inclusion of QI methods
in the treatment protocols. These methods involve the extraction
of measurable information from medical images to assess the
status or change of a disease.

To date, 36 multidisciplinary teams from academic institu-
tions across the United States and Canada have participated in
the NCI-funded research program. The current number of teams
supported by the network is 20. These research teams discuss
and resolve common challenges such as imaging informatics
activities, clinical trial design and validation planning, and data
acquisition and analysis issues, to name only a few. At the same
time, each team is required to make technical and clinical prog-
ress on its individual research project.

The interest in QI as a method to gauge tumor progression or
predict response to therapy predates the QIN. An early attempt at
extracting numeric information from clinical images came in
the form of RECIST (Response Evaluation Criteria in Solid Tu-

mors) in 2000 (1, 2), based on earlier guidelines first published
by the World Health Organization in 1981 (3). The RECIST
criteria used a single straight line drawn across the widest
dimension in a tumor image to provide a quantitative measure
of tumor size. Size, suitability, and the number of lesions to be
measured were stated in the original guidelines, and later
revised in version 1.1 (4). Response criteria, measured by the
change in linear dimension, were established to determine if the
tumor was in complete response, partial response, or stable or
progressive disease.

Although tumor shrinkage is an obvious desirable response
to cancer therapy, it is not the only response that can occur, or
in some cases, the response may be delayed in appearing (5).
Furthermore, in a metastatic cancer setting a limited set of target
lesions, as prescribed in RECIST 1.1, may not represent the
overall tumor burden or response to therapy (6). These limita-
tions restrict the usefulness of RECIST in some clinical trials.
Often, immunotherapy trials, for example, show that complete
response or stable response can occur after an initial increase in
tumor burden (7, 8). Conventional RECIST criteria early in the
therapy run the risk of labeling this initial increase as tumor
progression, failing to account for the delayed onset of antitu-
mor T cell response. Thus, a therapy under study in a clinical
trial can be seen as failing. This has led to the development of
iRECIST guidelines for response criteria in immunotherapy
trials (9).

QI tools being developed and validated by QIN research
teams measure far more than simple unidimensional tumor size,
and the articles in this special issue of Tomography highlight a
number of them. Physical attributes of tumors such as hetero-
geneity, diffusion and perfusion, and metabolic activity are
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being added to the more traditional size and shape measure-
ments of QI to determine response to therapy. These attributes
have been used in machine-based modeling studies driven by
imaging data to characterize tumor growth (10-13). In addition,
machine learning radiomics approaches for high-throughput
extraction and analysis of quantitative image features are pro-
viding an even richer set of image parameters. These include
intensity, texture, kurtosis, and skewness from which to extract
measurement and prediction information on tumor progression
(14-16).

Background
If QI is to be useful in clinical trials as a method to measure or
predict response to therapy, the methods must be developed on
clinically available platforms such that the final validated tools
would have value in multicenter clinical trials. To this end, the
NCI QIN program was initiated in 2008. The support mechanism
chosen for this effort was the cooperative agreement U01 mech-
anism. Here, successful applicants agree to collaborations and
conditions established by NCI program staff. In the case of the
QIN, these conditions include participation in a network of
teams, joining in monthly teleconference meetings, and collab-
orating in several working groups.

Applications to the QIN are subject to the NIH peer-review
process conducted 3 times each year. As a result, the network
teams enter the program at different times and are thus at
different stages in their tool development and validation at any
given point in time. This creates a need to qualify the degree of
development and validation each quantitative tool has attained.
Accordingly, a system of benchmarking to assess tool maturity
has been implemented.

Clinical Translation
The process of translating ideas and products from laboratory
demonstration to clinical utility is the exercise of transferring
stated features of the idea or product into realized benefits to the
user. For example, the stated feature of improved sensitivity or
specificity in an imaging protocol can translate into improved
personalized care in the clinic. The tool developer must be aware
of the nature of the clinical need for such a tool. Likewise, the
clinical user must be realistic regarding the performance char-
acteristics needed in a clinical decision support tool.

To ensure a strong connection between developer and clin-
ical user, each QIN team is required to have a multidisciplinary

composition that brings expertise in imaging physics and radi-
ology along with informatics, oncology, statistics, and clinical
requirements to the cancer problem being addressed. This gives
each team multiple perspectives on the challenges of advancing
decision support tools through the development and verification
stages and on to the clinical validation stage.

Translation is not a simple move from bench to bedside. It
requires a constant check on progress with a compass heading
set by clinical need. There must be a set of guiding milestones to
point the way through the translation landscape and to measure
progress along the way. This, however, can be very difficult in a
network of research teams, where each team is focused on a
different imaging modality or approach and cancer problem.

A guiding pathway for QIN teams in this translation process
continues to be the use of benchmarks for measuring progress
toward clinical utility. Even though each team is working on a
different application of QI for measurement or prediction of
response to cancer therapy, they all share the challenges of
bringing tools and methods into clinical utility. The benchmarks
offer a ubiquitous pathway for all teams to move toward clinical
workflow. As such, the benchmarks measure the tasks on the
development side of the translation. There is no doubt that a set
of benchmarks could be established for monitoring progress on
the clinical side of the translation issue, but that is not a part of
the QIN mission.

Figure 1 shows a schematic pathway from initial concept
and development of tools and methods for clinical decision
support all the way to final clinical use. The demarcations show
that the benchmark grades represent milestones in the develop-
ment toward the clinical use. The details of the benchmarks and
the requirements to achieve each are given in the next section.

Benchmarking
For each team, the transition from the activities of tool devel-
opment to clinical performance validation is a central part of the
research, but this does not occur in a sudden step. There is a
period where prototype tools are tested against retrospective
image data from archives such as The Cancer Imaging Archive
(TCIA) (http://www.cancerimagingarchive.net/) or other data
sources to objectively assess tool performance. The benchmark-
ing initiative allows investigators the opportunity to adjust their
algorithms before committing to a specific prospective clinical
trial.

Figure 1. Quantitative Imaging
Network (QIN) benchmarks, de-
scribed in the text and in Figure
2, designate key milestones to-
ward the clinical translation of
quantitative imaging (QI) tools
from laboratory prototype (A) to
scale up and optimization (B) to
clinical use (C).
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Another initiative embraced by the QIN team members
during their period of initial verification of tool performance has
been team challenges. Here, several teams with sufficiently
developed tools with similar quantitative measurement func-
tions (segmentation, volume metrics, volume transfer constant,
Ktrans, measurements, etc.) use a common data source, divided
into training and test data sets, to determine and compare
task-specific tool performance related to determining or predict-
ing the therapeutic response. Within the QIN, these activities are
referred to as challenges and collaborative projects (CCPs) (17)
and have proven very useful in guiding the development of QI
tools and analytic methods in preparation for more complete
clinical validation studies. CCPs have been conducted at various
points along the development pipeline, from basic concept to
technical verification and preliminary clinical validation. De-
scriptions of CCP tasks, project design, and results have been
disseminated through several peer-reviewed scientific publica-
tions (18-28).

The CCP activities highlighted the need to create a method
for gauging the degree of development a tool had attained at any
specific timepoint. This would help to evaluate challenge results
when tools with widely different levels of development partici-
pated. To gauge the level of development for tools in the QIN, a
benchmarking process was developed. A Task Force, comprising
QIN members, was charged with the task of developing a system
to stratify the level of progress made by teams in their efforts to
develop QI tools for clinical workflow. In the context of QIN
activities, a tool can be a software algorithm, a physical phan-
tom, or a digital reference object used in the production or
analysis of QI biomarkers for diagnosis and staging of cancer
and for the prediction or measurement of response to therapy.

The Task Force developed QI Benchmarks as standard labels
that signify the development, validation, and clinical translation
of quantitative tools through a 5-tier benchmark system as
shown in Figure 2 (29): pre-benchmark (level 1), basic bench-
mark (level 2), technical test benchmark (level 3), clinical trial
benchmark (level 4), and clinical use benchmark (Level 5). In
general, requirements for each benchmark designation require a
peer-reviewed publication, where the scientific goals, methods,
and results of the QI biomarker development or analysis are
described. A benchmark is not automatically conferred on a QIN
tool. The developer must make an application which includes
the required information for that benchmark and conduct a
discussion of the objective performance claim for the bench-
mark, best practices, and current limitations of the tool. In
addition, it is important to note that candidates for each of the
benchmarks must have fulfilled the requirements for the prior-
level benchmark but not necessarily obtained it. The Coordinat-
ing Committee of QIN, consisting of the chairs of each of the
Network Working Groups (30) and certain NCI program staff,
reviews each benchmark application. If an application for a
benchmark is rejected, the applicant will be allowed to address
the concerns and resubmit the application.

The establishment of this benchmarking process will help to
advance the field of QI in oncology by recognizing QI tools
entering QIN (benchmark level 1), encouraging QIN investiga-
tors to participate in objective performance evaluation of their
tools and methods (benchmark level 2), to streamline validation

through dissemination of appropriately developed tools and
methods to test sites (benchmark level 3), and to promote par-
ticipation in oncology clinical trials (benchmark level 4) by
providing objective evaluation of tool development to allow
more accurate assessment or prediction of cancer therapies and
eventual clinical use (benchmark level 5). It is anticipated that
this initiative will help in proper placement of advanced tools
and methods into prospective clinical trials and will streamline
the process of translating such tools into the broader clinical
community with adoption by industry.

RESULTS
The current catalog of QIN tools contains 67 clinical decision
support tools in various stages of development. Because of the
staggered entrance of teams into the network, progress in de-
velopment is not uniform across the network. This has created
the need for benchmarking as a measurable way to evaluate tool
development status. Of the tools listed in the catalog, there are
�12 that are to the point of entering the clinical domain and
qualifying for benchmark level 4 or 5.

Image segmentation of tumor from surrounding tissue is an
important tool function and serves as a first step in determining
treatment planning regimens in oncology and many quantita-
tive measurements of tumor status. Several QIN teams are de-
veloping segmentation tools for various applications. One such
tool developed at Columbia University (New York, NY) performs
image segmentation on solid tumors and has been shown in
lung, liver, and lymph nodes as a semiautomatic software tool.
The segmentation of magnetic resonance imaging (MRI) and/or
computed tomography (CT) images across multiple slices yields
quantitative information on tumor volume (31-33) and has been
used in several clinical trials. This tool can be integrated into
diagnostics, radiation-treatment planning, and tumor response
assessment on commercial workstations.

Volumetric measurement of breast cancer tumors using
dynamic contrast-enhanced MRI has been developed by the QIN
team at the University of California at San Francisco (San
Francisco, CA). The tool is an image processing and analysis
package based on dynamic contrast-enhanced MRI contrast
kinetics and has been approved on a commercial platform. It has
proven useful in clinical trials performed by several groups in
the NCI clinical trials network (34, 35). In addition to the anal-
ysis of algorithm performance, the validation of a breast phan-
tom design has been reported (36). Features of the software
package include image reconstruction, image registration, seg-
mentation, and viewer/visualization. A commercial version is
being used in �20 I-SPY clinical sites.

Auto-PERCIST (Positron Emission Tomography [PET] Re-
sponse Criteria in Solid Tumors) is a software package for PET
imaging and can provide clinical decision support through im-
age segmentation, viewer/visualization, and response assess-
ment. Similar to RECIST, the PERCIST package focuses on ana-
lyzing fludeoxyglucose-PET scans and evaluates if the study
was performed properly from a technical standpoint. It estab-
lishes the appropriate threshold for the standardized uptake
value corrected for lean body mass (SUL) evaluation of the
lesion at baseline. Auto-PERCIST has been used to provide
clinical assessment of therapy response in multicenter evalua-
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tions both here in the United States and in Korea, and a release
of Auto-PERCIST for European oncology trials is planned. Al-
though not completely developed under the QIN program, many
of the features found in Auto-PERCIST were created and vali-
dated in the QIN program by teams originally at the Johns
Hopkins University (Baltimore, MD) and currently at Washing-

ton University (St. Louis, MO). This tool has been used in several
multicenter clinical trials, and details of its performance can be
found in several publications (37-40).

Clinical support for evaluating tumor response can come in
many forms. It be the algorithm, phantom, or digital reference
object for direct analysis of images, and it can also be the

 

Pre Benchmark 

• QI product, defined as a so�ware tool, a physical, or a digital phantom, used for produc�on or analysis of a 
candidate QI biomarker (based on imaging features), for diagnosis or staging of cancer, for measurement or 
evalua�on of response to therapy.  
 

• Requirements:  Peer-reviewed publica�on, (or patent) describing the product, and associated data set from 
phantom or a single site clinical study.          
       Cer�ficate designa�on- 

Basic 
Benchmark 

• QI product, fulfilling  requirements for a pre-Benchmark, that has par�cipated in a CCP, within or outside of QIN, 
and is made publicly available for example through GitHub, Docker Hub, or as an executable code (in case of 
so�ware tools), or through ins�tu�onal Material Transfer Agreements.  
 

• Requirements:* Peer-reviewed publica�on, describing product and its performance in CCP.   
       Cer�ficate designa�on- 

Technical Test  
Benchmark 

• QI product, fulfilling  requirements for a Basic Benchmark, that has been tested by one or more independent 
academic or industry groups (the ToolX CCP).  
 

• Requirements:* Publica�on, led by the test team, describing func�onality, performance, and limita�ons, on 
na�ve and non-na�ve pla�orms, reference (common) and independent data sets.    
       Cer�ficate designa�on- 

Clinical Trial 
Benchmark 

• QI product, fulfilling  requirements for a Technical Test Benchmark, that has been used or cross-checked in a 
clinical trial through the NCI Na�onal Clinical Trials Network, or other independent clinical trial mechanism. 

• Requirements:* Peer-reviewed publica�on, describing product performance and use case in a clinical trial.  
             
       Cer�ficate designa�on- 

Clinical Use 
Benchmark 

• QI tool, fulfilling  requirements for a Clinical Trial Benchmark, that has been used in the clinic to acquire clinical 
data and/or evaluate a quan�ta�ve metric. 
 

• Requirements:* Peer-reviewed publica�on describing the u�lity and performance in a specific clinical applica�on
             
       Cer�ficate designa�on- 
 

Figure 2. Five levels of QI benchmark for labeling of QI products. *In addition to the requirements listed for each level,
candidates for benchmarks must have fulfilled the requirements for the prior-level benchmark, but not necessarily ob-
tained that benchmark, to be considered for the current benchmark level.
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workspace in which the software operates. Such is the case for
ePAD, a Stanford University (Palo Alto, CA) web-based image
viewing and annotation platform to enable deploying QI bio-
markers into clinical trial workflow (41). It supports applications
such as data collection, data mining, image annotation, image
metadata archiving, and response assessment. This publicly
available platform predates QIN, but many of the current quan-
titative functionalities of ePAD have been installed and vali-
dated under QIN support.

CONCLUSIONS
The list of benchmarked tools in QIN is growing. Constant
updates are being made to the catalog as new QIN teams enter
the network and existing teams progress in their development
and validation of their QI tools in support of clinical trials (42,
43). This issue of Tomography highlights several QI tools and
studies in the QIN. As the network moves forward, it has begun
to focus on coordinated ways to approach clinical trial groups
and interested commercial parties.
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