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1.  INTRODUCTION

Skin is the most commonly affected organ in chronic graft- 
versus-host disease (cGVHD), a leading cause of long-term 
non-relapse mortality and morbidity after allogeneic hemato-
poietic cell transplantation (HCT) [1,2]. Tracking change in 
cutaneous manifestations is critical to evaluate treatment effi-
cacy or disease progression. Erythema is a common manifesta-
tion of cutaneous cGVHD assessed visually as the affected body 
surface area (BSA). Reversal of erythema has been associated 
with improved survival [3,4]. However, it is estimated that a 
clinical exam can only detect a minimal change in erythema of 
19–22% BSA [5].

Computer-aided methods could provide accurate and objec-
tive assessment of skin change. However, their development for 

cGVHD is challenging due to the heterogeneity of cutaneous 
presentations and the lack of biological ground truth, as even  
normal-appearing skin can have microscopic GVHD features [6]. 
Traditionally, segmentation algorithms are developed from anno-
tations by expert clinicians. The annotator marks the rash-affected 
area, and the remaining area is considered unaffected, regardless 
of how confident the annotator is in their marking. Each human 
annotator may have a different threshold for what they consider 
affected [7], resulting in high variability. This limits the devel-
opment of computer-aided algorithms, which generally assume 
confident human inputs. Baseline photography is commonly used 
to detect change in neoplastic skin lesions (e.g. melanoma sur-
veillance) [8,9]. However, its value is unknown in detecting non- 
neoplastic skin change.

In this study, we aimed to develop a neural network-based algo-
rithm that provides a precise and objective measurement of change 
in cGVHD erythema. We hypothesized that limiting human anno-
tation to areas of confidence in an image increases algorithm accu-
racy. We also hypothesized that viewing baseline photos improves 
reliability.
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A B S T R AC T
Cutaneous erythema is used in diagnosis and response assessment of cutaneous chronic graft-versus-host disease (cGVHD). 
The development of objective erythema evaluation methods remains a challenge. We used a pre-trained neural network to 
segment cGVHD erythema by detecting changes relative to a patient’s registered baseline photo. We fixed this change detection 
algorithm on human annotations from a single photo pair, by using either a traditional approach or by marking definitely 
affected (“Do Not Miss”, DNM) and definitely unaffected skin (“Do Not Include”, DNI). The fixed algorithm was applied to each 
of the remaining 47 test photo pairs from six follow-up sessions of one patient. We used both the Dice index and the opinion of 
two board-certified dermatologists to evaluate the algorithm performance. The change detection algorithm correctly assigned 
80% of the pixels, regardless of whether it was fixed on traditional (median accuracy: 0.77, interquartile range 0.62–0.87) or 
DNM/DNI segmentations (0.81, 0.65–0.89). When the algorithm was fixed on markings by different annotators, the DNM/
DNI achieved more consistent outputs (median Dice indices: 0.94–0.96) than the traditional method (0.73–0.81). Compared 
to viewing only rash photos, the addition of baseline photos improved the reliability of dermatologists’ scoring. The inter-rater 
intraclass correlation coefficient increased from 0.19 (95% confidence interval lower bound: 0.06) to 0.51 (lower bound: 0.35). 
In conclusion, a change detection algorithm accurately assigned erythema in longitudinal photos of cGVHD. The reliability was 
significantly improved by exclusively using confident human segmentations to fix the algorithm. Baseline photos improved the 
agreement among two dermatologists in assessing algorithm performance.
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2.  MATERIALS AND METHODS

2.1.  Image Acquisition and Preparation

We acquired 56 pairs of 3D photographs from a hematopoietic cell 
transplant patient using a Canfield Vectra H1 camera. Through 
stereophotogrammetry technology, the camera captures a 165 ×  
270 × 100 mm3 volume in 2.0 min, with 0.8 mm geometry resolu-
tion. We imaged eight body sites (Figure 1a) at seven timepoints 
spanning 172 days. The first imaging session (baseline, t0) was 
before the patient had developed any signs of cutaneous cGVHD. 
The remaining imaging sessions (t1–t6) captured cGVHD ery-
thema. At each body site, a pair of photos was taken: cross- 
polarized (XP) that highlights subsurface features (e.g. hemoglo-
bin that causes redness), and non-polarized (NP) that shows sur-
face changes and texture (e.g. fine epidermal scale). One annotator 
manually cropped each body site of interest and manually regis-
tered the same body sites images of all timepoints. The total count 
was 112 3D-photos from the seven timepoints × eight body sites × 
two 3D-photos (cross- and non-polarized) per body site.

2.2. � Human Annotation Methods:  
Traditional and Novel Confident

To develop an accurate computer-aided skin change algorithm, 
we proposed a new annotation approach: “Do Not Miss”/“Do 
Not Include” (DNM/DNI) segmentation. Two annotators who 
were trained by a board-certificated dermatologist independently 
marked each image by each annotation method: traditional and 
DNM/DNI segmentation. In traditional segmentation, anno-
tators marked all areas that they felt are more likely to be active 
cGVHD erythema than inactive disease or normal skin. This tra-
ditional approach results in annotations of limited confidence that 
exactly divide the image into marked regions that are felt to be 

active erythema, and unmarked regions that are felt not to be active 
erythema. In contrast to this single marking strategy, DNM/DNI 
segmentation has annotators marking two types of areas, in which 
they have high confidence in the assignment: (i) definitely-affected 
areas as DNM and (ii) definitely-unaffected areas as DNI. Anything 
not marked in one of these two areas is not taken into account and, 
so, the annotator is not required to commit to presence or absence 
of active disease. In marked DNM/DNI areas, the annotator was 
asked to have sufficiently high-level confidence that an automated 
algorithm should always be penalized for missing any DNM pixels, 
and should always be penalized for including DNI pixels. During 
annotation, each annotator simultaneously viewed four images: 
the XP/NP image pair at baseline (t0) and the XP/NP image pair 
at a follow-up session (t1–t6, Figure 1b). Annotations were done 
on the XP image of each of the six follow-up sessions (t1–t6) and 
each of the eight body sites. This resulted in 48 XP images with 
traditional segmentation and 48 XP images with paired DNM 
and DNI segmentations. The two annotators were blinded to each  
other’s results.

2.3. � Computer-Aided Algorithm to  
Detect Skin Change

We used an existing, pre-trained neural network [10,11] to extract 
features at each pixel of each image. Without adjusting any weights 
in the network, we designed an algorithm to detect skin changes 
based on the differences in features from the baseline photo to the 
time of rash. At each image pixel, the algorithm outputs a number 
on the scale of 0–1 that represents the difference in skin features 
between baseline and cGVHD rash photos (Figure 2). One image 
pair (left chest timepoints t0–t1) was used to fix the three algo-
rithm parameters, and the remaining 47 image pairs were used to 
test the algorithm performance. Full algorithm details are provided 
in Supplementary Material 1.

Figure 1 | (a) Example of cross-polarized images of eight body sites from the first study session after baseline, which captured a new onset cutaneous 
chronic graft-versus-host disease rash. (b) The annotator simultaneously viewed four spatially registered skin photos: cross-polarized (XP) and non-
polarized (NP) photos at baseline (no rash, t0) and at a follow-up session with a rash (in this example, t1). Annotations (cyan overlay) were done in the XP 
photo of the follow-up session (t1). Example shows “Do Not Miss” (DNM) annotations on left chest.

a b
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2.4. � Evaluation of Algorithm Performance in 
Active Erythema by Two Dermatologists

To test algorithm performance, two board-certified dermatolo-
gists independently evaluated each algorithm output. Each der-
matologist independently scored the output in representing active 

erythema as 0 (poor: algorithm segmentation requires major revi-
sions), 1 (good: requires minor revisions), or 2 (perfect: requires no 
revisions). They were blinded to the algorithm accuracy and anno-
tations of the two annotators.

Each dermatologist did two types of evaluations: (#1) without 
viewing or (#2) while viewing the baseline skin photo. For eval-
uation #1, they simultaneously viewed the non-polarized and 
cross-polarized photos at a time of cGVHD rash. For evaluation 
#1, the four images were viewed (Figure 3a): a non-polarized (NP), 
and cross-polarized (XP) raw image, and the same images with 
algorithm output (blue overlay). For evaluation #2, the NP images 
were substituted for the baseline (pre-rash) XP image (Figure 3b). 
Typically, dermatologists would rapidly toggle their screen to dis-
play the raw photos and the algorithm-marked photo to enable a 
rapid short-term visual memory decision.

For each of the two evaluations, scoring was repeated in two rounds. 
The second round was done after evaluating the results of the first 
round and a 1 week washout period. In each round, each dermatol-
ogist evaluated all 47 image pairs in a random order unique to each 
dermatologist. Images were in a new random order in the second 
round. This resulted in each dermatologist scoring all 47 images 
four times.

2.5.  Statistical Analysis

We first evaluated the accuracy of the change detection algorithm 
by using traditional human segmentations as the ground truth. 
Then, we independently evaluated the accuracy again based on 
the novel DNM/DNI segmentations. For each pixel, the algo-
rithm output (skin change/no skin change) is compared to the 
ground truth in the corresponding human annotation (rash/
no rash). When comparing algorithm output to traditional  

Figure 2 | Algorithm outputs of detected skin change (blue areas) based 
on (a) traditional (black outline) and (b) proposed DNM/DNI (black/red 
outlines) segmentation methods. Whereas in traditional segmentation 
unmarked pixels represent “no rash”, in DNM/DNI segmentation the 
unmarked pixels are deemed uncertain by the annotator. Therefore, in 
the DNM/DNI method, the algorithm is not penalized for incorrectly 
detecting pixels that the human annotator was uncertain about. This 
results in less false positives (magenta), less true positives (green) areas, 
and uncertain pixels, compared to traditional segmentation method. 
DNM: “Do Not Miss”; DNI: “Do Not Include”. Example shows left chest of 
the first follow-up session.

ba

Figure 3 | Example dataset that each dermatologist viewed to evaluate how well the algorithm output reflects active erythema (a) without viewing 
(evaluation #1) or (b) while viewing (evaluation #2) the baseline skin appearance photo. Algorithm output (blue overlay) are areas of skin change, detected 
by the developed computer-aided algorithm.

a
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annotation, marked pixels represent “rash” and unmarked pixels 
represent “no rash”. In DNM/DNI annotation, DNM pixels repre-
sent “rash”, DNI pixels represent “no rash”, and unmarked pixels 
are uncertain and therefore are not compared to algorithm output. 
Accuracy = (TP + TN)/(TP + FN + TN + FP). True positive (TP) 
pixel represents algorithm and human agreeing on a skin change/
rash. True negative (TN) pixel represents algorithm and human 
agreeing on no skin change/no rash. False positive (FP) pixel rep-
resents the algorithm detecting a skin change and the annotator 
assigning it as “no rash”. False negative (FN) pixel represents the 
algorithm not detecting skin change and the human assigning it 
as a “rash”.

To further evaluate algorithm performance, we calculated the aver-
age dermatologist score per two dermatologists, per each of the  
47 XP/NP image pairs, resulting in average scores 0, 0.5, 1, 1.5, 
and 2. We used the Dice index to test the reliability between seg-
mentation methods (DNM/DNI versus traditional) and algorithm 
outputs (DNM/DNI-based versus traditional-segmentation based 
skin change areas). The Dice index is the most widely used metric 
in medical imaging to evaluate the reliability of a segmentation 
method. It ranges from 0 (no overlap) to 1 (perfect overlap). The 
best algorithm for melanoma detection from dermoscopic images 
achieved an average Dice index of 0.85 in the 2017 International 
Skin Imaging Collaboration challenge [12].

To evaluate the intra-rater reliability of each dermatologist and the 
inter-rater reliability between the two dermatologists, we used intra-
class correlation coefficients (ICCs). For ICC, we used the Eliasziw’s 
simultaneous random effects, absolute agreement, single-measure 
model [13]. Lower bound (single-sided) 95% confidence intervals 
were calculated using the corresponding “relInterIntra” function of 
the irr package in R [14]. Landis and Koch criteria were used for 
ICC interpretation, where values of 0.21–0.40 represent fair agree-
ment, 0.41–0.60 moderate, 0.61–0.80 substantial, and 0.81–1.00 
almost perfect agreement [15].

We used standard error of measurement (SEM) as a metric to eval-
uate variability among dermatologists’ scores of algorithm perfor-
mance. SEM is interpreted as the assessment of reliability within 
individual subjects and has the same units as the measurement. 
The greater its value, the lower the reliability of the measurement 
[16]. Intra-rater SEMs summarize the variability inherent within 
the raters’ own measurements. Inter-rater SEMs include both the 
variability among raters’ measurements and the variability within 
raters’ measurements [17].

3.  RESULTS

3.1. � Improved Reliability for DNM/DNI  
Compared to Traditional Segmentation

We illustrate a segmentation approach (DNM/DNI) in which 
human annotators are confident in their markings of definitely 
affected and definitely unaffected areas of cutaneous cGVHD 
rash. DNM guides the algorithm to select pixels that should not be 
missed and DNI guides the algorithm to exclude pixels that should 
not be selected. Example annotations by two trained annotators are 
visualized in Figure 4.

The DNM/DNI segmentation approach achieved higher inter-rater 
reliability between annotators (median Dice index: 0.53–0.70) than 
traditional segmentation (0.36–0.47). The developed segmentation 
approach resulted in higher median Dice indices for algorithm 
output (0.94–0.96) than the traditional segmentation approach 
(0.73–0.81, Figure 5).

3.2. � Computer-Aided Skin Change Detection 
Algorithm: Tested on Cutaneous Chronic 
Graft-Versus-Host Disease

We demonstrate the ability to detect cutaneous cGVHD by evalu-
ating change from a baseline skin photo. After fixing the algorithm 
with one of 48 images at the time of rash, the algorithm correctly 
assigned approximately 80% of the pixels in the 47 unseen images. 
Similar high performance was achieved both with traditional 
(median accuracy: 0.77, interquartile range 0.62–0.87) and the new 
DNM/DNI annotation method (0.81, 0.65–0.89, Figure 6).

3.3. � Dermatologists’ Score on How Well 
Algorithm Detects Active Erythema

Two board-certified dermatologists evaluated how well the algo-
rithm detects active erythema without viewing (evaluation #1) 
and while viewing (evaluation #2) baseline skin photos. In eval-
uation #1, they scored each output by simultaneously viewing the 
follow-up non-polarized and cross-polarized photos of a cGVHD 
rash and algorithm output (Figure 3a). In evaluation #2, they scored 
each output by simultaneously viewing cross-polarized photos of 

Figure 4 | Independent markings by two annotators had higher agreement 
(Dice index of 0.852 versus 0.535) when using the “Do Not Miss/Do Not 
Include” (DNM/DNI) approach, compared to the traditional method. The 
Dice index measures the agreement between the two annotators on a scale 
of 0–1. For the DNM/DNI method, Dice is calculated by using both the 
DNM (black) and DNI (red) areas. Example shows left chest of the first 
follow-up session (t1).
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the baseline skin appearance and follow-up photo with a cGVHD 
rash, and algorithm output (Figure 3b). When viewing baseline 
photos, the dermatologists’ scoring of the algorithm was higher for 
those photos with higher algorithm accuracy. The average scores of 
the dermatologists correlated well with algorithm accuracy when 
viewing baseline photos, but not without viewing baseline photos 
(Figure 7).

3.4. � Viewing Baseline Photos Improves  
Reliability among Dermatologists

Viewing baseline skin photos (before the development of a 
cGVHD rash) improved the intra- and inter-rater reliability of 
the two dermatologists. The intra-rater ICC increased from a ‘fair’ 
value of 0.17 (95% confidence interval lower bound: −0.27) with-
out viewing baseline photos to a ‘moderate’ value of 0.62 (0.33) 
while viewing baseline photos. The inter-rater reliability similarly 

increased from a ‘fair’ ICC of 0.19 (0.06) to a ‘moderate’ 0.51 (0.35) 
(Table 1) [15]. The intra-rater SEM improved from 0.52 to 0.36 
and the inter-rater SEM improved from 0.51 to 0.40 with viewing 
baseline photos (Table 1).

4.  DISCUSSION

Longitudinal tracking of erythema is critical for treatment deci-
sions in patients with cutaneous cGVHD and would benefit greatly 
from automated image analysis methods. We designed an algo-
rithm to detect skin change based on a pre-trained neural network 
as a feature extractor. Our algorithm did not adjust or train the net-
work but rather used a human annotation of a single rash photo to 
fix three algorithm parameters to detect changes from the patient’s 
baseline before rash. Our pilot study confirmed our hypothesis 
that asking humans to only mark parts of image in which they are  

Figure 5 | Compared to (a) traditional segmentation, (b) “Do Not Miss/Do Not Include” (DNM/DNI) segmentation resulted in higher average Dice 
indices between two human annotators (white) and between two algorithm outputs (blue). Each of the two algorithms was fixed on one of the annotators’ 
segmentations of the left chest at the first follow up t1. The algorithms were first tested on the left chest at t2–t5 (Different Timepoints and Same Site). 
They were then tested on the seven other body sites at t1 (Same Timepoint and Different Sites), and at follow-ups t2–t5 (Different Timepoint and 
Different Sites). Medians are shown next to the corresponding horizontal line in the boxplot.

a b

Figure 6 | (a) Histogram and (b) boxplot show a similar algorithm accuracy across 47 test cGVHD images, regardless of whether the algorithm was based 
on traditional (black, median accuracy: 0.77, interquartile range: 0.62–0.87) or DNM/DNI annotations (red, 0.81, 0.65–0.89). Accuracy was calculated 
as the number of pixels that the algorithm correctly assigns, based on human segmentation. “X” is the average algorithm accuracy on the 47 images 
annotated by two annotators: 0.73 (traditional) and 0.77 (DNM/DNI).

a b
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confident improves both human and algorithm reliability. Further, 
we found that viewing photos of baseline skin appearance improves 
dermatologists’ reliability.

To calculate the severity of GVHD, the European Society for 
Blood and Marrow Transplantation has developed an eGVHD 
app. However, eGVHD does not address longitudinal patient  
evaluations [18]. In dermatology, longitudinal tracking of suspi-
cious pigmented lesions via short-term digital dermoscopy has 
dramatically increased the accuracy of melanoma detection [19]. 
In radiology, an automated change detection system was shown to 
outperform experts when assessing multiple sclerosis progression 
in magnetic resonance scans. Whereas experts missed 58% of cases 
with progressing disease, the algorithm missed 5% [20]. Similarly, 
longitudinal computer tomography of the liver has been shown to 
enhance detection of tumors [21]. To the best of our knowledge, 
no algorithms exist for detecting change in cutaneous cGVHD or 
other inflammatory skin diseases.

Uncertainty is a common challenge in medical image segmen-
tation due to poor contrast or other restrictions imposed by the 
image acquisition or variations in annotation between experts. 
In magnetic resonance and computed tomography images, 
accuracy of automated segmentation algorithms has been 
improved by accounting for the uncertainty in learned model  

parameters [22,23]. Instead of embedding uncertainty in the 
algorithm development, we explored a more confident anno-
tation approach. We developed a DNM/DNI segmentation 
method where the annotator is asked to only mark areas in 
which they are confident. This is a major departure from the tra-
ditional approach where the annotator is asked to assign all parts 
of the image as affected or non-affected. Although our change 
detection algorithm achieved a similar accuracy (>0.7), regard-
less of which human annotation method it was based on, the  
DNM/DNI approach resulted in a higher inter-rater agreement 
(Dice: 0.70 versus 0.47) than the traditional method. DNM/DNI 
may aid in the development of more accurate and reliable seg-
mentation algorithms in a variety of medical imaging applica-
tions beyond inflammatory skin disease.

Although baseline photography is commonly used to detect change 
in pigmented lesions [8,9], its value is unknown in detecting change 
in an inflammatory disease. Individual processing of a rash photo 
without baseline skin appearance may not account for other causes 
of redness, such as sun-damaged skin or an underlying dermato-
logic condition. Furthermore, detection of erythema in patients 
with darker skin remains a challenge both by visual inspection, as 
well as by computer-aided methods. Without viewing baseline skin 
photos, in-person assessments of the body surface area affected by 
cGVHD erythema have achieved modest (ICC: 0.41–0.60) inter-
rater agreement [5] by Landis and Koch criteria [15]. In a previous 
study [7], we tracked erythema at each imaging session over time, 
without taking into account skin appearance at baseline. Six trained 
raters, while only viewing the rash photo, achieved poor agreement 
in the assessment of body surface area in those 3D photos (ICC = 
0.09). Consistent with these prior studies, we found poor agreement 
(0–0.20) in the evaluation of algorithm output when the dermatol-
ogists did not view a photo of baseline skin appearance. By con-
trast, dermatologist intra- (0.62) and inter-rater (0.51) agreement 
improved to modest when they viewed baseline photos. Viewing 
baseline skin photos improved the agreement between dermatolo-
gists on algorithm performance (0.51 versus 0.19). Capturing base-
line photos in research studies and clinical practice may increase 
the accuracy in assessing skin change, decrease the disagreement 
between raters and improve the consistency among expert clini-
cians to identify areas of active disease.

Our study has several limitations. The algorithm performance 
relies on a precise manual alignment of longitudinal skin photos of 
the same body site. Because human annotators only marked areas 
that they were confident about as either affected or unaffected, the 
developed algorithm output of skin change included large areas of 
uncertainty. Rather than detecting cGVHD rash based on informa-
tion in a single image pixel, future studies could explore automated 
detection of cGVHD rash based on the information available in the 
image as a whole (all pixels). We tested the developed algorithm 
on a single patient’s data with a papulosquamous rash of cGVHD, 
therefore the algorithm did not have to account for the pleomor-
phic presentations of cGVHD. We hope to address this in the future 
by expanding our dataset. If validated in a larger patient popula-
tion, this method may assist clinicians in monitoring and managing 
cutaneous cGVHD.
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bound of one-sided confidence interval and point estimate are shown. 
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SEM Intra 0.52 0.36
Inter 0.51 0.40
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